Distributed multi-robot formation control in dynamic environments
This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to co...
Uložené v:
| Vydané v: | Autonomous robots Ročník 43; číslo 5; s. 1079 - 1100 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
15.06.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0929-5593, 1573-7527 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents a
distributed
method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration. Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we present experiments with four real quadrotors flying in formation in an environment with one moving human. |
|---|---|
| AbstractList | This paper presents a
distributed
method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration. Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we present experiments with four real quadrotors flying in formation in an environment with one moving human. This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration. Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we present experiments with four real quadrotors flying in formation in an environment with one moving human. |
| Author | Nägeli, Tobias Alonso-Mora, Javier Schwager, Mac Hilliges, Otmar Montijano, Eduardo Rus, Daniela |
| Author_xml | – sequence: 1 givenname: Javier orcidid: 0000-0003-0058-570X surname: Alonso-Mora fullname: Alonso-Mora, Javier email: j.alonsomora@tudelft.nl organization: Department of Cognitive Robotics, Delft University of Technology – sequence: 2 givenname: Eduardo surname: Montijano fullname: Montijano, Eduardo organization: Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza – sequence: 3 givenname: Tobias surname: Nägeli fullname: Nägeli, Tobias organization: Department of Computer Science, ETH Zurich – sequence: 4 givenname: Otmar surname: Hilliges fullname: Hilliges, Otmar organization: Department of Computer Science, ETH Zurich – sequence: 5 givenname: Mac surname: Schwager fullname: Schwager, Mac organization: Department of Aeronautics and Astronautics, Stanford University – sequence: 6 givenname: Daniela surname: Rus fullname: Rus, Daniela organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology |
| BookMark | eNp9kMtKAzEUhoNUsK0-gLsB19GTZDJJlqVeoeBG12Emk5GUTlKTjNC3d-oIgqBnczb_dy7fAs188BahSwLXBEDcJAKclBiIxEpIhtUJmhMuGBacihmag6IKc67YGVqktAUAJQDmaHXrUo6uGbJti37YZYdjaEIuuhD7OrvgCxN8jmFXOF-0B1_3zhTWf7gYfG99TufotKt3yV589yV6vb97WT_izfPD03q1waakPGNTq6o2XFTUSMqASdmQlllWlbwlqgVKhFGm41VFLYVKdqIpq062RFLRlcayJbqa5u5jeB9synobhujHlZqOJYCyUo4pMaVMDClF22nj8tcfOdZupwnooy89-dKjL330pdVIkl_kPrq-jod_GToxacz6Nxt_bvob-gTHqH7r |
| CitedBy_id | crossref_primary_10_1007_s11071_020_06189_y crossref_primary_10_1080_00207721_2020_1858364 crossref_primary_10_3390_drones6070164 crossref_primary_10_3390_s21186223 crossref_primary_10_1109_TMC_2022_3179399 crossref_primary_10_1109_TRO_2025_3547296 crossref_primary_10_1016_j_matcom_2021_04_009 crossref_primary_10_1177_10775463241247960 crossref_primary_10_3390_rs16050832 crossref_primary_10_2514_1_G007839 crossref_primary_10_1109_ACCESS_2025_3579501 crossref_primary_10_1007_s43154_021_00049_2 crossref_primary_10_3390_app13074397 crossref_primary_10_1002_rob_21871 crossref_primary_10_1109_ACCESS_2021_3085850 crossref_primary_10_1108_AEAT_02_2021_0058 crossref_primary_10_1007_s12555_021_0594_y crossref_primary_10_3390_aerospace9020094 crossref_primary_10_1016_j_automatica_2021_109750 crossref_primary_10_1109_TRO_2021_3071615 crossref_primary_10_1109_TCNS_2021_3087621 crossref_primary_10_1109_ACCESS_2025_3527640 crossref_primary_10_1109_TCYB_2020_3000264 crossref_primary_10_1080_00207179_2020_1854866 crossref_primary_10_3390_app9153057 crossref_primary_10_1109_TIV_2023_3234189 crossref_primary_10_1016_j_automatica_2024_111645 crossref_primary_10_1007_s43684_023_00049_3 crossref_primary_10_1007_s10846_021_01378_2 crossref_primary_10_1109_ACCESS_2020_3041243 crossref_primary_10_1177_01423312211049896 crossref_primary_10_3390_robotics10030084 crossref_primary_10_1109_ACCESS_2023_3341295 crossref_primary_10_3390_s20071970 crossref_primary_10_1109_ACCESS_2024_3406599 crossref_primary_10_1016_j_oceaneng_2024_118076 crossref_primary_10_1007_s11370_025_00607_z crossref_primary_10_1109_TIM_2023_3291805 crossref_primary_10_1080_00207721_2022_2031339 crossref_primary_10_1080_00207179_2023_2215068 crossref_primary_10_1016_j_conengprac_2021_105054 crossref_primary_10_1016_j_eswa_2025_129134 crossref_primary_10_1109_ACCESS_2019_2942642 crossref_primary_10_3390_s21237997 crossref_primary_10_1109_TNET_2022_3216204 crossref_primary_10_1016_j_automatica_2024_111712 crossref_primary_10_1016_j_ifacol_2023_12_074 crossref_primary_10_1109_TAES_2024_3411563 crossref_primary_10_1109_ACCESS_2025_3559424 crossref_primary_10_1007_s12204_024_2695_2 crossref_primary_10_1016_j_rcim_2023_102570 crossref_primary_10_3390_app122010218 crossref_primary_10_1016_j_isatra_2025_08_011 crossref_primary_10_3390_app9051004 crossref_primary_10_1109_TAC_2023_3237484 crossref_primary_10_3389_fphy_2023_1231313 crossref_primary_10_1109_ACCESS_2020_3025287 crossref_primary_10_1002_asjc_2736 |
| Cites_doi | 10.1109/ICRA.2015.7140034 10.1137/S1052623499350013 10.1007/s10514-016-9578-9 10.1109/JPROC.2011.2158377 10.1109/TAC.2011.2166668 10.1007/s10514-011-9225-4 10.1109/ICRA.2015.7139967 10.1016/j.automatica.2014.10.022 10.1177/0278364912462493 10.1177/0278364917719333 10.1016/j.automatica.2011.08.019 10.1007/s10514-015-9429-0 10.1007/s10514-013-9349-9 10.1109/TRO.2016.2523542 10.1016/j.robot.2016.09.002 10.1007/BF01840371 10.1177/0278364916632065 10.1109/70.976023 10.1145/3072959.3073712 10.1109/TCST.2014.2314460 10.1109/TCST.2007.903066 10.1109/TRO.2010.2062070 10.9746/jcmsi.8.285 10.1109/ROBOT.2010.5509534 10.1016/j.automatica.2012.06.040 10.1109/TRO.2007.909833 10.1007/s10514-014-9412-1 10.1109/70.736776 10.1109/LRA.2017.2665693 10.1109/CDC.2000.912786 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | C6C AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1007/s10514-018-9783-9 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-7527 |
| EndPage | 1100 |
| ExternalDocumentID | 10_1007_s10514_018_9783_9 |
| GrantInformation_xml | – fundername: Singapore-MIT Alliance for Research and Technology Centre grantid: Future of Urban Mobility funderid: http://dx.doi.org/10.13039/501100001474 – fundername: Office of Naval Research grantid: N00014-12-1-1000 funderid: http://dx.doi.org/10.13039/100000006 – fundername: Boeing funderid: http://dx.doi.org/10.13039/100000003 – fundername: The Netherlands Organisation for Scientific Research grantid: Veni 15916 |
| GroupedDBID | -59 -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAK LLZTM M4Y M7S MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S0W S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG SCV T16 TEORI UZXMN VFIZW 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c425t-ca96ac5762c8230388b1d3e3645d19d0217c9cf5662e2068f7b46f8d1827f4ce3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468274800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0929-5593 |
| IngestDate | Thu Nov 06 14:29:21 EST 2025 Tue Nov 18 22:33:11 EST 2025 Sat Nov 29 02:41:59 EST 2025 Fri Feb 21 02:33:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Distributed robotics Dynamic environments Formation control Unmanned aerial vehicles Micro air vehicles Multi-robot systems Collision avoidance Drones |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-ca96ac5762c8230388b1d3e3645d19d0217c9cf5662e2068f7b46f8d1827f4ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0058-570X |
| OpenAccessLink | https://link.springer.com/10.1007/s10514-018-9783-9 |
| PQID | 2222702348 |
| PQPubID | 326361 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2222702348 crossref_citationtrail_10_1007_s10514_018_9783_9 crossref_primary_10_1007_s10514_018_9783_9 springer_journals_10_1007_s10514_018_9783_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20190615 |
| PublicationDateYYYYMMDD | 2019-06-15 |
| PublicationDate_xml | – month: 6 year: 2019 text: 20190615 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Autonomous robots |
| PublicationTitleAbbrev | Auton Robot |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot operating system. In: IEEE ICRA workshop on open source software. Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation. Alonso-MoraJNägeliTSiegwartRBeardsleyPCollision avoidance for aerial vehicles in multi-agent scenariosAutonomous Robots201539110112110.1007/s10514-015-9429-0 Augugliaro, F., Schoellig, A. P., & D’Andrea, R. (2012). Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In: IEEE/RSJ international conference on intelligent robots and systems. OhKKParkMCAhnHSA survey of multi-agent formation controlAutomatica2015533424440331861810.1016/j.automatica.2014.10.0221371.93015 GillPEMurrayWSaundersMASNOPT: An SQP algorithm for large-scale constrained optimizationSIAM Journal on Optimization20021249791006192250510.1137/S10526234993500131027.90111 RenWBeardRWDistributed consensus in multi-vehicle cooperative control. Communications and control engineering2008LondonSpringer1144.93002 ErdmannMLozano-PerezTOn multiple moving objectsAlgorithmica1987247752191836310.1007/BF018403710643.68152 SchwagerMJulianBJAngermannMRusDEyes in the sky: Decentralized control for the deployment of robotic camera networksProceedings of the IEEE20119991541156110.1109/JPROC.2011.2158377 Derenick, J., Spletzer, J., & Kumar, V.(2010). A semidefinite programming framework for controlling multi-robot systems in dynamic environments. In: IEEE conference on decision and control. Montijano, E., & Mosteo, A. R. (2014). Efficient multi-robot formations using distributed optimization. In: IEEE 53th conference on decision and control. Alonso-MoraJBakerSRusDMulti-robot formation control and object transport in dynamic environments via constrained optimizationThe International Journal of Robotics Research20173691000102110.1177/0278364917719333 MontijanoECristofaloEZhouDSchwagerMSaguesCVision-based distributed formation control without an external positioning systemIEEE Transactions on Robotics201632233935110.1109/TRO.2016.2523542 DesaiJPOstrowskiJPKumarVModeling and control of formations of nonholonomic mobile robotsIEEE Transaction on Robotics and Automation200117690590810.1109/70.976023 Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (2008). Guaranteed-performance multi-robot routing under limited communication range. In: Distributed autonomous robotic systems (pp. 491–502). Ayanian, N., & Kumar, V. (2010a). Abstractions and controllers for groups of robots in environments with obstacles. In: IEEE international conference on robotics and automation, Anchorage, AK (pp. 3537–3542). Chen, Y., Cutler, M., & How, J. P. (2015). Decoupled multiagent path planning via incremental sequential convex programming. In IEEE international conference on robotics and automation (ICRA). FranchiAMasoneCGrabeVRyllMBulfhoffHHGiordanoPRModeling and control of UAV bearing formations with bilateral high-level steeringInternational Journal of Robotics Research2012311504152510.1177/0278364912462493 NestmeyerTRobuffo GiordanoPBlthoffHHFranchiADecentralized simultaneous multi-target exploration using a connected network of multiple robotsAutonomous Robots2017414989101110.1007/s10514-016-9578-9 DerenickJCSpletzerJRConvex optimization strategies for coordinating large-scale robot formationsIEEE Transaction on Robotics2007231252125910.1109/TRO.2007.9098331194.93143 KurikiYNamerikawaTFormation control with collision avoidance for a multi-UAV system using decentralized mpc and consensus-based controlSICE Journal of Control, Measurement, and System Integration20158428529410.9746/jcmsi.8.285 Odelga, M., Stegagno, P., & Bülthoff, HH. (2016). Obstacle detection, tracking and avoidance for a teleoperated UAV. In: 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2984–2990). IEEE. SabattiniLSecchiCFantuzziCArbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformationAutonomous Robots20113038539710.1007/s10514-011-9225-4 Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia, S. A. (2014). Automated composition of motion primitives for multi-robot systems from safe LTL specifications. In: IEEE/RSJ international conference on intelligent robots and systems. LynchNDistributed algorithms1997BurlingtonMorgan Kaufmann publishers TurpinMMohtaKMichaelNKumarVGoal assignment and trajectory planning for large teams of interchangeable robotsAutonomous Robots201437440141510.1007/s10514-014-9412-1 KiaSSCortesJMartinezSDistributed convex optimization via continuous-time coordination algorithms with discrete-time communicationAutomatica201655525426433366751377.93018 Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016). Distributed multi-robot navigation in formation among obstacles: A geometric and optimization approach with consensus. In IEEE international conference on robotics and automation. Suzuki, T., Sekine, T., Fujii, T., Asama, H., & Endo, I. (2000). Cooperative formation among multiple mobile robot teleoperation in inspection task. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000 (Vol. 1, pp. 358–363). IEEE. UrcolaPLazaroMTCastellanosJAMontanoLCooperative minimum expected length planning for robot formations in stochastic mapsRobotics and Autonomous Systems201787385010.1016/j.robot.2016.09.002 BurgerMNotarstefanoGAllgowerFBulloFA distributed simplex algorithm for degenerate linear programs and multi-agent assignmentsAutomatica201248922982304295691110.1016/j.automatica.2012.06.0401257.93033 BalchTArkinRCBehavior-based formation control for multirobot teamsIEEE Transaction on Robotics and Automation199814692693910.1109/70.736776 NägeliTMeierLDomahidiAAlonso-MoraJHilligesOReal-time planning for automated multi-view drone cinematographyACM Transactions on Graphics (TOG)201736413210.1145/3072959.3073712 WurmanPRD’AndreaRMountzMCoordinating hundreds of cooperative, autonomous vehicles in warehousesAI Magazine20082919 DongXYuBShiZZhongYTime-varying formation control for unmanned aerial vehicles: Theories and applicationsIEEE Transactions on Control Systems Technology201523134034810.1109/TCST.2014.2314460 MostaghNMichaelNJadbabaieADaniilidisKVision-based, distributed control laws for motion coordination of nonholonomic robotsIEEE Transactions on Robotics2009254851860 AyanianNKumarVDecentralized feedback controllers for multi-agent teams in environments with obstaclesIEEE Transactions on Robotics201026587888710.1109/TRO.2010.2062070 Alonso-Mora, J., Knepper, R. A., Siegwart, R., & Rus, D. (2015a). Local motion planning for collaborative multi-robot manipulation of deformable objects. In: IEEE international conference on robotics and automation. Deits, R., & Tedrake, R. (2014). Computing large convex regions of obstacle-free space through semidefinite programming. In Workshop on the algorithmic fundamentals of robotics. Schoch, M., Alonso-Mora, J., Siegwart, R., & Beardsley, P. (2014). Viewpoint and trajectory optimization for animation display with aerial vehicles. In: 2010 IEEE international conference on robotics and automation (ICRA) (pp. 4711–4716). IEEE. KeviczkyTBorrelliFFregeneKGodboleDBalasGJDecentralized receding horizon control and coordination of autonomous vehicle formationsIEEE Transactions on Control Systems Technology2008161193310.1109/TCST.2007.903066 Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones, C. N. (2012). Efficient interior point methods for multistage problems arising in receding horizon control. In: 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 668–674). IEEE. KushleyevAMellingerDPowersCKumarVTowards a swarm of agile micro quadrotorsAutonomous Robots201335428730010.1007/s10514-013-9349-9 MorganDSubramanianGPChungS-JHadaeghFYSwarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programmingThe International Journal of Robotics Research201635101261128510.1177/0278364916632065 NägeliTAlonso-MoraJDomahidiARusDHilligesOReal-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimizationIEEE Robotics and Automation Letters2017231696170310.1109/LRA.2017.2665693 Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In: IEEE international conference on robotics and automation. Domahidi, A., & Jerez, J. (2016). FORCES Pro: Code generation for embedded optimization. https://www.embotech.com/FORCES-Pro. LinZFrancisBMaggioreMNecessary and sufficient graphical conditions for formation control of unicyclesIEEE Transaction on Automatic Control200550154054521108191365.93324 OhK-KAhnH-SFormation control of mobile agents based on inter-agent distance dynamicsAutomatica2011471023062312288685510.1016/j.automatica.2011.08.0191228.93014 HatanakaTIgarashiYFujitaMSpongMWPassivity-based pose synchronization in three dimensionsIEEE Transactions on Automatic Control2012572360375291874210.1109/TAC.2011.21666681369.93417 J Alonso-Mora (9783_CR4) 2015; 39 T Nägeli (9783_CR35) 2017; 36 9783_CR29 J Alonso-Mora (9783_CR3) 2017; 36 9783_CR8 M Schwager (9783_CR46) 2011; 99 A Kushleyev (9783_CR26) 2013; 35 N Lynch (9783_CR28) 1997 E Montijano (9783_CR31) 2016; 32 9783_CR38 9783_CR6 9783_CR5 X Dong (9783_CR18) 2015; 23 9783_CR30 T Keviczky (9783_CR23) 2008; 16 T Nägeli (9783_CR36) 2017; 2 N Mostagh (9783_CR33) 2009; 25 9783_CR34 M Burger (9783_CR10) 2012; 48 P Urcola (9783_CR49) 2017; 87 L Sabattini (9783_CR43) 2011; 30 T Hatanaka (9783_CR22) 2012; 57 JP Desai (9783_CR15) 2001; 17 N Ayanian (9783_CR7) 2010; 26 KK Oh (9783_CR40) 2015; 53 9783_CR47 Z Lin (9783_CR27) 2005; 50 PR Wurman (9783_CR50) 2008; 29 9783_CR41 M Erdmann (9783_CR19) 1987; 2 SS Kia (9783_CR24) 2016; 55 9783_CR45 9783_CR44 T Balch (9783_CR9) 1998; 14 M Turpin (9783_CR48) 2014; 37 T Nestmeyer (9783_CR37) 2017; 41 JC Derenick (9783_CR14) 2007; 23 W Ren (9783_CR42) 2008 9783_CR2 PE Gill (9783_CR21) 2002; 12 9783_CR1 9783_CR17 Y Kuriki (9783_CR25) 2015; 8 9783_CR16 D Morgan (9783_CR32) 2016; 35 9783_CR13 9783_CR12 9783_CR11 K-K Oh (9783_CR39) 2011; 47 A Franchi (9783_CR20) 2012; 31 |
| References_xml | – reference: Alonso-Mora, J., Knepper, R. A., Siegwart, R., & Rus, D. (2015a). Local motion planning for collaborative multi-robot manipulation of deformable objects. In: IEEE international conference on robotics and automation. – reference: BalchTArkinRCBehavior-based formation control for multirobot teamsIEEE Transaction on Robotics and Automation199814692693910.1109/70.736776 – reference: Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016). Distributed multi-robot navigation in formation among obstacles: A geometric and optimization approach with consensus. In IEEE international conference on robotics and automation. – reference: TurpinMMohtaKMichaelNKumarVGoal assignment and trajectory planning for large teams of interchangeable robotsAutonomous Robots201437440141510.1007/s10514-014-9412-1 – reference: UrcolaPLazaroMTCastellanosJAMontanoLCooperative minimum expected length planning for robot formations in stochastic mapsRobotics and Autonomous Systems201787385010.1016/j.robot.2016.09.002 – reference: Ayanian, N., & Kumar, V. (2010a). Abstractions and controllers for groups of robots in environments with obstacles. In: IEEE international conference on robotics and automation, Anchorage, AK (pp. 3537–3542). – reference: Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot operating system. In: IEEE ICRA workshop on open source software. – reference: Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones, C. N. (2012). Efficient interior point methods for multistage problems arising in receding horizon control. In: 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 668–674). IEEE. – reference: Chen, Y., Cutler, M., & How, J. P. (2015). Decoupled multiagent path planning via incremental sequential convex programming. In IEEE international conference on robotics and automation (ICRA). – reference: LinZFrancisBMaggioreMNecessary and sufficient graphical conditions for formation control of unicyclesIEEE Transaction on Automatic Control200550154054521108191365.93324 – reference: KushleyevAMellingerDPowersCKumarVTowards a swarm of agile micro quadrotorsAutonomous Robots201335428730010.1007/s10514-013-9349-9 – reference: NestmeyerTRobuffo GiordanoPBlthoffHHFranchiADecentralized simultaneous multi-target exploration using a connected network of multiple robotsAutonomous Robots2017414989101110.1007/s10514-016-9578-9 – reference: SchwagerMJulianBJAngermannMRusDEyes in the sky: Decentralized control for the deployment of robotic camera networksProceedings of the IEEE20119991541156110.1109/JPROC.2011.2158377 – reference: RenWBeardRWDistributed consensus in multi-vehicle cooperative control. Communications and control engineering2008LondonSpringer1144.93002 – reference: HatanakaTIgarashiYFujitaMSpongMWPassivity-based pose synchronization in three dimensionsIEEE Transactions on Automatic Control2012572360375291874210.1109/TAC.2011.21666681369.93417 – reference: Deits, R., & Tedrake, R. (2014). Computing large convex regions of obstacle-free space through semidefinite programming. In Workshop on the algorithmic fundamentals of robotics. – reference: Schoch, M., Alonso-Mora, J., Siegwart, R., & Beardsley, P. (2014). Viewpoint and trajectory optimization for animation display with aerial vehicles. In: 2010 IEEE international conference on robotics and automation (ICRA) (pp. 4711–4716). IEEE. – reference: Alonso-MoraJNägeliTSiegwartRBeardsleyPCollision avoidance for aerial vehicles in multi-agent scenariosAutonomous Robots201539110112110.1007/s10514-015-9429-0 – reference: SabattiniLSecchiCFantuzziCArbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformationAutonomous Robots20113038539710.1007/s10514-011-9225-4 – reference: ErdmannMLozano-PerezTOn multiple moving objectsAlgorithmica1987247752191836310.1007/BF018403710643.68152 – reference: OhKKParkMCAhnHSA survey of multi-agent formation controlAutomatica2015533424440331861810.1016/j.automatica.2014.10.0221371.93015 – reference: LynchNDistributed algorithms1997BurlingtonMorgan Kaufmann publishers – reference: MostaghNMichaelNJadbabaieADaniilidisKVision-based, distributed control laws for motion coordination of nonholonomic robotsIEEE Transactions on Robotics2009254851860 – reference: Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia, S. A. (2014). Automated composition of motion primitives for multi-robot systems from safe LTL specifications. In: IEEE/RSJ international conference on intelligent robots and systems. – reference: NägeliTMeierLDomahidiAAlonso-MoraJHilligesOReal-time planning for automated multi-view drone cinematographyACM Transactions on Graphics (TOG)201736413210.1145/3072959.3073712 – reference: Odelga, M., Stegagno, P., & Bülthoff, HH. (2016). Obstacle detection, tracking and avoidance for a teleoperated UAV. In: 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2984–2990). IEEE. – reference: Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In: IEEE international conference on robotics and automation. – reference: Suzuki, T., Sekine, T., Fujii, T., Asama, H., & Endo, I. (2000). Cooperative formation among multiple mobile robot teleoperation in inspection task. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000 (Vol. 1, pp. 358–363). IEEE. – reference: Derenick, J., Spletzer, J., & Kumar, V.(2010). A semidefinite programming framework for controlling multi-robot systems in dynamic environments. In: IEEE conference on decision and control. – reference: KiaSSCortesJMartinezSDistributed convex optimization via continuous-time coordination algorithms with discrete-time communicationAutomatica201655525426433366751377.93018 – reference: Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (2008). Guaranteed-performance multi-robot routing under limited communication range. In: Distributed autonomous robotic systems (pp. 491–502). – reference: Augugliaro, F., Schoellig, A. P., & D’Andrea, R. (2012). Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In: IEEE/RSJ international conference on intelligent robots and systems. – reference: DesaiJPOstrowskiJPKumarVModeling and control of formations of nonholonomic mobile robotsIEEE Transaction on Robotics and Automation200117690590810.1109/70.976023 – reference: WurmanPRD’AndreaRMountzMCoordinating hundreds of cooperative, autonomous vehicles in warehousesAI Magazine20082919 – reference: OhK-KAhnH-SFormation control of mobile agents based on inter-agent distance dynamicsAutomatica2011471023062312288685510.1016/j.automatica.2011.08.0191228.93014 – reference: BurgerMNotarstefanoGAllgowerFBulloFA distributed simplex algorithm for degenerate linear programs and multi-agent assignmentsAutomatica201248922982304295691110.1016/j.automatica.2012.06.0401257.93033 – reference: Domahidi, A., & Jerez, J. (2016). FORCES Pro: Code generation for embedded optimization. https://www.embotech.com/FORCES-Pro. – reference: Alonso-MoraJBakerSRusDMulti-robot formation control and object transport in dynamic environments via constrained optimizationThe International Journal of Robotics Research20173691000102110.1177/0278364917719333 – reference: KeviczkyTBorrelliFFregeneKGodboleDBalasGJDecentralized receding horizon control and coordination of autonomous vehicle formationsIEEE Transactions on Control Systems Technology2008161193310.1109/TCST.2007.903066 – reference: NägeliTAlonso-MoraJDomahidiARusDHilligesOReal-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimizationIEEE Robotics and Automation Letters2017231696170310.1109/LRA.2017.2665693 – reference: FranchiAMasoneCGrabeVRyllMBulfhoffHHGiordanoPRModeling and control of UAV bearing formations with bilateral high-level steeringInternational Journal of Robotics Research2012311504152510.1177/0278364912462493 – reference: DongXYuBShiZZhongYTime-varying formation control for unmanned aerial vehicles: Theories and applicationsIEEE Transactions on Control Systems Technology201523134034810.1109/TCST.2014.2314460 – reference: AyanianNKumarVDecentralized feedback controllers for multi-agent teams in environments with obstaclesIEEE Transactions on Robotics201026587888710.1109/TRO.2010.2062070 – reference: GillPEMurrayWSaundersMASNOPT: An SQP algorithm for large-scale constrained optimizationSIAM Journal on Optimization20021249791006192250510.1137/S10526234993500131027.90111 – reference: MontijanoECristofaloEZhouDSchwagerMSaguesCVision-based distributed formation control without an external positioning systemIEEE Transactions on Robotics201632233935110.1109/TRO.2016.2523542 – reference: MorganDSubramanianGPChungS-JHadaeghFYSwarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programmingThe International Journal of Robotics Research201635101261128510.1177/0278364916632065 – reference: Montijano, E., & Mosteo, A. R. (2014). Efficient multi-robot formations using distributed optimization. In: IEEE 53th conference on decision and control. – reference: DerenickJCSpletzerJRConvex optimization strategies for coordinating large-scale robot formationsIEEE Transaction on Robotics2007231252125910.1109/TRO.2007.9098331194.93143 – reference: KurikiYNamerikawaTFormation control with collision avoidance for a multi-UAV system using decentralized mpc and consensus-based controlSICE Journal of Control, Measurement, and System Integration20158428529410.9746/jcmsi.8.285 – reference: Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation. – volume: 50 start-page: 540 issue: 1 year: 2005 ident: 9783_CR27 publication-title: IEEE Transaction on Automatic Control – ident: 9783_CR11 doi: 10.1109/ICRA.2015.7140034 – ident: 9783_CR45 – volume: 12 start-page: 979 issue: 4 year: 2002 ident: 9783_CR21 publication-title: SIAM Journal on Optimization doi: 10.1137/S1052623499350013 – ident: 9783_CR16 – volume: 41 start-page: 989 issue: 4 year: 2017 ident: 9783_CR37 publication-title: Autonomous Robots doi: 10.1007/s10514-016-9578-9 – volume: 99 start-page: 1541 issue: 9 year: 2011 ident: 9783_CR46 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2011.2158377 – ident: 9783_CR12 – volume: 57 start-page: 360 issue: 2 year: 2012 ident: 9783_CR22 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2011.2166668 – volume: 30 start-page: 385 year: 2011 ident: 9783_CR43 publication-title: Autonomous Robots doi: 10.1007/s10514-011-9225-4 – ident: 9783_CR29 – ident: 9783_CR1 doi: 10.1109/ICRA.2015.7139967 – volume: 53 start-page: 424 issue: 3 year: 2015 ident: 9783_CR40 publication-title: Automatica doi: 10.1016/j.automatica.2014.10.022 – ident: 9783_CR5 – ident: 9783_CR2 – ident: 9783_CR17 – volume: 31 start-page: 1504 year: 2012 ident: 9783_CR20 publication-title: International Journal of Robotics Research doi: 10.1177/0278364912462493 – ident: 9783_CR13 – volume: 36 start-page: 1000 issue: 9 year: 2017 ident: 9783_CR3 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364917719333 – ident: 9783_CR34 – ident: 9783_CR38 – volume: 47 start-page: 2306 issue: 10 year: 2011 ident: 9783_CR39 publication-title: Automatica doi: 10.1016/j.automatica.2011.08.019 – volume: 39 start-page: 101 issue: 1 year: 2015 ident: 9783_CR4 publication-title: Autonomous Robots doi: 10.1007/s10514-015-9429-0 – volume: 35 start-page: 287 issue: 4 year: 2013 ident: 9783_CR26 publication-title: Autonomous Robots doi: 10.1007/s10514-013-9349-9 – ident: 9783_CR41 – volume: 32 start-page: 339351 issue: 2 year: 2016 ident: 9783_CR31 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2016.2523542 – volume: 87 start-page: 3850 year: 2017 ident: 9783_CR49 publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2016.09.002 – volume: 2 start-page: 477 year: 1987 ident: 9783_CR19 publication-title: Algorithmica doi: 10.1007/BF01840371 – volume: 35 start-page: 1261 issue: 10 year: 2016 ident: 9783_CR32 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364916632065 – volume: 17 start-page: 905 issue: 6 year: 2001 ident: 9783_CR15 publication-title: IEEE Transaction on Robotics and Automation doi: 10.1109/70.976023 – ident: 9783_CR30 – volume: 36 start-page: 132 issue: 4 year: 2017 ident: 9783_CR35 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3072959.3073712 – volume: 25 start-page: 851860 issue: 4 year: 2009 ident: 9783_CR33 publication-title: IEEE Transactions on Robotics – volume: 23 start-page: 340 issue: 1 year: 2015 ident: 9783_CR18 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2014.2314460 – volume: 16 start-page: 19 issue: 1 year: 2008 ident: 9783_CR23 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2007.903066 – ident: 9783_CR44 – volume: 26 start-page: 878 issue: 5 year: 2010 ident: 9783_CR7 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2010.2062070 – volume: 8 start-page: 285 issue: 4 year: 2015 ident: 9783_CR25 publication-title: SICE Journal of Control, Measurement, and System Integration doi: 10.9746/jcmsi.8.285 – volume-title: Distributed algorithms year: 1997 ident: 9783_CR28 – ident: 9783_CR6 doi: 10.1109/ROBOT.2010.5509534 – volume: 48 start-page: 2298 issue: 9 year: 2012 ident: 9783_CR10 publication-title: Automatica doi: 10.1016/j.automatica.2012.06.040 – volume: 29 start-page: 9 issue: 1 year: 2008 ident: 9783_CR50 publication-title: AI Magazine – volume: 23 start-page: 1252 year: 2007 ident: 9783_CR14 publication-title: IEEE Transaction on Robotics doi: 10.1109/TRO.2007.909833 – volume: 37 start-page: 401 issue: 4 year: 2014 ident: 9783_CR48 publication-title: Autonomous Robots doi: 10.1007/s10514-014-9412-1 – volume: 14 start-page: 926 issue: 6 year: 1998 ident: 9783_CR9 publication-title: IEEE Transaction on Robotics and Automation doi: 10.1109/70.736776 – volume: 55 start-page: 254 issue: 5 year: 2016 ident: 9783_CR24 publication-title: Automatica – volume-title: Distributed consensus in multi-vehicle cooperative control. Communications and control engineering year: 2008 ident: 9783_CR42 – volume: 2 start-page: 1696 issue: 3 year: 2017 ident: 9783_CR36 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2665693 – ident: 9783_CR47 doi: 10.1109/CDC.2000.912786 – ident: 9783_CR8 |
| SSID | ssj0009700 |
| Score | 2.5819032 |
| Snippet | This paper presents a
distributed
method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static... This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1079 |
| SubjectTerms | Artificial Intelligence Collision avoidance Computational geometry Computer Imaging Computer simulation Control Convexity Engineering Hulls Mathematical programming Mechatronics Moving obstacles Multiple robots Optimization Parameters Pattern Recognition and Graphics Reconfiguration Robot control Robotics Robotics and Automation Robots Rotary wing aircraft Visibility Vision |
| Title | Distributed multi-robot formation control in dynamic environments |
| URI | https://link.springer.com/article/10.1007/s10514-018-9783-9 https://www.proquest.com/docview/2222702348 |
| Volume | 43 |
| WOSCitedRecordID | wos000468274800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7527 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009700 issn: 0929-5593 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7FaZQ-elIXubh6bY1GLBynii95C9gUFSUsb_f3OpklTRQU9Z7MJs4_5hpnvG4BzEQaOBZmgPMosDSwTNLM8o0yFzGD4ISNVSubfxYOBHA6T-4rHPaur3euUZHlTL5Hd0Llj6IsHNJaCJquwht5O-n4ND48vjdJuxTtBv08RLos6lfndFJ-dUYMwvyRFS1_T3_7XX-7AVgUtSW--F3ZhxeZ7sLkkOLgPvWuvk-tbXFlDylpCOh2rcUEWHEZS1a6TUU7MvFs9WSbDHcBz_-bp6pZWTRSoxuNYUJ0lUaYxquDa59SElIoZYX320bDE-JBEJ9ohquOWdyPpYhVEThqMO2IXaCsOoZWPc3sERCFcMyxWsVVx0HVGcsNEmEkXOu4Ml23o1tZMdaUw7htdvKaNNrK3TorWSb110qQNF4tXJnN5jd8Gd-olSquTNku5J_Mi8Ajw85f1kjSPf5zs-E-jT2ADkZLXa6As7ECrmL7ZU1jX78VoNj0rN-AHxfLUEA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CurBt1ife_CkLHQfSTbHopaKtYhW6W1J9gEFaaWN_n5n06SpooKes9mE2cd8w8z3DUJnPBCOioQTFiaWCEs5SSxLCE0DaiD8kGGaS-Z3om5X9vvxfcHjnpTV7mVKMr-p58hu4Nwh9IUDGklO4kW0JMBhecH8h8fnSmm34J2A3ycAl3mZyvxuis_OqEKYX5Kiua9pbfzrLzfRegEtcXO6F7bQgh1uo7U5wcEd1LzyOrm-xZU1OK8lJONROsrwjMOIi9p1PBhiM-1Wj-fJcLvoqXXdu2yTookC0XAcM6KTOEw0RBVM-5walzKlhluffTQ0Nj4k0bF2gOqYZY1QuigVoZMG4o7ICW35HqoNR0O7j3AKcM3QKI1sGomGM5IZyoNEusAxZ5iso0ZpTaULhXHf6OJFVdrI3joKrKO8dVRcR-ezV16n8hq_DT4ql0gVJ22imCfzAvAQ8PmLckmqxz9OdvCn0adopd2766jOTff2EK0CavLaDYQGR6iWjd_sMVrW79lgMj7JN-MHv5fW9A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTgW6xWzcGTEto8djd7LNaiWErBB72FzQsKsi3t6u832UdbRQXxvNnsMskw3zDzfQPAJQ2YxSyhiISJQcxgihJDEoRlgLVLP3goc8n8XtTv8-EwHpRzTmdVt3tVkiw4DV6lKc2aE22bS8Q3F-hdGuycNeIUxatgjfk-ep-uP74sVHdLDorDAMhBZ1qVNb_b4nNgWqDNLwXSPO50d_79x7tgu4ScsF3ckT2wYtJ9sLUkRHgA2h2vn-tHXxkN8x5DNB3LcQbn3EZY9rTDUQp1McUeLpPkDsFz9_bp5g6VwxWQcm6aIZXEYaJctkGUr7VRziXW1PiqpMax9qmKipV1aI8Y0gq5jSQLLdcuH4ksU4YegVo6Ts0xgNLBOI0jGRkZsZbVnGhMg4TbwBKrCa-DVmVZoUrlcT8A41UsNJO9dYSzjvDWEXEdXM1fmRSyG78tblTHJUoPnAniSb4OkDD3-evqeBaPf9zs5E-rL8DGoNMVvfv-wynYdGDKSzogHDRALZu-mTOwrt6z0Wx6nt_LDzi-39g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+multi-robot+formation+control+in+dynamic+environments&rft.jtitle=Autonomous+robots&rft.au=Alonso-Mora%2C+Javier&rft.au=Montijano%2C+Eduardo&rft.au=N%C3%A4geli%2C+Tobias&rft.au=Hilliges%2C+Otmar&rft.date=2019-06-15&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=43&rft.issue=5&rft.spage=1079&rft.epage=1100&rft_id=info:doi/10.1007%2Fs10514-018-9783-9&rft.externalDocID=10_1007_s10514_018_9783_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |