Distributed multi-robot formation control in dynamic environments

This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Autonomous robots Ročník 43; číslo 5; s. 1079 - 1100
Hlavní autori: Alonso-Mora, Javier, Montijano, Eduardo, Nägeli, Tobias, Hilliges, Otmar, Schwager, Mac, Rus, Daniela
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 15.06.2019
Springer Nature B.V
Predmet:
ISSN:0929-5593, 1573-7527
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration. Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we present experiments with four real quadrotors flying in formation in an environment with one moving human.
AbstractList This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration. Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we present experiments with four real quadrotors flying in formation in an environment with one moving human.
This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration. Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we present experiments with four real quadrotors flying in formation in an environment with one moving human.
Author Nägeli, Tobias
Alonso-Mora, Javier
Schwager, Mac
Hilliges, Otmar
Montijano, Eduardo
Rus, Daniela
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0003-0058-570X
  surname: Alonso-Mora
  fullname: Alonso-Mora, Javier
  email: j.alonsomora@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology
– sequence: 2
  givenname: Eduardo
  surname: Montijano
  fullname: Montijano, Eduardo
  organization: Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza
– sequence: 3
  givenname: Tobias
  surname: Nägeli
  fullname: Nägeli, Tobias
  organization: Department of Computer Science, ETH Zurich
– sequence: 4
  givenname: Otmar
  surname: Hilliges
  fullname: Hilliges, Otmar
  organization: Department of Computer Science, ETH Zurich
– sequence: 5
  givenname: Mac
  surname: Schwager
  fullname: Schwager, Mac
  organization: Department of Aeronautics and Astronautics, Stanford University
– sequence: 6
  givenname: Daniela
  surname: Rus
  fullname: Rus, Daniela
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
BookMark eNp9kMtKAzEUhoNUsK0-gLsB19GTZDJJlqVeoeBG12Emk5GUTlKTjNC3d-oIgqBnczb_dy7fAs188BahSwLXBEDcJAKclBiIxEpIhtUJmhMuGBacihmag6IKc67YGVqktAUAJQDmaHXrUo6uGbJti37YZYdjaEIuuhD7OrvgCxN8jmFXOF-0B1_3zhTWf7gYfG99TufotKt3yV589yV6vb97WT_izfPD03q1waakPGNTq6o2XFTUSMqASdmQlllWlbwlqgVKhFGm41VFLYVKdqIpq062RFLRlcayJbqa5u5jeB9synobhujHlZqOJYCyUo4pMaVMDClF22nj8tcfOdZupwnooy89-dKjL330pdVIkl_kPrq-jod_GToxacz6Nxt_bvob-gTHqH7r
CitedBy_id crossref_primary_10_1007_s11071_020_06189_y
crossref_primary_10_1080_00207721_2020_1858364
crossref_primary_10_3390_drones6070164
crossref_primary_10_3390_s21186223
crossref_primary_10_1109_TMC_2022_3179399
crossref_primary_10_1109_TRO_2025_3547296
crossref_primary_10_1016_j_matcom_2021_04_009
crossref_primary_10_1177_10775463241247960
crossref_primary_10_3390_rs16050832
crossref_primary_10_2514_1_G007839
crossref_primary_10_1109_ACCESS_2025_3579501
crossref_primary_10_1007_s43154_021_00049_2
crossref_primary_10_3390_app13074397
crossref_primary_10_1002_rob_21871
crossref_primary_10_1109_ACCESS_2021_3085850
crossref_primary_10_1108_AEAT_02_2021_0058
crossref_primary_10_1007_s12555_021_0594_y
crossref_primary_10_3390_aerospace9020094
crossref_primary_10_1016_j_automatica_2021_109750
crossref_primary_10_1109_TRO_2021_3071615
crossref_primary_10_1109_TCNS_2021_3087621
crossref_primary_10_1109_ACCESS_2025_3527640
crossref_primary_10_1109_TCYB_2020_3000264
crossref_primary_10_1080_00207179_2020_1854866
crossref_primary_10_3390_app9153057
crossref_primary_10_1109_TIV_2023_3234189
crossref_primary_10_1016_j_automatica_2024_111645
crossref_primary_10_1007_s43684_023_00049_3
crossref_primary_10_1007_s10846_021_01378_2
crossref_primary_10_1109_ACCESS_2020_3041243
crossref_primary_10_1177_01423312211049896
crossref_primary_10_3390_robotics10030084
crossref_primary_10_1109_ACCESS_2023_3341295
crossref_primary_10_3390_s20071970
crossref_primary_10_1109_ACCESS_2024_3406599
crossref_primary_10_1016_j_oceaneng_2024_118076
crossref_primary_10_1007_s11370_025_00607_z
crossref_primary_10_1109_TIM_2023_3291805
crossref_primary_10_1080_00207721_2022_2031339
crossref_primary_10_1080_00207179_2023_2215068
crossref_primary_10_1016_j_conengprac_2021_105054
crossref_primary_10_1016_j_eswa_2025_129134
crossref_primary_10_1109_ACCESS_2019_2942642
crossref_primary_10_3390_s21237997
crossref_primary_10_1109_TNET_2022_3216204
crossref_primary_10_1016_j_automatica_2024_111712
crossref_primary_10_1016_j_ifacol_2023_12_074
crossref_primary_10_1109_TAES_2024_3411563
crossref_primary_10_1109_ACCESS_2025_3559424
crossref_primary_10_1007_s12204_024_2695_2
crossref_primary_10_1016_j_rcim_2023_102570
crossref_primary_10_3390_app122010218
crossref_primary_10_1016_j_isatra_2025_08_011
crossref_primary_10_3390_app9051004
crossref_primary_10_1109_TAC_2023_3237484
crossref_primary_10_3389_fphy_2023_1231313
crossref_primary_10_1109_ACCESS_2020_3025287
crossref_primary_10_1002_asjc_2736
Cites_doi 10.1109/ICRA.2015.7140034
10.1137/S1052623499350013
10.1007/s10514-016-9578-9
10.1109/JPROC.2011.2158377
10.1109/TAC.2011.2166668
10.1007/s10514-011-9225-4
10.1109/ICRA.2015.7139967
10.1016/j.automatica.2014.10.022
10.1177/0278364912462493
10.1177/0278364917719333
10.1016/j.automatica.2011.08.019
10.1007/s10514-015-9429-0
10.1007/s10514-013-9349-9
10.1109/TRO.2016.2523542
10.1016/j.robot.2016.09.002
10.1007/BF01840371
10.1177/0278364916632065
10.1109/70.976023
10.1145/3072959.3073712
10.1109/TCST.2014.2314460
10.1109/TCST.2007.903066
10.1109/TRO.2010.2062070
10.9746/jcmsi.8.285
10.1109/ROBOT.2010.5509534
10.1016/j.automatica.2012.06.040
10.1109/TRO.2007.909833
10.1007/s10514-014-9412-1
10.1109/70.736776
10.1109/LRA.2017.2665693
10.1109/CDC.2000.912786
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Nature B.V. 2019
DBID C6C
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1007/s10514-018-9783-9
DatabaseName Springer Nature OA/Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 1100
ExternalDocumentID 10_1007_s10514_018_9783_9
GrantInformation_xml – fundername: Singapore-MIT Alliance for Research and Technology Centre
  grantid: Future of Urban Mobility
  funderid: http://dx.doi.org/10.13039/501100001474
– fundername: Office of Naval Research
  grantid: N00014-12-1-1000
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: Boeing
  funderid: http://dx.doi.org/10.13039/100000003
– fundername: The Netherlands Organisation for Scientific Research
  grantid: Veni 15916
GroupedDBID -59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAK
LLZTM
M4Y
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S0W
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SCV
T16
TEORI
UZXMN
VFIZW
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c425t-ca96ac5762c8230388b1d3e3645d19d0217c9cf5662e2068f7b46f8d1827f4ce3
IEDL.DBID RSV
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468274800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-5593
IngestDate Thu Nov 06 14:29:21 EST 2025
Tue Nov 18 22:33:11 EST 2025
Sat Nov 29 02:41:59 EST 2025
Fri Feb 21 02:33:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Distributed robotics
Dynamic environments
Formation control
Unmanned aerial vehicles
Micro air vehicles
Multi-robot systems
Collision avoidance
Drones
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-ca96ac5762c8230388b1d3e3645d19d0217c9cf5662e2068f7b46f8d1827f4ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0058-570X
OpenAccessLink https://link.springer.com/10.1007/s10514-018-9783-9
PQID 2222702348
PQPubID 326361
PageCount 22
ParticipantIDs proquest_journals_2222702348
crossref_citationtrail_10_1007_s10514_018_9783_9
crossref_primary_10_1007_s10514_018_9783_9
springer_journals_10_1007_s10514_018_9783_9
PublicationCentury 2000
PublicationDate 20190615
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 6
  year: 2019
  text: 20190615
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot operating system. In: IEEE ICRA workshop on open source software.
Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation.
Alonso-MoraJNägeliTSiegwartRBeardsleyPCollision avoidance for aerial vehicles in multi-agent scenariosAutonomous Robots201539110112110.1007/s10514-015-9429-0
Augugliaro, F., Schoellig, A. P., & D’Andrea, R. (2012). Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In: IEEE/RSJ international conference on intelligent robots and systems.
OhKKParkMCAhnHSA survey of multi-agent formation controlAutomatica2015533424440331861810.1016/j.automatica.2014.10.0221371.93015
GillPEMurrayWSaundersMASNOPT: An SQP algorithm for large-scale constrained optimizationSIAM Journal on Optimization20021249791006192250510.1137/S10526234993500131027.90111
RenWBeardRWDistributed consensus in multi-vehicle cooperative control. Communications and control engineering2008LondonSpringer1144.93002
ErdmannMLozano-PerezTOn multiple moving objectsAlgorithmica1987247752191836310.1007/BF018403710643.68152
SchwagerMJulianBJAngermannMRusDEyes in the sky: Decentralized control for the deployment of robotic camera networksProceedings of the IEEE20119991541156110.1109/JPROC.2011.2158377
Derenick, J., Spletzer, J., & Kumar, V.(2010). A semidefinite programming framework for controlling multi-robot systems in dynamic environments. In: IEEE conference on decision and control.
Montijano, E., & Mosteo, A. R. (2014). Efficient multi-robot formations using distributed optimization. In: IEEE 53th conference on decision and control.
Alonso-MoraJBakerSRusDMulti-robot formation control and object transport in dynamic environments via constrained optimizationThe International Journal of Robotics Research20173691000102110.1177/0278364917719333
MontijanoECristofaloEZhouDSchwagerMSaguesCVision-based distributed formation control without an external positioning systemIEEE Transactions on Robotics201632233935110.1109/TRO.2016.2523542
DesaiJPOstrowskiJPKumarVModeling and control of formations of nonholonomic mobile robotsIEEE Transaction on Robotics and Automation200117690590810.1109/70.976023
Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (2008). Guaranteed-performance multi-robot routing under limited communication range. In: Distributed autonomous robotic systems (pp. 491–502).
Ayanian, N., & Kumar, V. (2010a). Abstractions and controllers for groups of robots in environments with obstacles. In: IEEE international conference on robotics and automation, Anchorage, AK (pp. 3537–3542).
Chen, Y., Cutler, M., & How, J. P. (2015). Decoupled multiagent path planning via incremental sequential convex programming. In IEEE international conference on robotics and automation (ICRA).
FranchiAMasoneCGrabeVRyllMBulfhoffHHGiordanoPRModeling and control of UAV bearing formations with bilateral high-level steeringInternational Journal of Robotics Research2012311504152510.1177/0278364912462493
NestmeyerTRobuffo GiordanoPBlthoffHHFranchiADecentralized simultaneous multi-target exploration using a connected network of multiple robotsAutonomous Robots2017414989101110.1007/s10514-016-9578-9
DerenickJCSpletzerJRConvex optimization strategies for coordinating large-scale robot formationsIEEE Transaction on Robotics2007231252125910.1109/TRO.2007.9098331194.93143
KurikiYNamerikawaTFormation control with collision avoidance for a multi-UAV system using decentralized mpc and consensus-based controlSICE Journal of Control, Measurement, and System Integration20158428529410.9746/jcmsi.8.285
Odelga, M., Stegagno, P., & Bülthoff, HH. (2016). Obstacle detection, tracking and avoidance for a teleoperated UAV. In: 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2984–2990). IEEE.
SabattiniLSecchiCFantuzziCArbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformationAutonomous Robots20113038539710.1007/s10514-011-9225-4
Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia, S. A. (2014). Automated composition of motion primitives for multi-robot systems from safe LTL specifications. In: IEEE/RSJ international conference on intelligent robots and systems.
LynchNDistributed algorithms1997BurlingtonMorgan Kaufmann publishers
TurpinMMohtaKMichaelNKumarVGoal assignment and trajectory planning for large teams of interchangeable robotsAutonomous Robots201437440141510.1007/s10514-014-9412-1
KiaSSCortesJMartinezSDistributed convex optimization via continuous-time coordination algorithms with discrete-time communicationAutomatica201655525426433366751377.93018
Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016). Distributed multi-robot navigation in formation among obstacles: A geometric and optimization approach with consensus. In IEEE international conference on robotics and automation.
Suzuki, T., Sekine, T., Fujii, T., Asama, H., & Endo, I. (2000). Cooperative formation among multiple mobile robot teleoperation in inspection task. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000 (Vol. 1, pp. 358–363). IEEE.
UrcolaPLazaroMTCastellanosJAMontanoLCooperative minimum expected length planning for robot formations in stochastic mapsRobotics and Autonomous Systems201787385010.1016/j.robot.2016.09.002
BurgerMNotarstefanoGAllgowerFBulloFA distributed simplex algorithm for degenerate linear programs and multi-agent assignmentsAutomatica201248922982304295691110.1016/j.automatica.2012.06.0401257.93033
BalchTArkinRCBehavior-based formation control for multirobot teamsIEEE Transaction on Robotics and Automation199814692693910.1109/70.736776
NägeliTMeierLDomahidiAAlonso-MoraJHilligesOReal-time planning for automated multi-view drone cinematographyACM Transactions on Graphics (TOG)201736413210.1145/3072959.3073712
WurmanPRD’AndreaRMountzMCoordinating hundreds of cooperative, autonomous vehicles in warehousesAI Magazine20082919
DongXYuBShiZZhongYTime-varying formation control for unmanned aerial vehicles: Theories and applicationsIEEE Transactions on Control Systems Technology201523134034810.1109/TCST.2014.2314460
MostaghNMichaelNJadbabaieADaniilidisKVision-based, distributed control laws for motion coordination of nonholonomic robotsIEEE Transactions on Robotics2009254851860
AyanianNKumarVDecentralized feedback controllers for multi-agent teams in environments with obstaclesIEEE Transactions on Robotics201026587888710.1109/TRO.2010.2062070
Alonso-Mora, J., Knepper, R. A., Siegwart, R., & Rus, D. (2015a). Local motion planning for collaborative multi-robot manipulation of deformable objects. In: IEEE international conference on robotics and automation.
Deits, R., & Tedrake, R. (2014). Computing large convex regions of obstacle-free space through semidefinite programming. In Workshop on the algorithmic fundamentals of robotics.
Schoch, M., Alonso-Mora, J., Siegwart, R., & Beardsley, P. (2014). Viewpoint and trajectory optimization for animation display with aerial vehicles. In: 2010 IEEE international conference on robotics and automation (ICRA) (pp. 4711–4716). IEEE.
KeviczkyTBorrelliFFregeneKGodboleDBalasGJDecentralized receding horizon control and coordination of autonomous vehicle formationsIEEE Transactions on Control Systems Technology2008161193310.1109/TCST.2007.903066
Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones, C. N. (2012). Efficient interior point methods for multistage problems arising in receding horizon control. In: 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 668–674). IEEE.
KushleyevAMellingerDPowersCKumarVTowards a swarm of agile micro quadrotorsAutonomous Robots201335428730010.1007/s10514-013-9349-9
MorganDSubramanianGPChungS-JHadaeghFYSwarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programmingThe International Journal of Robotics Research201635101261128510.1177/0278364916632065
NägeliTAlonso-MoraJDomahidiARusDHilligesOReal-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimizationIEEE Robotics and Automation Letters2017231696170310.1109/LRA.2017.2665693
Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In: IEEE international conference on robotics and automation.
Domahidi, A., & Jerez, J. (2016). FORCES Pro: Code generation for embedded optimization. https://www.embotech.com/FORCES-Pro.
LinZFrancisBMaggioreMNecessary and sufficient graphical conditions for formation control of unicyclesIEEE Transaction on Automatic Control200550154054521108191365.93324
OhK-KAhnH-SFormation control of mobile agents based on inter-agent distance dynamicsAutomatica2011471023062312288685510.1016/j.automatica.2011.08.0191228.93014
HatanakaTIgarashiYFujitaMSpongMWPassivity-based pose synchronization in three dimensionsIEEE Transactions on Automatic Control2012572360375291874210.1109/TAC.2011.21666681369.93417
J Alonso-Mora (9783_CR4) 2015; 39
T Nägeli (9783_CR35) 2017; 36
9783_CR29
J Alonso-Mora (9783_CR3) 2017; 36
9783_CR8
M Schwager (9783_CR46) 2011; 99
A Kushleyev (9783_CR26) 2013; 35
N Lynch (9783_CR28) 1997
E Montijano (9783_CR31) 2016; 32
9783_CR38
9783_CR6
9783_CR5
X Dong (9783_CR18) 2015; 23
9783_CR30
T Keviczky (9783_CR23) 2008; 16
T Nägeli (9783_CR36) 2017; 2
N Mostagh (9783_CR33) 2009; 25
9783_CR34
M Burger (9783_CR10) 2012; 48
P Urcola (9783_CR49) 2017; 87
L Sabattini (9783_CR43) 2011; 30
T Hatanaka (9783_CR22) 2012; 57
JP Desai (9783_CR15) 2001; 17
N Ayanian (9783_CR7) 2010; 26
KK Oh (9783_CR40) 2015; 53
9783_CR47
Z Lin (9783_CR27) 2005; 50
PR Wurman (9783_CR50) 2008; 29
9783_CR41
M Erdmann (9783_CR19) 1987; 2
SS Kia (9783_CR24) 2016; 55
9783_CR45
9783_CR44
T Balch (9783_CR9) 1998; 14
M Turpin (9783_CR48) 2014; 37
T Nestmeyer (9783_CR37) 2017; 41
JC Derenick (9783_CR14) 2007; 23
W Ren (9783_CR42) 2008
9783_CR2
PE Gill (9783_CR21) 2002; 12
9783_CR1
9783_CR17
Y Kuriki (9783_CR25) 2015; 8
9783_CR16
D Morgan (9783_CR32) 2016; 35
9783_CR13
9783_CR12
9783_CR11
K-K Oh (9783_CR39) 2011; 47
A Franchi (9783_CR20) 2012; 31
References_xml – reference: Alonso-Mora, J., Knepper, R. A., Siegwart, R., & Rus, D. (2015a). Local motion planning for collaborative multi-robot manipulation of deformable objects. In: IEEE international conference on robotics and automation.
– reference: BalchTArkinRCBehavior-based formation control for multirobot teamsIEEE Transaction on Robotics and Automation199814692693910.1109/70.736776
– reference: Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016). Distributed multi-robot navigation in formation among obstacles: A geometric and optimization approach with consensus. In IEEE international conference on robotics and automation.
– reference: TurpinMMohtaKMichaelNKumarVGoal assignment and trajectory planning for large teams of interchangeable robotsAutonomous Robots201437440141510.1007/s10514-014-9412-1
– reference: UrcolaPLazaroMTCastellanosJAMontanoLCooperative minimum expected length planning for robot formations in stochastic mapsRobotics and Autonomous Systems201787385010.1016/j.robot.2016.09.002
– reference: Ayanian, N., & Kumar, V. (2010a). Abstractions and controllers for groups of robots in environments with obstacles. In: IEEE international conference on robotics and automation, Anchorage, AK (pp. 3537–3542).
– reference: Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot operating system. In: IEEE ICRA workshop on open source software.
– reference: Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones, C. N. (2012). Efficient interior point methods for multistage problems arising in receding horizon control. In: 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 668–674). IEEE.
– reference: Chen, Y., Cutler, M., & How, J. P. (2015). Decoupled multiagent path planning via incremental sequential convex programming. In IEEE international conference on robotics and automation (ICRA).
– reference: LinZFrancisBMaggioreMNecessary and sufficient graphical conditions for formation control of unicyclesIEEE Transaction on Automatic Control200550154054521108191365.93324
– reference: KushleyevAMellingerDPowersCKumarVTowards a swarm of agile micro quadrotorsAutonomous Robots201335428730010.1007/s10514-013-9349-9
– reference: NestmeyerTRobuffo GiordanoPBlthoffHHFranchiADecentralized simultaneous multi-target exploration using a connected network of multiple robotsAutonomous Robots2017414989101110.1007/s10514-016-9578-9
– reference: SchwagerMJulianBJAngermannMRusDEyes in the sky: Decentralized control for the deployment of robotic camera networksProceedings of the IEEE20119991541156110.1109/JPROC.2011.2158377
– reference: RenWBeardRWDistributed consensus in multi-vehicle cooperative control. Communications and control engineering2008LondonSpringer1144.93002
– reference: HatanakaTIgarashiYFujitaMSpongMWPassivity-based pose synchronization in three dimensionsIEEE Transactions on Automatic Control2012572360375291874210.1109/TAC.2011.21666681369.93417
– reference: Deits, R., & Tedrake, R. (2014). Computing large convex regions of obstacle-free space through semidefinite programming. In Workshop on the algorithmic fundamentals of robotics.
– reference: Schoch, M., Alonso-Mora, J., Siegwart, R., & Beardsley, P. (2014). Viewpoint and trajectory optimization for animation display with aerial vehicles. In: 2010 IEEE international conference on robotics and automation (ICRA) (pp. 4711–4716). IEEE.
– reference: Alonso-MoraJNägeliTSiegwartRBeardsleyPCollision avoidance for aerial vehicles in multi-agent scenariosAutonomous Robots201539110112110.1007/s10514-015-9429-0
– reference: SabattiniLSecchiCFantuzziCArbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformationAutonomous Robots20113038539710.1007/s10514-011-9225-4
– reference: ErdmannMLozano-PerezTOn multiple moving objectsAlgorithmica1987247752191836310.1007/BF018403710643.68152
– reference: OhKKParkMCAhnHSA survey of multi-agent formation controlAutomatica2015533424440331861810.1016/j.automatica.2014.10.0221371.93015
– reference: LynchNDistributed algorithms1997BurlingtonMorgan Kaufmann publishers
– reference: MostaghNMichaelNJadbabaieADaniilidisKVision-based, distributed control laws for motion coordination of nonholonomic robotsIEEE Transactions on Robotics2009254851860
– reference: Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia, S. A. (2014). Automated composition of motion primitives for multi-robot systems from safe LTL specifications. In: IEEE/RSJ international conference on intelligent robots and systems.
– reference: NägeliTMeierLDomahidiAAlonso-MoraJHilligesOReal-time planning for automated multi-view drone cinematographyACM Transactions on Graphics (TOG)201736413210.1145/3072959.3073712
– reference: Odelga, M., Stegagno, P., & Bülthoff, HH. (2016). Obstacle detection, tracking and avoidance for a teleoperated UAV. In: 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2984–2990). IEEE.
– reference: Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In: IEEE international conference on robotics and automation.
– reference: Suzuki, T., Sekine, T., Fujii, T., Asama, H., & Endo, I. (2000). Cooperative formation among multiple mobile robot teleoperation in inspection task. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000 (Vol. 1, pp. 358–363). IEEE.
– reference: Derenick, J., Spletzer, J., & Kumar, V.(2010). A semidefinite programming framework for controlling multi-robot systems in dynamic environments. In: IEEE conference on decision and control.
– reference: KiaSSCortesJMartinezSDistributed convex optimization via continuous-time coordination algorithms with discrete-time communicationAutomatica201655525426433366751377.93018
– reference: Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (2008). Guaranteed-performance multi-robot routing under limited communication range. In: Distributed autonomous robotic systems (pp. 491–502).
– reference: Augugliaro, F., Schoellig, A. P., & D’Andrea, R. (2012). Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In: IEEE/RSJ international conference on intelligent robots and systems.
– reference: DesaiJPOstrowskiJPKumarVModeling and control of formations of nonholonomic mobile robotsIEEE Transaction on Robotics and Automation200117690590810.1109/70.976023
– reference: WurmanPRD’AndreaRMountzMCoordinating hundreds of cooperative, autonomous vehicles in warehousesAI Magazine20082919
– reference: OhK-KAhnH-SFormation control of mobile agents based on inter-agent distance dynamicsAutomatica2011471023062312288685510.1016/j.automatica.2011.08.0191228.93014
– reference: BurgerMNotarstefanoGAllgowerFBulloFA distributed simplex algorithm for degenerate linear programs and multi-agent assignmentsAutomatica201248922982304295691110.1016/j.automatica.2012.06.0401257.93033
– reference: Domahidi, A., & Jerez, J. (2016). FORCES Pro: Code generation for embedded optimization. https://www.embotech.com/FORCES-Pro.
– reference: Alonso-MoraJBakerSRusDMulti-robot formation control and object transport in dynamic environments via constrained optimizationThe International Journal of Robotics Research20173691000102110.1177/0278364917719333
– reference: KeviczkyTBorrelliFFregeneKGodboleDBalasGJDecentralized receding horizon control and coordination of autonomous vehicle formationsIEEE Transactions on Control Systems Technology2008161193310.1109/TCST.2007.903066
– reference: NägeliTAlonso-MoraJDomahidiARusDHilligesOReal-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimizationIEEE Robotics and Automation Letters2017231696170310.1109/LRA.2017.2665693
– reference: FranchiAMasoneCGrabeVRyllMBulfhoffHHGiordanoPRModeling and control of UAV bearing formations with bilateral high-level steeringInternational Journal of Robotics Research2012311504152510.1177/0278364912462493
– reference: DongXYuBShiZZhongYTime-varying formation control for unmanned aerial vehicles: Theories and applicationsIEEE Transactions on Control Systems Technology201523134034810.1109/TCST.2014.2314460
– reference: AyanianNKumarVDecentralized feedback controllers for multi-agent teams in environments with obstaclesIEEE Transactions on Robotics201026587888710.1109/TRO.2010.2062070
– reference: GillPEMurrayWSaundersMASNOPT: An SQP algorithm for large-scale constrained optimizationSIAM Journal on Optimization20021249791006192250510.1137/S10526234993500131027.90111
– reference: MontijanoECristofaloEZhouDSchwagerMSaguesCVision-based distributed formation control without an external positioning systemIEEE Transactions on Robotics201632233935110.1109/TRO.2016.2523542
– reference: MorganDSubramanianGPChungS-JHadaeghFYSwarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programmingThe International Journal of Robotics Research201635101261128510.1177/0278364916632065
– reference: Montijano, E., & Mosteo, A. R. (2014). Efficient multi-robot formations using distributed optimization. In: IEEE 53th conference on decision and control.
– reference: DerenickJCSpletzerJRConvex optimization strategies for coordinating large-scale robot formationsIEEE Transaction on Robotics2007231252125910.1109/TRO.2007.9098331194.93143
– reference: KurikiYNamerikawaTFormation control with collision avoidance for a multi-UAV system using decentralized mpc and consensus-based controlSICE Journal of Control, Measurement, and System Integration20158428529410.9746/jcmsi.8.285
– reference: Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation.
– volume: 50
  start-page: 540
  issue: 1
  year: 2005
  ident: 9783_CR27
  publication-title: IEEE Transaction on Automatic Control
– ident: 9783_CR11
  doi: 10.1109/ICRA.2015.7140034
– ident: 9783_CR45
– volume: 12
  start-page: 979
  issue: 4
  year: 2002
  ident: 9783_CR21
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623499350013
– ident: 9783_CR16
– volume: 41
  start-page: 989
  issue: 4
  year: 2017
  ident: 9783_CR37
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-016-9578-9
– volume: 99
  start-page: 1541
  issue: 9
  year: 2011
  ident: 9783_CR46
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2011.2158377
– ident: 9783_CR12
– volume: 57
  start-page: 360
  issue: 2
  year: 2012
  ident: 9783_CR22
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2166668
– volume: 30
  start-page: 385
  year: 2011
  ident: 9783_CR43
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-011-9225-4
– ident: 9783_CR29
– ident: 9783_CR1
  doi: 10.1109/ICRA.2015.7139967
– volume: 53
  start-page: 424
  issue: 3
  year: 2015
  ident: 9783_CR40
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.022
– ident: 9783_CR5
– ident: 9783_CR2
– ident: 9783_CR17
– volume: 31
  start-page: 1504
  year: 2012
  ident: 9783_CR20
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364912462493
– ident: 9783_CR13
– volume: 36
  start-page: 1000
  issue: 9
  year: 2017
  ident: 9783_CR3
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364917719333
– ident: 9783_CR34
– ident: 9783_CR38
– volume: 47
  start-page: 2306
  issue: 10
  year: 2011
  ident: 9783_CR39
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.08.019
– volume: 39
  start-page: 101
  issue: 1
  year: 2015
  ident: 9783_CR4
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-015-9429-0
– volume: 35
  start-page: 287
  issue: 4
  year: 2013
  ident: 9783_CR26
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-013-9349-9
– ident: 9783_CR41
– volume: 32
  start-page: 339351
  issue: 2
  year: 2016
  ident: 9783_CR31
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2016.2523542
– volume: 87
  start-page: 3850
  year: 2017
  ident: 9783_CR49
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2016.09.002
– volume: 2
  start-page: 477
  year: 1987
  ident: 9783_CR19
  publication-title: Algorithmica
  doi: 10.1007/BF01840371
– volume: 35
  start-page: 1261
  issue: 10
  year: 2016
  ident: 9783_CR32
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364916632065
– volume: 17
  start-page: 905
  issue: 6
  year: 2001
  ident: 9783_CR15
  publication-title: IEEE Transaction on Robotics and Automation
  doi: 10.1109/70.976023
– ident: 9783_CR30
– volume: 36
  start-page: 132
  issue: 4
  year: 2017
  ident: 9783_CR35
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3072959.3073712
– volume: 25
  start-page: 851860
  issue: 4
  year: 2009
  ident: 9783_CR33
  publication-title: IEEE Transactions on Robotics
– volume: 23
  start-page: 340
  issue: 1
  year: 2015
  ident: 9783_CR18
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2014.2314460
– volume: 16
  start-page: 19
  issue: 1
  year: 2008
  ident: 9783_CR23
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2007.903066
– ident: 9783_CR44
– volume: 26
  start-page: 878
  issue: 5
  year: 2010
  ident: 9783_CR7
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2010.2062070
– volume: 8
  start-page: 285
  issue: 4
  year: 2015
  ident: 9783_CR25
  publication-title: SICE Journal of Control, Measurement, and System Integration
  doi: 10.9746/jcmsi.8.285
– volume-title: Distributed algorithms
  year: 1997
  ident: 9783_CR28
– ident: 9783_CR6
  doi: 10.1109/ROBOT.2010.5509534
– volume: 48
  start-page: 2298
  issue: 9
  year: 2012
  ident: 9783_CR10
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.06.040
– volume: 29
  start-page: 9
  issue: 1
  year: 2008
  ident: 9783_CR50
  publication-title: AI Magazine
– volume: 23
  start-page: 1252
  year: 2007
  ident: 9783_CR14
  publication-title: IEEE Transaction on Robotics
  doi: 10.1109/TRO.2007.909833
– volume: 37
  start-page: 401
  issue: 4
  year: 2014
  ident: 9783_CR48
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-014-9412-1
– volume: 14
  start-page: 926
  issue: 6
  year: 1998
  ident: 9783_CR9
  publication-title: IEEE Transaction on Robotics and Automation
  doi: 10.1109/70.736776
– volume: 55
  start-page: 254
  issue: 5
  year: 2016
  ident: 9783_CR24
  publication-title: Automatica
– volume-title: Distributed consensus in multi-vehicle cooperative control. Communications and control engineering
  year: 2008
  ident: 9783_CR42
– volume: 2
  start-page: 1696
  issue: 3
  year: 2017
  ident: 9783_CR36
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2665693
– ident: 9783_CR47
  doi: 10.1109/CDC.2000.912786
– ident: 9783_CR8
SSID ssj0009700
Score 2.5819032
Snippet This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static...
This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1079
SubjectTerms Artificial Intelligence
Collision avoidance
Computational geometry
Computer Imaging
Computer simulation
Control
Convexity
Engineering
Hulls
Mathematical programming
Mechatronics
Moving obstacles
Multiple robots
Optimization
Parameters
Pattern Recognition and Graphics
Reconfiguration
Robot control
Robotics
Robotics and Automation
Robots
Rotary wing aircraft
Visibility
Vision
Title Distributed multi-robot formation control in dynamic environments
URI https://link.springer.com/article/10.1007/s10514-018-9783-9
https://www.proquest.com/docview/2222702348
Volume 43
WOSCitedRecordID wos000468274800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7527
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009700
  issn: 0929-5593
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7FaZQ-elIXubh6bY1GLBynii95C9gUFSUsb_f3OpklTRQU9Z7MJs4_5hpnvG4BzEQaOBZmgPMosDSwTNLM8o0yFzGD4ISNVSubfxYOBHA6T-4rHPaur3euUZHlTL5Hd0Llj6IsHNJaCJquwht5O-n4ND48vjdJuxTtBv08RLos6lfndFJ-dUYMwvyRFS1_T3_7XX-7AVgUtSW--F3ZhxeZ7sLkkOLgPvWuvk-tbXFlDylpCOh2rcUEWHEZS1a6TUU7MvFs9WSbDHcBz_-bp6pZWTRSoxuNYUJ0lUaYxquDa59SElIoZYX320bDE-JBEJ9ohquOWdyPpYhVEThqMO2IXaCsOoZWPc3sERCFcMyxWsVVx0HVGcsNEmEkXOu4Ml23o1tZMdaUw7htdvKaNNrK3TorWSb110qQNF4tXJnN5jd8Gd-olSquTNku5J_Mi8Ajw85f1kjSPf5zs-E-jT2ADkZLXa6As7ECrmL7ZU1jX78VoNj0rN-AHxfLUEA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CurBt1ife_CkLHQfSTbHopaKtYhW6W1J9gEFaaWN_n5n06SpooKes9mE2cd8w8z3DUJnPBCOioQTFiaWCEs5SSxLCE0DaiD8kGGaS-Z3om5X9vvxfcHjnpTV7mVKMr-p58hu4Nwh9IUDGklO4kW0JMBhecH8h8fnSmm34J2A3ycAl3mZyvxuis_OqEKYX5Kiua9pbfzrLzfRegEtcXO6F7bQgh1uo7U5wcEd1LzyOrm-xZU1OK8lJONROsrwjMOIi9p1PBhiM-1Wj-fJcLvoqXXdu2yTookC0XAcM6KTOEw0RBVM-5walzKlhluffTQ0Nj4k0bF2gOqYZY1QuigVoZMG4o7ICW35HqoNR0O7j3AKcM3QKI1sGomGM5IZyoNEusAxZ5iso0ZpTaULhXHf6OJFVdrI3joKrKO8dVRcR-ezV16n8hq_DT4ql0gVJ22imCfzAvAQ8PmLckmqxz9OdvCn0adopd2766jOTff2EK0CavLaDYQGR6iWjd_sMVrW79lgMj7JN-MHv5fW9A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTgW6xWzcGTEto8djd7LNaiWErBB72FzQsKsi3t6u832UdbRQXxvNnsMskw3zDzfQPAJQ2YxSyhiISJQcxgihJDEoRlgLVLP3goc8n8XtTv8-EwHpRzTmdVt3tVkiw4DV6lKc2aE22bS8Q3F-hdGuycNeIUxatgjfk-ep-uP74sVHdLDorDAMhBZ1qVNb_b4nNgWqDNLwXSPO50d_79x7tgu4ScsF3ckT2wYtJ9sLUkRHgA2h2vn-tHXxkN8x5DNB3LcQbn3EZY9rTDUQp1McUeLpPkDsFz9_bp5g6VwxWQcm6aIZXEYaJctkGUr7VRziXW1PiqpMax9qmKipV1aI8Y0gq5jSQLLdcuH4ksU4YegVo6Ts0xgNLBOI0jGRkZsZbVnGhMg4TbwBKrCa-DVmVZoUrlcT8A41UsNJO9dYSzjvDWEXEdXM1fmRSyG78tblTHJUoPnAniSb4OkDD3-evqeBaPf9zs5E-rL8DGoNMVvfv-wynYdGDKSzogHDRALZu-mTOwrt6z0Wx6nt_LDzi-39g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+multi-robot+formation+control+in+dynamic+environments&rft.jtitle=Autonomous+robots&rft.au=Alonso-Mora%2C+Javier&rft.au=Montijano%2C+Eduardo&rft.au=N%C3%A4geli%2C+Tobias&rft.au=Hilliges%2C+Otmar&rft.date=2019-06-15&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=43&rft.issue=5&rft.spage=1079&rft.epage=1100&rft_id=info:doi/10.1007%2Fs10514-018-9783-9&rft.externalDocID=10_1007_s10514_018_9783_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon