Fast relational learning using bottom clause propositionalization with artificial neural networks

Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 94; no. 1; pp. 81 - 104
Main Authors: França, Manoel V. M., Zaverucha, Gerson, d’Avila Garcez, Artur S.
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2014
Springer Nature B.V
Subjects:
ISSN:0885-6125, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL 2 P, to perform learning from numerical vectors. C-IL 2 P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy.
AbstractList Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL super(2)P, to perform learning from numerical vectors. C-IL super(2)P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy.
Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL 2 P, to perform learning from numerical vectors. C-IL 2 P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy.
Issue Title: Special Issue on Inductive Logic Programming (ILP 2012); Guest Editors: Fabrizio Riguzzi and Filip elezný Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL^sup 2^P, to perform learning from numerical vectors. C-IL^sup 2^P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy.[PUBLICATION ABSTRACT]
Author d’Avila Garcez, Artur S.
Zaverucha, Gerson
França, Manoel V. M.
Author_xml – sequence: 1
  givenname: Manoel V. M.
  surname: França
  fullname: França, Manoel V. M.
  email: manoel.franca.1@city.ac.uk, manoel@cos.ufrj.br
  organization: Universidade Federal do Rio de Janeiro, City University London
– sequence: 2
  givenname: Gerson
  surname: Zaverucha
  fullname: Zaverucha, Gerson
  organization: Universidade Federal do Rio de Janeiro
– sequence: 3
  givenname: Artur S.
  surname: d’Avila Garcez
  fullname: d’Avila Garcez, Artur S.
  organization: City University London
BookMark eNqFkTtPwzAYRS1UJErhB7BFYmEJ-G1nRBUvCYkFZst17OKSxsV2VMGvJ2kYUCVg8becc_3Z9xhM2tBaAM4QvEQQiquEYFXREiJSMlLhEh2AKWKClJBxNgFTKCUrOcLsCByntIIQYi75FOhbnXIRbaOzD61uisbq2Pp2WXRpOBch57AuTKO7ZItNDJuQ_Ij6z51TbH1-LXTM3nnj-4TWdnE38jbEt3QCDp1ukj39njPwcnvzPL8vH5_uHubXj6WhmOWyJrKWdCEMFw7X2EFHuXOMWMEpJZBVhkjDXKU5E9IyXFHjpKmNFQtqLarJDFyMuf2S751NWa19MrZpdGtDlxQSjLAhiv-P0ooSDoXAPXq-h65CF_vXDxSXEmPMqp5CI2ViSClapzbRr3X8UAiqoR819qP6ftTQj0K9I_Yc4_PuR3PUvvnTxKOZ-lvapY0_dvpV-gJOHKfj
CitedBy_id crossref_primary_10_1007_s10994_024_06543_w
crossref_primary_10_1016_j_eswa_2015_04_017
crossref_primary_10_1007_s00521_025_11512_y
crossref_primary_10_1017_S1471068422000102
crossref_primary_10_3233_NAI_240740
crossref_primary_10_1007_s10994_018_5746_9
crossref_primary_10_1109_ACCESS_2019_2948081
crossref_primary_10_1016_j_artint_2024_104273
crossref_primary_10_1007_s10994_021_05966_z
crossref_primary_10_1093_logcom_exad037
crossref_primary_10_1016_j_ijar_2020_01_003
crossref_primary_10_1080_14459795_2016_1151913
crossref_primary_10_1007_s10458_023_09609_6
crossref_primary_10_1016_j_artint_2024_104108
crossref_primary_10_1007_s00521_024_09960_z
crossref_primary_10_1016_j_knosys_2023_110685
crossref_primary_10_1016_j_trc_2021_103010
crossref_primary_10_1002_widm_1391
crossref_primary_10_1016_j_ins_2022_06_073
crossref_primary_10_1007_s10994_024_06556_5
crossref_primary_10_1016_j_jlamp_2021_100719
crossref_primary_10_4018_IJESMA_2020040105
crossref_primary_10_1007_s10994_021_06090_8
crossref_primary_10_1260_2040_2295_6_3_281
crossref_primary_10_1016_j_artint_2021_103649
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_1109_TKDE_2021_3079836
crossref_primary_10_1007_s13748_019_00186_y
crossref_primary_10_1016_j_knosys_2020_105972
crossref_primary_10_1016_j_eswa_2023_119842
crossref_primary_10_1109_TASE_2020_3025871
crossref_primary_10_1016_j_eswa_2020_114263
crossref_primary_10_1190_geo2022_0770_1
crossref_primary_10_3233_NAI_240672
crossref_primary_10_1007_s10994_021_06058_8
crossref_primary_10_1038_s41598_021_04590_0
crossref_primary_10_1016_j_datak_2024_102285
crossref_primary_10_1631_FITEE_2100463
crossref_primary_10_3233_IA_190036
crossref_primary_10_1007_s10994_023_06399_6
crossref_primary_10_1109_ACCESS_2021_3109443
Cites_doi 10.1023/A:1008328630915
10.1145/175247.175256
10.1007/BF03037227
10.1007/s10994-006-5833-1
10.1016/0743-1066(94)90035-3
10.1007/s10994-009-5117-7
10.1016/0893-6080(88)90003-2
10.1007/s10994-010-5208-5
10.1007/s10994-006-5834-0
10.1142/S0219720005001004
10.1007/s10994-007-5029-3
10.1007/BF03037232
10.1145/1090193.1090204
10.1007/978-1-4471-0211-3
10.1007/s10994-010-5196-5
10.1038/nature02236
10.1016/S0893-6080(05)80056-5
10.1016/S0004-3702(00)00077-1
10.1007/978-3-540-68856-3
10.1007/978-3-662-04599-2
10.1209/epl/i1997-00167-2
10.1007/978-3-662-04599-2_11
10.7551/mitpress/5236.001.0001
10.3233/HIS-2005-2403
10.7551/mitpress/7432.001.0001
10.1007/3-540-62927-0
10.1007/978-3-540-78652-8
10.1093/oso/9780198538509.003.0012
10.1613/jair.953
ContentType Journal Article
Copyright The Author(s) 2013
The Author(s) 2014
Copyright_xml – notice: The Author(s) 2013
– notice: The Author(s) 2014
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-013-5392-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 104
ExternalDocumentID 3158991781
10_1007_s10994_013_5392_1
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c425t-d38d84b7c67f2d2f0f46ff53e76443059c38c5f9a6578e5294cf8cdce7b4ee1d3
IEDL.DBID K7-
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328838500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Thu Sep 04 18:37:10 EDT 2025
Thu Sep 04 20:09:33 EDT 2025
Tue Nov 04 19:59:27 EST 2025
Tue Nov 18 20:59:27 EST 2025
Sat Nov 29 01:43:26 EST 2025
Fri Feb 21 02:28:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Relational learning
Propositionalization
Inductive logic programming
Neural-symbolic integration
Artificial neural networks
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-d38d84b7c67f2d2f0f46ff53e76443059c38c5f9a6578e5294cf8cdce7b4ee1d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5392-1.pdf
PQID 1468822259
PQPubID 23500
PageCount 24
ParticipantIDs proquest_miscellaneous_1753544306
proquest_miscellaneous_1494360772
proquest_journals_1468822259
crossref_primary_10_1007_s10994_013_5392_1
crossref_citationtrail_10_1007_s10994_013_5392_1
springer_journals_10_1007_s10994_013_5392_1
PublicationCentury 2000
PublicationDate 20140100
2014-1-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 1
  year: 2014
  text: 20140100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Paes, Železný, Zaverucha, Page, Srinivasan (CR42) 2007
Richardson, Domingos (CR48) 2006; 62
Džeroski, Lavrač (CR13) 2001
Caruana, Lawrence, Giles (CR3) 2000
Garcez, Zaverucha (CR14) 1999; 11
Jacobs (CR23) 1988; 1
Paes, Revoredo, Zaverucha, Costa (CR41) 2005
Pitangui, Zaverucha (CR45) 2012
Železný, Lavrač (CR55) 2006; 62
De Raedt (CR9) 2008
Krogel, Wrobel (CR29) 2003
Bain, Muggleton (CR1) 1994; 13
Kramer, Lavrač, Flach, Džeroski (CR28) 2001
Uwents, Monfardini, Blockeel, Gori, Scarselli (CR54) 2011; 82
Garcez, Lamb, Gabbay (CR18) 2008
Rumelhart, Widrow, Lehr (CR50) 1994; 37
Muggleton, Tamaddoni-Nezhad (CR38) 2008; 70
Craven, Shavlik (CR7) 1995
Tamaddoni-Nezhad, Muggleton (CR53) 2009; 76
Kijsirikul, Lerdlamnaochai (CR24) 2005; 2
Lavrač, Džeroski (CR33) 1994
May, Dandy, Maier, Suzuki (CR34) 2011
Perlich, Merugu (CR44) 2005
Møller (CR35) 1993; 6
Guyon, Elisseeff (CR21) 2003; 3
Rumelhart, Hinton, Williams, Rumelhart, McClelland (CR49) 1986
Guillame-Bert, Broda, Garcez (CR20) 2010
Kuželka, Železný (CR31) 2011; 83
Krogel, Rawles, Železný, Flach, Lavrač, Wrobel (CR30) 2003
Quinlan (CR47) 1993
Garcez, Zaverucha (CR15) 2012
Haykin (CR22) 2009
Ding, Peng (CR12) 2005; 3
Srinivasan, Muggleton (CR52) 1994
CR51
Chawla, Bowyer, Hall, Kegelmeyer (CR4) 2002; 16
Garcez, Broda, Gabbay (CR17) 2002
Muggleton (CR36) 1995; 13
DiMaio, Shavlik (CR11) 2004
Paes, Zaverucha, Costa (CR43) 2008
Davis, Burnside, Dutra, Page, Costa (CR8) 2005
King, Srinivasan (CR25) 1995; 13
Garcez, Broda, Gabbay (CR16) 2001; 125
Nienhuys-Cheng, de Wolf (CR40) 1997
Basilio, Zaverucha, Barbosa (CR2) 2001
King, Whelan, Jones, Reiser, Bryant, Muggleton, Kell, Oliver (CR26) 2004; 427
Landwehr, Kersting, De Raedt (CR32) 2007; 8
Koller, Friedman (CR27) 2009
De Raedt, Frasconi, Kersting, Muggleton (CR10) 2008
Muggleton, Paes, Costa, Zaverucha (CR39) 2010
Clark, Niblett (CR5) 1989; 3
Muggleton, De Raedt (CR37) 1994; 19/20
Getoor, Taskar (CR19) 2007
Prechelt (CR46) 1997
Copelli, Eichhorn, Kinouchi, Biehl, Simonetti, Riegler, Caticha (CR6) 1997; 37
M. Bain (5392_CR1) 1994; 13
C. G. Pitangui (5392_CR45) 2012
M. F. Møller (5392_CR35) 1993; 6
A. S. D. Garcez (5392_CR18) 2008
A. Srinivasan (5392_CR52) 1994
S. S. Haykin (5392_CR22) 2009
N. V. Chawla (5392_CR4) 2002; 16
S. H. Nienhuys-Cheng (5392_CR40) 1997
R. Basilio (5392_CR2) 2001
W. Uwents (5392_CR54) 2011; 82
B. Kijsirikul (5392_CR24) 2005; 2
F. DiMaio (5392_CR11) 2004
S. Džeroski (5392_CR13) 2001
A. Paes (5392_CR41) 2005
R. A. Jacobs (5392_CR23) 1988; 1
S. Muggleton (5392_CR36) 1995; 13
5392_CR51
O. Kuželka (5392_CR31) 2011; 83
D. E. Rumelhart (5392_CR49) 1986
R. D. King (5392_CR26) 2004; 427
I. Guyon (5392_CR21) 2003; 3
A. S. D. Garcez (5392_CR15) 2012
A. Paes (5392_CR42) 2007
M. Guillame-Bert (5392_CR20) 2010
S. Muggleton (5392_CR37) 1994; 19/20
F. Železný (5392_CR55) 2006; 62
J. R. Quinlan (5392_CR47) 1993
N. Landwehr (5392_CR32) 2007; 8
J. Davis (5392_CR8) 2005
S. Muggleton (5392_CR38) 2008; 70
S. Muggleton (5392_CR39) 2010
L. Raedt De (5392_CR10) 2008
R. May (5392_CR34) 2011
A. S. D. Garcez (5392_CR16) 2001; 125
A. Paes (5392_CR43) 2008
D. E. Rumelhart (5392_CR50) 1994; 37
R. D. King (5392_CR25) 1995; 13
C. Ding (5392_CR12) 2005; 3
M. A. Krogel (5392_CR29) 2003
A. S. D. Garcez (5392_CR17) 2002
M. Richardson (5392_CR48) 2006; 62
N. Lavrač (5392_CR33) 1994
A. S. D. Garcez (5392_CR14) 1999; 11
L. Prechelt (5392_CR46) 1997
M. A. Krogel (5392_CR30) 2003
S. Kramer (5392_CR28) 2001
R. Caruana (5392_CR3) 2000
M. Copelli (5392_CR6) 1997; 37
D. Koller (5392_CR27) 2009
C. Perlich (5392_CR44) 2005
M. Craven (5392_CR7) 1995
L. Getoor (5392_CR19) 2007
A. Tamaddoni-Nezhad (5392_CR53) 2009; 76
P. Clark (5392_CR5) 1989; 3
L. Raedt De (5392_CR9) 2008
References_xml – start-page: 286
  year: 2012
  end-page: 301
  ident: CR45
  article-title: Learning theories using estimation distribution algorithms and (reduced) bottom clauses
  publication-title: Proc. ILP
– year: 1994
  ident: CR33
  publication-title: Inductive logic programming: techniques and applications
– start-page: 200
  year: 2008
  end-page: 210
  ident: CR43
  article-title: Revising first-order logic theories from examples through stochastic local search
  publication-title: Proc. ILP
– year: 2009
  ident: CR22
  publication-title: Neural networks and learning machines
– start-page: 80
  year: 2004
  end-page: 97
  ident: CR11
  article-title: Learning an approximation to inductive logic programming clause evaluation
  publication-title: Proc. ILP
– ident: CR51
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  end-page: 357
  ident: CR4
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 11
  start-page: 59
  year: 1999
  end-page: 77
  ident: CR14
  article-title: The connectionist inductive learning and logic programming system
  publication-title: Applied Intelligence
  doi: 10.1023/A:1008328630915
– volume: 37
  start-page: 87
  issue: 3
  year: 1994
  end-page: 92
  ident: CR50
  article-title: The basic ideas in neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/175247.175256
– volume: 13
  start-page: 245
  issue: 3–4
  year: 1995
  end-page: 286
  ident: CR36
  article-title: Inverse entailment and Progol
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume: 13
  start-page: 291
  year: 1994
  end-page: 309
  ident: CR1
  article-title: Learning optimal chess strategies
  publication-title: Machine Intelligence
– year: 2009
  ident: CR27
  publication-title: Probabilistic graphical models: principles and techniques
– start-page: 402
  year: 2000
  end-page: 408
  ident: CR3
  article-title: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping
  publication-title: Proc. NIPS
– year: 1997
  ident: CR40
  publication-title: Foundations of inductive logic programming
– year: 2008
  ident: CR10
  publication-title: Probabilistic inductive logic programming
– start-page: 24
  year: 1995
  end-page: 30
  ident: CR7
  article-title: Extracting tree-structured representations of trained networks
  publication-title: Proc. NIPS
– start-page: 318
  year: 1986
  end-page: 362
  ident: CR49
  article-title: Learning internal representations by error propagation
  publication-title: Parallel distributed processing: explorations in the microstructure of cognition
– volume: 62
  start-page: 107
  year: 2006
  end-page: 136
  ident: CR48
  article-title: Markov logic networks
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR21
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 261
  year: 1989
  end-page: 283
  ident: CR5
  article-title: The CN2 induction algorithm
  publication-title: Machine Learning
– year: 2008
  ident: CR18
  publication-title: Neural-symbolic cognitive reasoning
– volume: 19/20
  start-page: 629
  year: 1994
  end-page: 679
  ident: CR37
  article-title: Inductive logic programming: theory and methods
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 76
  start-page: 37
  issue: 1
  year: 2009
  end-page: 72
  ident: CR53
  article-title: The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5117-7
– volume: 1
  start-page: 295
  issue: 4
  year: 1988
  end-page: 307
  ident: CR23
  article-title: Increased rates of convergence through learning rate adaptation
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90003-2
– start-page: 55
  year: 1997
  end-page: 69
  ident: CR46
  article-title: Early stopping—but when?
  publication-title: Neural networks: tricks of the trade
– start-page: 217
  year: 1994
  end-page: 232
  ident: CR52
  article-title: Mutagenesis: ILP experiments in a non-determinate biological domain
  publication-title: Proc. ILP
– start-page: 379
  year: 2007
  end-page: 393
  ident: CR42
  article-title: ILP through propositionalization and stochastic -term DNF learning
  publication-title: Proc. ILP
– volume: 83
  start-page: 163
  year: 2011
  end-page: 192
  ident: CR31
  article-title: Block-wise construction of tree-like relational features with monotone reducibility and redundancy
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5208-5
– volume: 62
  start-page: 33
  year: 2006
  end-page: 63
  ident: CR55
  article-title: Propositionalization-based relational subgroup discovery with RSD
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5834-0
– volume: 3
  start-page: 185
  issue: 2
  year: 2005
  end-page: 205
  ident: CR12
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: Journal of Bioinformatics and Computational Biology
  doi: 10.1142/S0219720005001004
– volume: 70
  start-page: 121
  year: 2008
  end-page: 133
  ident: CR38
  article-title: QG/GA: a stochastic search for Progol
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5029-3
– start-page: 1
  year: 2012
  end-page: 6
  ident: CR15
  article-title: Multi-instance learning using recurrent neural networks
  publication-title: Proc. IJCNN
– volume: 13
  start-page: 411
  issue: 3–4
  year: 1995
  end-page: 434
  ident: CR25
  article-title: Relating chemical activity to structure: an examination of ILP successes
  publication-title: New Generation Computing
  doi: 10.1007/BF03037232
– start-page: 61
  year: 2005
  end-page: 67
  ident: CR44
  article-title: Gene classification: issues and challenges for relational learning
  publication-title: Proc. 4th international workshop on multi-relational mining
  doi: 10.1145/1090193.1090204
– volume: 2
  start-page: 253
  issue: 4
  year: 2005
  end-page: 267
  ident: CR24
  article-title: First-order logical neural networks
  publication-title: International Journal of Hybrid Intelligent Systems
– start-page: 84
  year: 2005
  end-page: 95
  ident: CR8
  article-title: An integrated approach to learning Bayesian networks of rules
  publication-title: Proc. ECML
– year: 2002
  ident: CR17
  publication-title: Neural-symbolic learning systems
  doi: 10.1007/978-1-4471-0211-3
– start-page: 295
  year: 2005
  end-page: 311
  ident: CR41
  article-title: Probabilistic first-order theory revision from examples
  publication-title: Proc. ILP
– start-page: 30
  year: 2003
  end-page: 39
  ident: CR29
  article-title: Facets of aggregation approaches to propositionalization
  publication-title: Proc. ILP
– year: 1993
  ident: CR47
  publication-title: C4.5: programs for machine learning
– volume: 82
  start-page: 315
  issue: 3
  year: 2011
  end-page: 349
  ident: CR54
  article-title: Neural networks for relational learning: an experimental comparison
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5196-5
– volume: 427
  start-page: 247
  issue: 6971
  year: 2004
  end-page: 252
  ident: CR26
  article-title: Functional genomic hypothesis generation and experimentation by a robot scientist
  publication-title: Nature
  doi: 10.1038/nature02236
– start-page: 19
  year: 2011
  end-page: 44
  ident: CR34
  article-title: Review of input variable selection methods for artificial neural networks
  publication-title: Artificial neural networks—methodological advances and biomedical applications
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  end-page: 533
  ident: CR35
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– start-page: 123
  year: 2010
  end-page: 130
  ident: CR39
  article-title: Chess revision: acquiring the rules of chess variants through FOL theory revision from examples
  publication-title: Proc. ILP
– volume: 125
  start-page: 155
  issue: 1–2
  year: 2001
  end-page: 207
  ident: CR16
  article-title: Symbolic knowledge extraction from trained neural networks: a sound approach
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(00)00077-1
– year: 2007
  ident: CR19
  publication-title: Introduction to statistical relational learning
– start-page: 402
  year: 2001
  end-page: 408
  ident: CR2
  article-title: Learning logic programs with neural networks
  publication-title: Proc. ILP
– year: 2008
  ident: CR9
  publication-title: Logical and relational learning
  doi: 10.1007/978-3-540-68856-3
– year: 2001
  ident: CR13
  publication-title: Relational data mining
  doi: 10.1007/978-3-662-04599-2
– volume: 8
  start-page: 481
  year: 2007
  end-page: 507
  ident: CR32
  article-title: Integrating naive Bayes and FOIL
  publication-title: Journal of Machine Learning Research
– start-page: 197
  year: 2003
  end-page: 214
  ident: CR30
  article-title: Comparative evaluation of approaches to propositionalization
  publication-title: Proc. ILP
– start-page: 1
  year: 2010
  end-page: 8
  ident: CR20
  article-title: First-order logic learning in artificial neural networks
  publication-title: Proc. IJCNN
– volume: 37
  start-page: 427
  issue: 6
  year: 1997
  end-page: 432
  ident: CR6
  article-title: Noise robustness in multilayer neural networks
  publication-title: Europhysics Letters
  doi: 10.1209/epl/i1997-00167-2
– start-page: 262
  year: 2001
  end-page: 291
  ident: CR28
  article-title: Propositionalization approaches to relational data mining
  publication-title: Relational data mining
  doi: 10.1007/978-3-662-04599-2_11
– volume: 125
  start-page: 155
  issue: 1–2
  year: 2001
  ident: 5392_CR16
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(00)00077-1
– start-page: 24
  volume-title: Proc. NIPS
  year: 1995
  ident: 5392_CR7
– volume-title: Neural networks and learning machines
  year: 2009
  ident: 5392_CR22
– volume-title: C4.5: programs for machine learning
  year: 1993
  ident: 5392_CR47
– start-page: 84
  volume-title: Proc. ECML
  year: 2005
  ident: 5392_CR8
– volume: 8
  start-page: 481
  year: 2007
  ident: 5392_CR32
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 245
  issue: 3–4
  year: 1995
  ident: 5392_CR36
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– start-page: 1
  volume-title: Proc. IJCNN
  year: 2012
  ident: 5392_CR15
– start-page: 286
  volume-title: Proc. ILP
  year: 2012
  ident: 5392_CR45
– ident: 5392_CR51
– volume: 37
  start-page: 427
  issue: 6
  year: 1997
  ident: 5392_CR6
  publication-title: Europhysics Letters
  doi: 10.1209/epl/i1997-00167-2
– volume: 76
  start-page: 37
  issue: 1
  year: 2009
  ident: 5392_CR53
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5117-7
– volume-title: Neural-symbolic cognitive reasoning
  year: 2008
  ident: 5392_CR18
– volume-title: Relational data mining
  year: 2001
  ident: 5392_CR13
  doi: 10.1007/978-3-662-04599-2
– start-page: 379
  volume-title: Proc. ILP
  year: 2007
  ident: 5392_CR42
– volume: 11
  start-page: 59
  year: 1999
  ident: 5392_CR14
  publication-title: Applied Intelligence
  doi: 10.1023/A:1008328630915
– start-page: 318
  volume-title: Parallel distributed processing: explorations in the microstructure of cognition
  year: 1986
  ident: 5392_CR49
  doi: 10.7551/mitpress/5236.001.0001
– volume: 37
  start-page: 87
  issue: 3
  year: 1994
  ident: 5392_CR50
  publication-title: Communications of the ACM
  doi: 10.1145/175247.175256
– start-page: 1
  volume-title: Proc. IJCNN
  year: 2010
  ident: 5392_CR20
– volume: 2
  start-page: 253
  issue: 4
  year: 2005
  ident: 5392_CR24
  publication-title: International Journal of Hybrid Intelligent Systems
  doi: 10.3233/HIS-2005-2403
– volume-title: Introduction to statistical relational learning
  year: 2007
  ident: 5392_CR19
  doi: 10.7551/mitpress/7432.001.0001
– volume: 427
  start-page: 247
  issue: 6971
  year: 2004
  ident: 5392_CR26
  publication-title: Nature
  doi: 10.1038/nature02236
– start-page: 262
  volume-title: Relational data mining
  year: 2001
  ident: 5392_CR28
  doi: 10.1007/978-3-662-04599-2_11
– start-page: 30
  volume-title: Proc. ILP
  year: 2003
  ident: 5392_CR29
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 5392_CR35
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 19/20
  start-page: 629
  year: 1994
  ident: 5392_CR37
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 70
  start-page: 121
  year: 2008
  ident: 5392_CR38
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5029-3
– start-page: 123
  volume-title: Proc. ILP
  year: 2010
  ident: 5392_CR39
– start-page: 295
  volume-title: Proc. ILP
  year: 2005
  ident: 5392_CR41
– volume: 62
  start-page: 33
  year: 2006
  ident: 5392_CR55
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5834-0
– start-page: 402
  volume-title: Proc. NIPS
  year: 2000
  ident: 5392_CR3
– start-page: 80
  volume-title: Proc. ILP
  year: 2004
  ident: 5392_CR11
– start-page: 402
  volume-title: Proc. ILP
  year: 2001
  ident: 5392_CR2
– volume-title: Foundations of inductive logic programming
  year: 1997
  ident: 5392_CR40
  doi: 10.1007/3-540-62927-0
– start-page: 61
  volume-title: Proc. 4th international workshop on multi-relational mining
  year: 2005
  ident: 5392_CR44
  doi: 10.1145/1090193.1090204
– volume-title: Probabilistic graphical models: principles and techniques
  year: 2009
  ident: 5392_CR27
– start-page: 197
  volume-title: Proc. ILP
  year: 2003
  ident: 5392_CR30
– start-page: 19
  volume-title: Artificial neural networks—methodological advances and biomedical applications
  year: 2011
  ident: 5392_CR34
– volume-title: Inductive logic programming: techniques and applications
  year: 1994
  ident: 5392_CR33
– volume-title: Probabilistic inductive logic programming
  year: 2008
  ident: 5392_CR10
  doi: 10.1007/978-3-540-78652-8
– volume: 13
  start-page: 411
  issue: 3–4
  year: 1995
  ident: 5392_CR25
  publication-title: New Generation Computing
  doi: 10.1007/BF03037232
– volume: 1
  start-page: 295
  issue: 4
  year: 1988
  ident: 5392_CR23
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90003-2
– start-page: 55
  volume-title: Neural networks: tricks of the trade
  year: 1997
  ident: 5392_CR46
– volume: 83
  start-page: 163
  year: 2011
  ident: 5392_CR31
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5208-5
– volume: 3
  start-page: 261
  year: 1989
  ident: 5392_CR5
  publication-title: Machine Learning
– volume: 13
  start-page: 291
  year: 1994
  ident: 5392_CR1
  publication-title: Machine Intelligence
  doi: 10.1093/oso/9780198538509.003.0012
– volume: 3
  start-page: 1157
  year: 2003
  ident: 5392_CR21
  publication-title: Journal of Machine Learning Research
– volume-title: Logical and relational learning
  year: 2008
  ident: 5392_CR9
  doi: 10.1007/978-3-540-68856-3
– volume-title: Neural-symbolic learning systems
  year: 2002
  ident: 5392_CR17
  doi: 10.1007/978-1-4471-0211-3
– volume: 82
  start-page: 315
  issue: 3
  year: 2011
  ident: 5392_CR54
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5196-5
– start-page: 200
  volume-title: Proc. ILP
  year: 2008
  ident: 5392_CR43
– volume: 62
  start-page: 107
  year: 2006
  ident: 5392_CR48
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– start-page: 217
  volume-title: Proc. ILP
  year: 1994
  ident: 5392_CR52
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  ident: 5392_CR4
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 3
  start-page: 185
  issue: 2
  year: 2005
  ident: 5392_CR12
  publication-title: Journal of Bioinformatics and Computational Biology
  doi: 10.1142/S0219720005001004
SSID ssj0002686
Score 2.4608655
Snippet Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning...
Issue Title: Special Issue on Inductive Logic Programming (ILP 2012); Guest Editors: Fabrizio Riguzzi and Filip elezný Relational learning can be described as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Accuracy
Artificial Intelligence
Computer Science
Control
Learning
Logic
Logic programming
Mathematical analysis
Mechatronics
Natural Language Processing (NLP)
Neural networks
Relational data bases
Robotics
Simulation and Modeling
Tasks
Vectors (mathematics)
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yffDF-YnTKRF8UgJd04_kUcThgwzxY-ytpGkyhLmNtfPv965Ntyk60KdSemnCJZe7y13uR8hlCiZyaoRm2nqGBcLELBUIZgbCpazxsriM4Pcf4l5PDAby0d3jzuts9zokWe7UK5fdyjK2Hc5CUOoMXJ5N0HYh4jU8PfcX268flfCOID0hQ_VdhzJ_-sVXZbS0ML8FRUtd023-a5S7ZMeZlvSmWgt7ZMOM90mzhm2gTooPiOqqvKAzlwUHLRxyxJBiEvyQIrjY5J3qkZrnhk4RRqFK7FIjd2mT4uktxUVX1Z-gWBWzfJQ55fkhee3evdzeM4e0wDTIbMEyLjIRpLGOYutnvvVsEFkbchODuQQ7gtRc6NBKFYGAm9CXgbZCZ9rEaWBMJ-NHpDGejM0xoVrx2Dfc052UB9aDJuCUSCUyKSS8yRbxapYn2pUhRzSMUbIsoIwsTICFCbIw6bTI1aLJtKrBsY64Xc9j4sQxR_9GoCUUQvcXi88gSBgdUWMzmSONDHjkgbexhgacOywY6EUtcl3P_0o3vw3q5E_Up2QbzLKgOuhpk0Yxm5szsqU_ird8dl6u9k9Y4_sO
  priority: 102
  providerName: Springer Nature
Title Fast relational learning using bottom clause propositionalization with artificial neural networks
URI https://link.springer.com/article/10.1007/s10994-013-5392-1
https://www.proquest.com/docview/1468822259
https://www.proquest.com/docview/1494360772
https://www.proquest.com/docview/1753544306
Volume 94
WOSCitedRecordID wos000328838500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NjQde2PgSHdtkJJ5AFkmcxPYTgmnVJEZVDZgmXiLHsSek0nZNy9_PneO0DIm-7MVVVFuxcp--O98P4E2NLnLtlOXWJ47nykleKwIzQ-Ey3iWNDBn8qws5Gqnraz2OAbc2llX2OjEo6mZmKUb-nq4IkTEr9If5LSfUKMquRgiNB7CXZlkQzM-SrzVxVgakRxSkgpMl77Oa3dW50BQ3FbxAF4Gnd-3Sxtn8Jz8azM5w_74bPoDH0eFkHzsOeQI7bvoU9nswBxZl-xmYoWmXbBFr43BFxJO4YVQaf8MIcmz2i9mJWbWOzQlcoSv3MpN4lZNRTJcRK3ZdKRj1ygw_odK8fQ7fh2ffTs95xF_gFiV5yRuhGpXX0pbSZ03mE5-X3hfCSXSiUE9oK5QtvDYlir0rMp1br2xjnaxz59JGvIDd6WzqXgKzRsjMicSmtch9gkvwqKKNarTS-KQHkPRfv7KxOTlhZEyqTVtlIliFBKuIYFU6gLfrJfOuM8e2yUc9kaoopG21odAAXq__RvGinImZutmK5uhclAmeQbbMwSMftRFMygG869nlr9f8b1OH2zf1Ch6hd5Z38Z4j2F0uVu4YHtrfy5_t4gT2Pp2NxpcngeNx_JKNcRwXP3C8_Hr1B3-QChY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgku9AVioRRXai9FFkmch31AVQWsWnW76qFFFZfgOHaFtOwum10Qf4rfyIyT7FIk9tZDT1EUO3GSb8Zjz-MD2C_QRC6sNNy4wPJY2owXksjMULi0s0GZeQ_-p17W78vra3WxAr_bXBgKq2x1olfU5cjQHvlbShGiySxRR-PvnFijyLvaUmjUsDizv37ikq16d_oB_-9BFHU_Xr4_4Q2rADeIzykvhSxlXGQmzVxURi5wcepcImyGpgGiXxkhTeKUThHMNolUbJw0pbFZEVsblgLv-wAeeuoulJ-L5PNc80epZ5ZEwU04WQ6tF7VO1fNFeEPBEzRJeHh7HlwYt__4Y_00112_bx9oA540BjU7riVgE1bscAvWW7IK1uiubdBdXU3ZpIn9wx4NX8YNo9D_G0aUaqNvzAz0rLJsTOQRdTibHjSpqoz2rBmJWl11g1EtUH_wkfTVU7i6kxd9BqvD0dA-B2a0yCIrAhMWInYBdsGlmNKyVFLhmepA0P7t3DTF14kDZJAvykYTQHIESE4AycMOHM67jOvKI8sa77SgyBslVOULRHRgb34Z1Qf5hPTQjmbURsUiDXCNtaQNLmmpTGKQduBNC8-_HvO_Qb1YPqjX8Ojk8ryX9077Zy_hMVqicb23tQOr08nMvoI182P6tZrseilj8OWuUfsHHzBkGQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC0JcWF4rCgsYCS4ga5PYie0DQoilYrWrqgdAKy7BcewVUmlL04L4a_w6ZhKnBSR62wOnKIqdOMk347Hn8QE8qdBErrx23IXEc6m94pUmMjMULht8UqvWg__hVI1G-uzMjHfgZ58LQ2GVvU5sFXU9c7RHfkgpQjSZ5eYwxLCI8dHw5fwrJwYp8rT2dBodRE78j--4fGteHB_hv36aZcM3716_5ZFhgDvE6pLXQtdaVsoVKmR1FpIgixBy4RWaCSgJxgnt8mBsgcD2eWakC9rVzqtKep_WAu97CS4rWRQUTjjOP65ngaxoWSZRiHNOVkTvUe3S9tqCvKngOZonPP1zTtwYun_5Ztspb7j3P3-sG3A9GtrsVScZN2HHT2_BXk9iwaJOuw12aJslW8SYQOwReTTOGaUEnDOiWpt9YW5iV41ncyKV6MLc7CSmsDLay2Ykgl01DkY1QttDG2Hf3IH3F_Ki-7A7nU39XWDOCpV5kbi0EjIk2AWXaMbq2miDZ2YASf_nSxeLshM3yKTclJMmsJQIlpLAUqYDeLbuMu8qkmxrfNADpIzKqSk36BjA4_VlVCvkK7JTP1tRGyNFkeDaa0sbXOpS-cSkGMDzHqq_PeZfg7q3fVCP4CqCtTw9Hp3ch2tooMpuy-sAdpeLlX8AV9y35edm8bAVOAafLhq0vwDu82za
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+relational+learning+using+bottom+clause+propositionalization+with+artificial+neural+networks&rft.jtitle=Machine+learning&rft.au=Franca%2C+Manoel+VM&rft.au=Zaverucha%2C+Gerson&rft.au=d%27Avila+Garcez%2C+Artur+S&rft.date=2014-01-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=94&rft.issue=1&rft.spage=81&rft.epage=104&rft_id=info:doi/10.1007%2Fs10994-013-5392-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon