A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media
[Display omitted] •Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based homogenization was developed.•Microscopic heterogeneity was considered in fracture modeling for porous media.•Microscopic pore structure influ...
Uložené v:
| Vydané v: | Computational materials science Ročník 176; číslo C; s. 109519 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier B.V
15.04.2020
Elsevier |
| Predmet: | |
| ISSN: | 0927-0256, 1879-0801 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based homogenization was developed.•Microscopic heterogeneity was considered in fracture modeling for porous media.•Microscopic pore structure influences fracture strength and patterns in porous media.
Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures, such as pore sizes, pore distribution, and pore shapes. The oscillation of microscopic structures is a substantial challenge in theoretical characterization and is usually ignored in continuous modeling. However, mechanical behavior of porous media such as deformation and failure, are essentially impacted by the microscopic heterogeneity which needs to be considered in modeling a porous media. This research proposes a numerical modeling framework with a capability to investigate the effect of microscopic heterogeneity on the macroscopic fracture behavior in porous media by using a numerical homogenization technique, combined with the phase-field fracture modeling method. This numerical modeling strategy computes a homogenized elasticity tensor based on microscopic heterogeneous pore structures heterogenous porous domain by solving boundary value problems at microscopic domain. The strain energy and subsequent propagation of macroscopic fractures will be updated using homogenized stiffness information. Using this numerical scheme, the microscopic pore structure’s impact on the fracture behavior through the homogenized elastic tensor will be taken into account. This multiscale technique is benchmarked against classical problems. The results highlight the importance of the underlying pore structure and reveal that both fracture strength and propagation path can be influenced by the microscopic heterogeneity. |
|---|---|
| AbstractList | Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures, such as pore sizes, pore distribution, and pore shapes. The oscillation of microscopic structures is a substantial challenge in theoretical characterization and is usually ignored in continuous modeling. However, mechanical behavior of porous media such as deformation and failure, are essentially impacted by the microscopic heterogeneity which needs to be considered in modeling a porous media. Here, this research proposes a numerical modeling framework with a capability to investigate the effect of microscopic heterogeneity on the macroscopic fracture behavior in porous media by using a numerical homogenization technique, combined with the phase-field fracture modeling method. This numerical modeling strategy computes a homogenized elasticity tensor based on microscopic heterogeneous pore structures heterogenous porous domain by solving boundary value problems at microscopic domain. The strain energy and subsequent propagation of macroscopic fractures will be updated using homogenized stiffness information. Using this numerical scheme, the microscopic pore structure’s impact on the fracture behavior through the homogenized elastic tensor will be taken into account. This multiscale technique is benchmarked against classical problems. Finally, the results highlight the importance of the underlying pore structure and reveal that both fracture strength and propagation path can be influenced by the microscopic heterogeneity. [Display omitted] •Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based homogenization was developed.•Microscopic heterogeneity was considered in fracture modeling for porous media.•Microscopic pore structure influences fracture strength and patterns in porous media. Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures, such as pore sizes, pore distribution, and pore shapes. The oscillation of microscopic structures is a substantial challenge in theoretical characterization and is usually ignored in continuous modeling. However, mechanical behavior of porous media such as deformation and failure, are essentially impacted by the microscopic heterogeneity which needs to be considered in modeling a porous media. This research proposes a numerical modeling framework with a capability to investigate the effect of microscopic heterogeneity on the macroscopic fracture behavior in porous media by using a numerical homogenization technique, combined with the phase-field fracture modeling method. This numerical modeling strategy computes a homogenized elasticity tensor based on microscopic heterogeneous pore structures heterogenous porous domain by solving boundary value problems at microscopic domain. The strain energy and subsequent propagation of macroscopic fractures will be updated using homogenized stiffness information. Using this numerical scheme, the microscopic pore structure’s impact on the fracture behavior through the homogenized elastic tensor will be taken into account. This multiscale technique is benchmarked against classical problems. The results highlight the importance of the underlying pore structure and reveal that both fracture strength and propagation path can be influenced by the microscopic heterogeneity. |
| ArticleNumber | 109519 |
| Author | He, Bang Schuler, Louis Newell, Pania |
| Author_xml | – sequence: 1 givenname: Bang surname: He fullname: He, Bang organization: Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States – sequence: 2 givenname: Louis surname: Schuler fullname: Schuler, Louis organization: Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States – sequence: 3 givenname: Pania surname: Newell fullname: Newell, Pania email: Pania.Newell@utah.edu organization: Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States |
| BackLink | https://hal.science/hal-03120820$$DView record in HAL https://www.osti.gov/servlets/purl/1597009$$D View this record in Osti.gov |
| BookMark | eNqFUcFO3DAUtBCVWGi_oVZvHLLYTpzEhx5WCEqllXppz9aL80K8TeyV7UWCr8chbQ-9cBrpaWbsmbkk5847JOQzZ1vOeH1z2Bo_z5CisVvBxHJVkqszsuFtowrWMn5ONkyJpmBC1hfkMsYDy0rVig35vaPuNGOwBqZi9LN_RGdfIFnvaAcRe3ocMxSDxamnQwCTTgHp7HucrHukfqAZEQLFCWKyho6YMCw26E-RHn1YYMbewkfyYYAp4qc_eEV-3d_9vH0o9j--fb_d7QtTCZkKI6VpO17VyEGUvDQVdiXWpmaKdY0CKRFADkOHZc5bdbzEtpNtW1aiUk1jyivyZfX1-UM695LQjMY7hyZpLlXDmMqk65U0wqSPwc4QnrUHqx92e73cWMkFawV74pn7deWa4GMMOOjs-dZRCmAnzZleptAH_W8KvUyh1ymyvvlP__fB95W7VYm5ryeLYYmDzuQ6w5Km9_Zdj1e-fqv_ |
| CitedBy_id | crossref_primary_10_1007_s11709_024_1043_9 crossref_primary_10_1007_s10704_025_00861_3 crossref_primary_10_1016_j_commatsci_2020_109881 crossref_primary_10_1631_jzus_A2100158 crossref_primary_10_1016_j_cma_2022_114927 crossref_primary_10_1155_2020_6690848 crossref_primary_10_1007_s00466_023_02380_1 crossref_primary_10_1016_j_ijsolstr_2022_112098 crossref_primary_10_1002_nme_7489 crossref_primary_10_1007_s11431_022_2200_0 crossref_primary_10_1016_j_ijsolstr_2025_113490 crossref_primary_10_1016_j_mechmat_2023_104868 crossref_primary_10_1063_5_0224861 crossref_primary_10_1016_j_compstruct_2024_118134 crossref_primary_10_1007_s00366_021_01555_9 crossref_primary_10_1016_j_actamat_2025_121187 crossref_primary_10_1016_j_euromechsol_2021_104247 crossref_primary_10_1016_j_jmps_2020_104253 crossref_primary_10_1080_15376494_2020_1795957 crossref_primary_10_1016_j_euromechsol_2025_105815 crossref_primary_10_1007_s00707_023_03798_7 crossref_primary_10_1007_s00707_022_03147_0 crossref_primary_10_1016_j_commatsci_2024_113045 crossref_primary_10_1016_j_engfracmech_2021_107749 crossref_primary_10_1016_j_engfracmech_2022_108811 crossref_primary_10_1016_j_mechmat_2023_104641 crossref_primary_10_3390_sym12071122 |
| Cites_doi | 10.1016/j.tafmec.2018.04.011 10.1016/j.jcp.2005.09.024 10.1016/j.cma.2017.04.028 10.1029/2007WR006555 10.1016/j.jngse.2019.05.007 10.1016/j.ijrmms.2016.07.020 10.1016/j.engfracmech.2019.106599 10.1016/j.cma.2016.05.015 10.1016/j.engfracmech.2006.12.002 10.1016/j.petrol.2017.11.007 10.1016/j.cma.2003.12.053 10.1142/S0218202506001285 10.1007/PL00005409 10.1016/j.cma.2012.01.008 10.1016/j.cma.2018.07.021 10.1016/j.jmps.2017.05.008 10.1007/s11665-018-3380-0 10.1016/j.jmps.2017.10.015 10.1007/s11831-016-9171-6 10.1137/140967118 10.1016/j.finel.2017.03.002 10.1108/02644409510799532 10.1016/j.ijrmms.2019.01.001 10.1016/j.cma.2009.03.019 10.1002/nag.2305 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1016/j.finel.2013.05.005 10.1090/S0025-5718-99-01077-7 10.1016/j.cma.2015.09.021 10.1063/1.2174877 10.1007/s00419-006-0023-y 10.1016/j.engfracmech.2017.07.029 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A 10.1016/j.enggeo.2017.04.010 10.1111/jace.15468 10.1016/j.jmps.2017.10.014 10.1016/j.engfracmech.2017.08.004 10.1016/j.jmps.2016.07.019 10.1007/s11440-018-0645-6 10.1016/j.commatsci.2015.11.010 10.1016/j.cma.2003.12.073 10.1007/s10659-007-9107-3 10.1016/j.tafmec.2013.12.004 10.1615/IntJMultCompEng.2013005838 10.1016/S0022-5096(98)00034-9 10.1016/j.cma.2010.04.011 10.1016/j.ijrmms.2018.11.017 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1016/j.cma.2015.07.001 10.1007/s006070170036 10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z 10.1016/j.cma.2017.10.001 10.1615/IntJMultCompEng.v1.i4.40 10.1023/A:1006669914946 10.1016/j.mechrescom.2016.07.002 10.1098/rsta.1921.0006 10.1016/j.actamat.2018.03.018 10.1007/s11709-018-0471-9 10.1002/nag.2079 10.1016/j.cma.2019.06.002 10.1016/j.engfracmech.2017.07.028 10.1002/nme.2861 10.1016/0045-7825(95)00844-9 10.1111/j.1365-2389.1994.tb00535.x 10.1007/s11440-018-0734-6 10.1016/S0045-7825(03)00391-8 10.1615/IntJMultCompEng.v1.i1.100 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE) Univ. of Utah, Salt Lake City, UT (United States) |
| CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE) – name: Univ. of Utah, Salt Lake City, UT (United States) |
| DBID | AAYXX CITATION 1XC OIOZB OTOTI |
| DOI | 10.1016/j.commatsci.2020.109519 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0801 |
| ExternalDocumentID | 1597009 oai:HAL:hal-03120820v1 10_1016_j_commatsci_2020_109519 S0927025620300100 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SST SSZ T5K XPP ZMT ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SEW SMS VH1 WUQ ~HD 1XC 6XO AALMO ABPIF ABPTK OIOZB OTOTI |
| ID | FETCH-LOGICAL-c425t-c55c8b146e1a2313c4eb3e6c6090b79a55eaa5ffbe32024b13e8b5883424977c3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519572500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0927-0256 |
| IngestDate | Thu May 18 22:42:05 EDT 2023 Tue Oct 14 20:29:25 EDT 2025 Tue Nov 18 22:24:23 EST 2025 Sat Nov 29 07:07:01 EST 2025 Fri Feb 23 02:49:23 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Porous media Finite element method Computational homogenization Phase-field Fracture modeling |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c425t-c55c8b146e1a2313c4eb3e6c6090b79a55eaa5ffbe32024b13e8b5883424977c3 |
| Notes | SC0019285 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1597009 |
| ParticipantIDs | osti_scitechconnect_1597009 hal_primary_oai_HAL_hal_03120820v1 crossref_citationtrail_10_1016_j_commatsci_2020_109519 crossref_primary_10_1016_j_commatsci_2020_109519 elsevier_sciencedirect_doi_10_1016_j_commatsci_2020_109519 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-15 |
| PublicationDateYYYYMMDD | 2020-04-15 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computational materials science |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Zhang, Ge, Ye (b0455) 2006; 89 Abdulle, Schwab (b0025) 2005 Lu, Viljanen (b0250) 2011 Cottrell, Hughes, Bazilevs (b0100) 2009 Weinan, Engquist, Huang (b0125) 2003; 67 Laubie, Monfared, Radjaï, Pellenq, Ulm (b0240) 2017; 106 Kouznetsova, Geers, Brekelmans (b0225) 2004; 193 Talebi, Silani, Bordas, Kerfriden, Rabczuk (b0415) 2013; 11 Feng, Gray (b0140) 2019; 14 Sutula, Kerfriden, van Dam, Bordas (b0405) 2018; 191 Francfort, Marigo (b0155) 1998; 46 Molnár, Gravouil (b0325) 2017; 130 Kubik (b0235) 1988; Elsevier C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations 83 (2010) 1273–1311. Moës, Dolbow, Belytschko (b0310) 1999; 46 Mikaeili, Schrefler (b0290) 2018; 13 Budarapu, Gracie, Yang, Zhuang, Rabczuk (b0075) 2014; 69 B.A. Schrefler, L. Simoni, A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, in: Numerical Methods in Geomechanics, sixth ed., vol. 1, CRC Press, United States, 2017, pp. 205–212. Yang, Lian, Liang, Nguyen, Bordas (b0440) 2019; 115 Griffith, G.I.T. (b0160) 1921; 221 Engquist, Li, Ren, Vanden-Eijnden E. (b0130) 2007; 2 Hughes (b0195) 1995; 127 Paluszny, Salimzadeh, Zimmerman (b0355) 2018 Bhattacharya, Viceconti (b0045) 2017; 9 Bouchard, Bay, Chastel (b0060) 2003; 192 Peerlings, de Borst, Brekelmans, Geers (b0360) 1998; 3 Wilson, Landis (b0425) 2016; 96 Mohammadnejad, Khoei (b0315) 2013; 73 Miehe, Hofacker, Welschinger (b0275) 2010; 199 Munjiza, Owen, Bicanic (b0335) 1995; 12 Miehe, Mauthe (b0280) 2016; 304 Nguyen, Lian, Rabczuk, Bordas (b0345) 2017; 225 Belytschko, Black (b0030) 1999; 45 Zhou, Zhuang, Zhu, Rabczuk (b0470) 2018; 96 Borst, Réthoré, Abellan (b0055) 2006; 75 Jikov, Kozlov, Oleinik (b0210) 1994 Chen, Lian, Liang, Yang, Nguyen, Bordas (b0090) 2019; 113 Eidel, Fischer (b0135) 2018; 329 Kováčik (b0230) 1999; 18 Sutula, Kerfriden, van Dam, Bordas (b0410) 2018; 191 Mase, Smelser, Mase (b0265) 2010 Sutula, Kerfriden, van Dam, Bordas (b0400) 2018; 191 Mikelic, Wheeler, Wick (b0295) 2015; 13 Martínez-Pañeda, Golahmar, Niordson (b0260) 2018; 342 Ming, Yue (b0305) 2006; 214 T. Belytschko, S.P. Xiao, Coupling Methods for Continuum Model with Molecular Model 1 (1) (2003) 12. Hirshikesh, Jansari, Kannan, Annabattula, Natarajan (b0175) 2019; 220 Heider, Markert (b0170) 2017; 80 Pramod, Annabattula, Ooi, Song, Natarajan (b0185) 2019; 355 Spencer (b0390) 2012 Crawford (b0105) 1994; 45 Yoshioka, Bourdin (b0445) 2016; 88 Hou, Wu, Cai (b0190) 1999; 68 Borden, Verhoosel, Scott, Hughes, Landis (b0050) 2012; 217–220 Xiao, Belytschko (b0435) 2004; 193 Wu, Nguyen, Thanh Nguyen, Sutula, Bordas, Sinaie (b0430) 2019 Milanese, Cao, Simoni, Schrefler (b0300) 2018 Zhang, Sloan, Vignes, Sheng (b0460) 2017; 322 Dutta, Tarafdar (b0120) 2003; 108 Bensoussan, Lions, Papanicolaou (b0040) 1978 Cioranescu, Donato (b0095) 1999 Jelitto, Schneider (b0200) 2018; 151 Zheng, Liu, Du (b0465) 2015; 295 Abdulle, Nonnenmacher (b0020) 2009; 198 Mohammadnejad, Khoei (b0320) 2013; 37 Pesavento, Schrefler, Sciumè (b0365) 2017; 24 Munjiza, Andrews, White (b0330) 1999; 44 Hirshikesh, Natarajan, Annabattula (b0180) 2019; 13 Su, Sanchez, Yang (b0395) 2012 Neuss, Jäger, Wittum (b0340) 2001; 66 Cao, Hussain, Schrefler (b0080) 2018; 111 Markicevic, Djilali (b0255) 2006; 18 Chakraborty, Zhang, Tonks (b0085) 2016; 113 Francfort, Marigo (b0150) 1998; 46 Ozaki, Aoki, Osada, Takeo, Nakao (b0350) 2018; 101 Zdravkov, Cermák, Sefara, Janku (b0450) 2007; 5 Bourdin, Francfort, Marigo (b0065) 2008; 91 Khalili (b0215) 2008; 44 Gupta, Duarte (b0165) 2014; 38 Sargado, Keilegavlen, Berre, Nordbotten (b0370) 2018; 111 Abdulle (b0015) 2009; 31 Simoni, Schrefler (b0385) 2014; Elsevier Torres-Sanchez, McLaughlin, Bonallo (b0420) 2018; 27 Jiang, Lian, Nguyen, Liang (b0205) 2019; 68 Brezzi, Fortin (b0070) 1991 de Borst, Verhoosel (b0115) 2016; 312 Abdulle (b0005) 2006; 16 Fischer, Eidel (b0145) 2019 Leguillon, Piat (b0245) 2008; 75 Sheng, Li, Sutula, Tian, Bordas (b0380) 2018; 162 de Borst (b0110) 2018 V. Kouznetsova, M. Geers, W. Brekelmans, Multi-scale first-order and second-order computational homogenization of microstructures towards continua 1, 371–386. Matache, Babuka, Schwab (b0270) 2000; 86 Abdulle (10.1016/j.commatsci.2020.109519_b0015) 2009; 31 Sutula (10.1016/j.commatsci.2020.109519_b0410) 2018; 191 Neuss (10.1016/j.commatsci.2020.109519_b0340) 2001; 66 Xiao (10.1016/j.commatsci.2020.109519_b0435) 2004; 193 Bouchard (10.1016/j.commatsci.2020.109519_b0060) 2003; 192 Cottrell (10.1016/j.commatsci.2020.109519_b0100) 2009 Paluszny (10.1016/j.commatsci.2020.109519_b0355) 2018 Zheng (10.1016/j.commatsci.2020.109519_b0465) 2015; 295 Matache (10.1016/j.commatsci.2020.109519_b0270) 2000; 86 Engquist (10.1016/j.commatsci.2020.109519_b0130) 2007; 2 Kouznetsova (10.1016/j.commatsci.2020.109519_b0225) 2004; 193 Mohammadnejad (10.1016/j.commatsci.2020.109519_b0315) 2013; 73 Molnár (10.1016/j.commatsci.2020.109519_b0325) 2017; 130 Wilson (10.1016/j.commatsci.2020.109519_b0425) 2016; 96 Heider (10.1016/j.commatsci.2020.109519_b0170) 2017; 80 Pramod (10.1016/j.commatsci.2020.109519_b0185) 2019; 355 Bensoussan (10.1016/j.commatsci.2020.109519_b0040) 1978 Bhattacharya (10.1016/j.commatsci.2020.109519_b0045) 2017; 9 Cao (10.1016/j.commatsci.2020.109519_b0080) 2018; 111 Nguyen (10.1016/j.commatsci.2020.109519_b0345) 2017; 225 Yang (10.1016/j.commatsci.2020.109519_b0440) 2019; 115 Kováčik (10.1016/j.commatsci.2020.109519_b0230) 1999; 18 Bourdin (10.1016/j.commatsci.2020.109519_b0065) 2008; 91 Francfort (10.1016/j.commatsci.2020.109519_b0150) 1998; 46 10.1016/j.commatsci.2020.109519_b0035 Budarapu (10.1016/j.commatsci.2020.109519_b0075) 2014; 69 Hughes (10.1016/j.commatsci.2020.109519_b0195) 1995; 127 Ming (10.1016/j.commatsci.2020.109519_b0305) 2006; 214 Mohammadnejad (10.1016/j.commatsci.2020.109519_b0320) 2013; 37 Simoni (10.1016/j.commatsci.2020.109519_b0385) 2014; Elsevier Brezzi (10.1016/j.commatsci.2020.109519_b0070) 1991 Fischer (10.1016/j.commatsci.2020.109519_b0145) 2019 Zhou (10.1016/j.commatsci.2020.109519_b0470) 2018; 96 Sargado (10.1016/j.commatsci.2020.109519_b0370) 2018; 111 Sutula (10.1016/j.commatsci.2020.109519_b0405) 2018; 191 Laubie (10.1016/j.commatsci.2020.109519_b0240) 2017; 106 Miehe (10.1016/j.commatsci.2020.109519_b0275) 2010; 199 Moës (10.1016/j.commatsci.2020.109519_b0310) 1999; 46 Pesavento (10.1016/j.commatsci.2020.109519_b0365) 2017; 24 Ozaki (10.1016/j.commatsci.2020.109519_b0350) 2018; 101 Hou (10.1016/j.commatsci.2020.109519_b0190) 1999; 68 Abdulle (10.1016/j.commatsci.2020.109519_b0020) 2009; 198 Peerlings (10.1016/j.commatsci.2020.109519_b0360) 1998; 3 Sheng (10.1016/j.commatsci.2020.109519_b0380) 2018; 162 Zhang (10.1016/j.commatsci.2020.109519_b0455) 2006; 89 10.1016/j.commatsci.2020.109519_b0285 de Borst (10.1016/j.commatsci.2020.109519_b0110) 2018 Jiang (10.1016/j.commatsci.2020.109519_b0205) 2019; 68 Jikov (10.1016/j.commatsci.2020.109519_b0210) 1994 Khalili (10.1016/j.commatsci.2020.109519_b0215) 2008; 44 Miehe (10.1016/j.commatsci.2020.109519_b0280) 2016; 304 Abdulle (10.1016/j.commatsci.2020.109519_b0005) 2006; 16 Francfort (10.1016/j.commatsci.2020.109519_b0155) 1998; 46 Borden (10.1016/j.commatsci.2020.109519_b0050) 2012; 217–220 Su (10.1016/j.commatsci.2020.109519_b0395) 2012 Munjiza (10.1016/j.commatsci.2020.109519_b0330) 1999; 44 Talebi (10.1016/j.commatsci.2020.109519_b0415) 2013; 11 Abdulle (10.1016/j.commatsci.2020.109519_b0025) 2005 Cioranescu (10.1016/j.commatsci.2020.109519_b0095) 1999 Zhang (10.1016/j.commatsci.2020.109519_b0460) 2017; 322 Belytschko (10.1016/j.commatsci.2020.109519_b0030) 1999; 45 Hirshikesh (10.1016/j.commatsci.2020.109519_b0180) 2019; 13 Chakraborty (10.1016/j.commatsci.2020.109519_b0085) 2016; 113 Hirshikesh (10.1016/j.commatsci.2020.109519_b0175) 2019; 220 Martínez-Pañeda (10.1016/j.commatsci.2020.109519_b0260) 2018; 342 Gupta (10.1016/j.commatsci.2020.109519_b0165) 2014; 38 Borst (10.1016/j.commatsci.2020.109519_b0055) 2006; 75 Leguillon (10.1016/j.commatsci.2020.109519_b0245) 2008; 75 Zdravkov (10.1016/j.commatsci.2020.109519_b0450) 2007; 5 de Borst (10.1016/j.commatsci.2020.109519_b0115) 2016; 312 10.1016/j.commatsci.2020.109519_b0375 Spencer (10.1016/j.commatsci.2020.109519_b0390) 2012 Markicevic (10.1016/j.commatsci.2020.109519_b0255) 2006; 18 Yoshioka (10.1016/j.commatsci.2020.109519_b0445) 2016; 88 Lu (10.1016/j.commatsci.2020.109519_b0250) 2011 Torres-Sanchez (10.1016/j.commatsci.2020.109519_b0420) 2018; 27 Munjiza (10.1016/j.commatsci.2020.109519_b0335) 1995; 12 Feng (10.1016/j.commatsci.2020.109519_b0140) 2019; 14 Mikaeili (10.1016/j.commatsci.2020.109519_b0290) 2018; 13 Dutta (10.1016/j.commatsci.2020.109519_b0120) 2003; 108 Weinan (10.1016/j.commatsci.2020.109519_b0125) 2003; 67 Eidel (10.1016/j.commatsci.2020.109519_b0135) 2018; 329 Mikelic (10.1016/j.commatsci.2020.109519_b0295) 2015; 13 Wu (10.1016/j.commatsci.2020.109519_b0430) 2019 Milanese (10.1016/j.commatsci.2020.109519_b0300) 2018 Kubik (10.1016/j.commatsci.2020.109519_b0235) 1988; Elsevier Chen (10.1016/j.commatsci.2020.109519_b0090) 2019; 113 Crawford (10.1016/j.commatsci.2020.109519_b0105) 1994; 45 Jelitto (10.1016/j.commatsci.2020.109519_b0200) 2018; 151 Griffith (10.1016/j.commatsci.2020.109519_b0160) 1921; 221 10.1016/j.commatsci.2020.109519_b0220 Mase (10.1016/j.commatsci.2020.109519_b0265) 2010 Sutula (10.1016/j.commatsci.2020.109519_b0400) 2018; 191 |
| References_xml | – volume: 217–220 start-page: 77 year: 2012 end-page: 95 ident: b0050 article-title: A phase-field description of dynamic brittle fracture publication-title: Comput. Methods Appl. Mech. Eng. – volume: 220 year: 2019 ident: b0175 article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition publication-title: Eng. Fract. Mech. – volume: 225 start-page: 68 year: 2017 end-page: 82 ident: b0345 article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements publication-title: Eng. Geol. – volume: 111 start-page: 458 year: 2018 end-page: 489 ident: b0370 article-title: High-accuracy phase-field models for brittle fracture based on a new family of degradation functions publication-title: J. Mech. Phys. Solids – volume: 44 year: 2008 ident: b0215 article-title: Two-phase fluid flow through fractured porous media with deformable matrix publication-title: Water Resour. Res. – reference: V. Kouznetsova, M. Geers, W. Brekelmans, Multi-scale first-order and second-order computational homogenization of microstructures towards continua 1, 371–386. – year: 1999 ident: b0095 article-title: An Introduction to Homogenization publication-title: Oxford – year: 2009 ident: b0100 article-title: Isogeometric Analysis: Toward Integration of CAD and FEA – year: 1991 ident: b0070 article-title: Mixed and Hybrid Finite Element Methods – volume: 46 start-page: 131 year: 1999 end-page: 150 ident: b0310 article-title: A finite element method for crack growth without remeshing publication-title: Int. J. Numer. Meth. Eng. – volume: 2 start-page: 367 year: 2007 end-page: 450 ident: b0130 article-title: Heterogeneous multiscale methods: a review publication-title: Commun. Comput. Phys. – volume: 295 start-page: 150 year: 2015 end-page: 171 ident: b0465 article-title: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 18 start-page: 1007 year: 1999 end-page: 1010 ident: b0230 article-title: Correlation between Young’s modulus and porosity in porous materials publication-title: J. Mater. Sci. Lett. – start-page: 53 year: 2019 ident: b0430 article-title: Phase field modelling of fracture publication-title: Adv. Appl. Mech. – volume: 86 start-page: 319 year: 2000 end-page: 375 ident: b0270 article-title: Generalized p-fem in homogenization publication-title: Numer. Math. – volume: 342 start-page: 742 year: 2018 end-page: 761 ident: b0260 article-title: A phase field formulation for hydrogen assisted cracking publication-title: Comput. Methods Appl. Mech. Eng. – volume: 46 start-page: 1319 year: 1998 end-page: 1342 ident: b0150 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids – volume: 191 start-page: 205 year: 2018 end-page: 224 ident: b0400 article-title: Minimum energy multiple crack propagation. Part I: theory and state of the art review publication-title: Eng. Fract. Mech. – volume: 75 start-page: 595 year: 2006 end-page: 606 ident: b0055 article-title: A numerical approach for arbitrary cracks in a fluid-saturated medium publication-title: Arch. Appl. Mech. – volume: 13 start-page: 380 year: 2019 end-page: 396 ident: b0180 article-title: A FEniCS implementation of the phase field method for quasi-static brittle fracture publication-title: Front. Struct. Civil Eng. – start-page: 265 year: 2018 end-page: 288 ident: b0300 article-title: Fracturing in dry and saturated porous media publication-title: Advances in Computational Plasticity: A Book in Honour of d. Roger j – volume: 96 start-page: 174 year: 2018 end-page: 192 ident: b0470 article-title: Phase field modelling of crack propagation, branching and coalescence in rocks publication-title: Theoret. Appl. Fract. Mech. – volume: 31 start-page: 135 year: 2009 end-page: 184 ident: b0015 article-title: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs publication-title: GAKUTO Int. Ser. Math. Sci. Appl. – volume: 322 start-page: 123 year: 2017 end-page: 136 ident: b0460 article-title: A modifcation of the phase-feld model for mixed mode crack propagation in rock-like materials publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 271 year: 2011 end-page: 305 ident: b0250 article-title: 10 – fibrous insulation materials in building engineering applications publication-title: Fibrous and Composite Materials for Civil Engineering Applications – volume: Elsevier start-page: 367 year: 2014 end-page: 519 ident: b0385 article-title: Chapter four – multi field simulation of fracture publication-title: Vol. 47 of Advances in Applied Mechanics. – volume: 38 start-page: 1397 year: 2014 end-page: 1430 ident: b0165 article-title: Simulation of non-planar three-dimensional hydraulic fracture propagation publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 89 year: 2006 ident: b0455 article-title: Effective thermal conductivity of two-scale porous media publication-title: Appl. Phys. Lett. – volume: 88 start-page: 137 year: 2016 end-page: 150 ident: b0445 article-title: A variational hydraulic fracturing model coupled to a reservoir simulator publication-title: Int. J. Rock Mech. Min. Sci. – volume: 106 start-page: 207 year: 2017 end-page: 228 ident: b0240 article-title: Disorder-induced stiffness degradation of highly disordered porous materials publication-title: J. Mech. Phys. Solids – volume: 37 start-page: 1247 year: 2013 end-page: 1279 ident: b0320 article-title: Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 27 start-page: 2899 year: 2018 end-page: 2909 ident: b0420 article-title: Effect of pore size, morphology and orientation on the bulk stiffness of a porous Ti35Nb4Sn alloy publication-title: J. Mater. Eng. Perform. – volume: 192 start-page: 3887 year: 2003 end-page: 3908 ident: b0060 article-title: Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria publication-title: Comput. Methods Appl. Mech. Eng. – year: 2012 ident: b0390 article-title: Continuum Mechanics – volume: 75 start-page: 1840 year: 2008 end-page: 1853 ident: b0245 article-title: Fracture of porous materials – influence of the pore size publication-title: Eng. Fract. Mech. – volume: 73 start-page: 77 year: 2013 end-page: 95 ident: b0315 article-title: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model publication-title: Finite Elem. Anal. Des. – volume: 111 start-page: 113 year: 2018 end-page: 133 ident: b0080 article-title: Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations publication-title: J. Mech. Phys. Solids – volume: 24 start-page: 423 year: 2017 end-page: 448 ident: b0365 article-title: Multiphase flow in deforming porous media: a review publication-title: Arch. Comput. Methods Eng. – volume: 191 start-page: 257 year: 2018 end-page: 276 ident: b0410 article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications publication-title: Eng. Fract. Mech. – volume: 193 start-page: 1645 year: 2004 end-page: 1669 ident: b0435 article-title: A bridging domain method for coupling continua with molecular dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 151 start-page: 443 year: 2018 end-page: 453 ident: b0200 article-title: A geometric model for the fracture toughness of porous materials publication-title: Acta Mater. – volume: 68 year: 2019 ident: b0205 article-title: Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model publication-title: J. Natural Gas Sci. Eng. – year: 1978 ident: b0040 article-title: Asymptotic Analysis for Periodic Structure – volume: 91 start-page: 5 year: 2008 end-page: 148 ident: b0065 article-title: The variational approach to fracture publication-title: J. Elast. – volume: 101 start-page: 3191 year: 2018 end-page: 3204 ident: b0350 article-title: Finite element analysis of fracture statistics of ceramics: effects of grain size and pore size distributions publication-title: J. Am. Ceram. Soc. – volume: 11 start-page: 527 year: 2013 end-page: 541 ident: b0415 article-title: Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture publication-title: Int. J. Multiscale Comput. Eng. – volume: 67 year: 2003 ident: b0125 article-title: Heterogeneous multiscale method: a general methodology for multiscale modeling publication-title: Phys. Rev. B – volume: 304 start-page: 619 year: 2016 end-page: 655 ident: b0280 article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media publication-title: Comput. Methods Appl. Mech. Eng. – volume: 45 start-page: 493 year: 1994 end-page: 502 ident: b0105 article-title: The relationship between structure and the hydraulic conductivity of soil publication-title: Eur. J. Soil Sci. – volume: 68 start-page: 913 year: 1999 end-page: 943 ident: b0190 article-title: Convergence of multi-scale finite element method for elliptic problems with rapidly oscillating coefficients publication-title: Math. Comput. – volume: 18 start-page: 33 year: 2006 end-page: 101 ident: b0255 article-title: Two-scale modeling in porous media: relative permeability predictions publication-title: Phys. Fluids – volume: 113 start-page: 38 year: 2016 end-page: 52 ident: b0085 article-title: Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method publication-title: Comput. Mater. Sci. – start-page: 1 year: 2018 end-page: 19 ident: b0355 article-title: Chapter 1 – finite-element modeling of the growth and interaction of hydraulic fractures in poroelastic rock formations publication-title: Hydraulic Fracture Modeling – reference: C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations 83 (2010) 1273–1311. – reference: T. Belytschko, S.P. Xiao, Coupling Methods for Continuum Model with Molecular Model 1 (1) (2003) 12. – volume: Elsevier start-page: 345 year: 1988 end-page: 353 ident: b0235 article-title: Macrodescription OP micropore structure in regard to fluid flow through porous media publication-title: Characterization of Porous Solids. Vol. 39 of Studies in Surface Science and Catalysis – volume: 130 start-page: 27 year: 2017 end-page: 38 ident: b0325 article-title: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture publication-title: Finite Elem. Anal. Des. – volume: 9 start-page: 1375 year: 2017 ident: b0045 article-title: Multiscale modeling methods in biomechanics publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med. – volume: 12 start-page: 145 year: 1995 end-page: 174 ident: b0335 article-title: A combined finite-discrete element method in transient dynamics of fracturing solids publication-title: Eng. Comput. – volume: 16 start-page: 615 year: 2006 end-page: 635 ident: b0005 article-title: Analysis of a heterogeneous multiscale FEM for problems in elasticity publication-title: Math. Models Methods Appl. Sci. – volume: 199 start-page: 2765 year: 2010 end-page: 2778 ident: b0275 article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Eng. – volume: 108 year: 2003 ident: b0120 article-title: Fractal pore structure of sedimentary rocks: simulation by ballistic deposition publication-title: J. Geophys. Res.: Solid Earth – volume: 69 start-page: 126 year: 2014 end-page: 143 ident: b0075 article-title: Efficient coarse graining in multiscale modeling of fracture publication-title: Theoret. Appl. Fract. Mech. – reference: B.A. Schrefler, L. Simoni, A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, in: Numerical Methods in Geomechanics, sixth ed., vol. 1, CRC Press, United States, 2017, pp. 205–212. – volume: 191 start-page: 225 year: 2018 end-page: 256 ident: b0405 article-title: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM publication-title: Eng. Fract. Mech. – volume: 45 start-page: 601 year: 1999 end-page: 620 ident: b0030 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int. J. Numer. Meth. Eng. – year: 1994 ident: b0210 article-title: Homogenization of Differential Operatorsand Integral Functionals – volume: 214 start-page: 421 year: 2006 end-page: 445 ident: b0305 article-title: Numerical methods for multiscale elliptic problems publication-title: J. Comput. Phys. – year: 2012 ident: b0395 article-title: Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science – volume: 14 start-page: 377 year: 2019 end-page: 402 ident: b0140 article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity publication-title: Acta Geotech. – volume: 80 start-page: 38 year: 2017 end-page: 46 ident: b0170 article-title: A phase-field modeling approach of hydraulic fracture in saturated porous media publication-title: Mech. Res. Commun. – volume: 66 start-page: 1 year: 2001 end-page: 26 ident: b0340 article-title: Homogenization and multigrid publication-title: Computing – volume: 46 year: 1998 ident: b0155 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids – volume: 312 start-page: 78 year: 2016 end-page: 94 ident: b0115 article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences publication-title: Comput. Methods Appl. Mech. Eng. – volume: 13 start-page: 367 year: 2015 end-page: 398 ident: b0295 article-title: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium publication-title: SIAM Multiscale Model. Simul. – volume: 13 start-page: 1249 year: 2018 end-page: 1264 ident: b0290 article-title: XFEM, strong discontinuities and second-order work in shear band modeling of saturated porous media publication-title: Acta Geotech. – volume: 329 start-page: 332 year: 2018 end-page: 368 ident: b0135 article-title: The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE publication-title: Comput. Methods Appl. Mech. Eng. – volume: 113 start-page: 59 year: 2019 end-page: 71 ident: b0090 article-title: The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses publication-title: Int. J. Rock Mech. Min. Sci. – year: 2010 ident: b0265 article-title: Continuum Mechanics for Engineers – start-page: 77 year: 2019 ident: b0145 article-title: Convergence and error analysis of FE-HMM/FE publication-title: Eur. J. Mech.- A – volume: 193 start-page: 5525 year: 2004 end-page: 5550 ident: b0225 article-title: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy publication-title: Comput. Methods Appl. Mech. Eng. – volume: 198 start-page: 2839 year: 2009 end-page: 2859 ident: b0020 article-title: A short and versatile finite element multiscale code for homogenization problems publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 1 year: 2018 end-page: 12 ident: b0110 article-title: Chapter 1 – introduction publication-title: Computational Methods for Fracture in Porous Media – volume: 355 start-page: 284 year: 2019 end-page: 307 ident: b0185 article-title: Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 3 start-page: 323 year: 1998 end-page: 342 ident: b0360 article-title: Gradient-enhanced damage modelling of concrete fracture publication-title: Mech. Cohesive-Frictional Mater. – volume: 115 start-page: 145 year: 2019 end-page: 156 ident: b0440 article-title: Model I cohesive zone models of different rank coals publication-title: Int. J. Rock Mech. Min. Sci. – volume: 5 start-page: 385 year: 2007 end-page: 395 ident: b0450 article-title: Pore classification in the characterization of porous materials: a perspective publication-title: Cent. Eur. J. Chem. – volume: 96 start-page: 264 year: 2016 end-page: 290 ident: b0425 article-title: Phase-field modeling of hydraulic fracture publication-title: J. Mech. Phys. Solids – start-page: 3 year: 2005 ident: b0025 article-title: Heterogeneous multiscale fem for diffusion problems on rough surfaces. SIAM Journal on publication-title: Multiscale Model. Simul. – volume: 44 start-page: 41 year: 1999 end-page: 57 ident: b0330 article-title: Combined single and smeared crack model in combined finite-discrete element analysis publication-title: Int. J. Numer. Meth. Eng. – volume: 162 start-page: 801 year: 2018 end-page: 812 ident: b0380 article-title: XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations publication-title: J. Petrol. Sci. Eng. – volume: 127 start-page: 387 year: 1995 end-page: 401 ident: b0195 article-title: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods publication-title: Comput. Methods Appl. Mech. Eng. – volume: 221 start-page: 163 year: 1921 end-page: 198 ident: b0160 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. London Ser. A – volume: 96 start-page: 174 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0470 article-title: Phase field modelling of crack propagation, branching and coalescence in rocks publication-title: Theoret. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2018.04.011 – volume: 214 start-page: 421 issue: 1 year: 2006 ident: 10.1016/j.commatsci.2020.109519_b0305 article-title: Numerical methods for multiscale elliptic problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.09.024 – volume: 322 start-page: 123 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0460 article-title: A modifcation of the phase-feld model for mixed mode crack propagation in rock-like materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.04.028 – volume: 44 issue: 5 year: 2008 ident: 10.1016/j.commatsci.2020.109519_b0215 article-title: Two-phase fluid flow through fractured porous media with deformable matrix publication-title: Water Resour. Res. doi: 10.1029/2007WR006555 – volume: 68 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0205 article-title: Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model publication-title: J. Natural Gas Sci. Eng. doi: 10.1016/j.jngse.2019.05.007 – volume: 88 start-page: 137 year: 2016 ident: 10.1016/j.commatsci.2020.109519_b0445 article-title: A variational hydraulic fracturing model coupled to a reservoir simulator publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2016.07.020 – start-page: 265 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0300 article-title: Fracturing in dry and saturated porous media – year: 1999 ident: 10.1016/j.commatsci.2020.109519_b0095 article-title: An Introduction to Homogenization publication-title: Oxford – volume: 220 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0175 article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106599 – volume: 9 start-page: 1375 issue: 3 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0045 article-title: Multiscale modeling methods in biomechanics publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med. – volume: 312 start-page: 78 year: 2016 ident: 10.1016/j.commatsci.2020.109519_b0115 article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.05.015 – year: 1991 ident: 10.1016/j.commatsci.2020.109519_b0070 – volume: 75 start-page: 1840 issue: 7 year: 2008 ident: 10.1016/j.commatsci.2020.109519_b0245 article-title: Fracture of porous materials – influence of the pore size publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2006.12.002 – volume: 2 start-page: 367 issue: 3 year: 2007 ident: 10.1016/j.commatsci.2020.109519_b0130 article-title: Heterogeneous multiscale methods: a review publication-title: Commun. Comput. Phys. – volume: 162 start-page: 801 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0380 article-title: XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2017.11.007 – volume: 193 start-page: 1645 issue: 17–20 year: 2004 ident: 10.1016/j.commatsci.2020.109519_b0435 article-title: A bridging domain method for coupling continua with molecular dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2003.12.053 – volume: 16 start-page: 615 year: 2006 ident: 10.1016/j.commatsci.2020.109519_b0005 article-title: Analysis of a heterogeneous multiscale FEM for problems in elasticity publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202506001285 – volume: 86 start-page: 319 year: 2000 ident: 10.1016/j.commatsci.2020.109519_b0270 article-title: Generalized p-fem in homogenization publication-title: Numer. Math. doi: 10.1007/PL00005409 – volume: 217–220 start-page: 77 year: 2012 ident: 10.1016/j.commatsci.2020.109519_b0050 article-title: A phase-field description of dynamic brittle fracture publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.01.008 – start-page: 77 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0145 article-title: Convergence and error analysis of FE-HMM/FE2 for energetically consistent micro-coupling conditions in linear elastic solids publication-title: Eur. J. Mech.- A – volume: 342 start-page: 742 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0260 article-title: A phase field formulation for hydrogen assisted cracking publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.07.021 – volume: 106 start-page: 207 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0240 article-title: Disorder-induced stiffness degradation of highly disordered porous materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.05.008 – volume: 27 start-page: 2899 issue: 6 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0420 article-title: Effect of pore size, morphology and orientation on the bulk stiffness of a porous Ti35Nb4Sn alloy publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-018-3380-0 – start-page: 1 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0355 article-title: Chapter 1 – finite-element modeling of the growth and interaction of hydraulic fractures in poroelastic rock formations – volume: 111 start-page: 458 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0370 article-title: High-accuracy phase-field models for brittle fracture based on a new family of degradation functions publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.10.015 – ident: 10.1016/j.commatsci.2020.109519_b0375 – volume: 24 start-page: 423 issue: 2 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0365 article-title: Multiphase flow in deforming porous media: a review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-016-9171-6 – year: 1994 ident: 10.1016/j.commatsci.2020.109519_b0210 – volume: 13 start-page: 367 year: 2015 ident: 10.1016/j.commatsci.2020.109519_b0295 article-title: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium publication-title: SIAM Multiscale Model. Simul. doi: 10.1137/140967118 – volume: 130 start-page: 27 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0325 article-title: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.03.002 – volume: 12 start-page: 145 issue: 2 year: 1995 ident: 10.1016/j.commatsci.2020.109519_b0335 article-title: A combined finite-discrete element method in transient dynamics of fracturing solids publication-title: Eng. Comput. doi: 10.1108/02644409510799532 – volume: 115 start-page: 145 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0440 article-title: Model I cohesive zone models of different rank coals publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2019.01.001 – volume: 198 start-page: 2839 issue: 37 year: 2009 ident: 10.1016/j.commatsci.2020.109519_b0020 article-title: A short and versatile finite element multiscale code for homogenization problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2009.03.019 – volume: 38 start-page: 1397 issue: 13 year: 2014 ident: 10.1016/j.commatsci.2020.109519_b0165 article-title: Simulation of non-planar three-dimensional hydraulic fracture propagation publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2305 – volume: 46 start-page: 131 issue: 1 year: 1999 ident: 10.1016/j.commatsci.2020.109519_b0310 article-title: A finite element method for crack growth without remeshing publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – volume: 73 start-page: 77 year: 2013 ident: 10.1016/j.commatsci.2020.109519_b0315 article-title: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2013.05.005 – year: 1978 ident: 10.1016/j.commatsci.2020.109519_b0040 – volume: 68 start-page: 913 year: 1999 ident: 10.1016/j.commatsci.2020.109519_b0190 article-title: Convergence of multi-scale finite element method for elliptic problems with rapidly oscillating coefficients publication-title: Math. Comput. doi: 10.1090/S0025-5718-99-01077-7 – year: 2010 ident: 10.1016/j.commatsci.2020.109519_b0265 – volume: 304 start-page: 619 year: 2016 ident: 10.1016/j.commatsci.2020.109519_b0280 article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.09.021 – volume: 18 start-page: 33 issue: 3 year: 2006 ident: 10.1016/j.commatsci.2020.109519_b0255 article-title: Two-scale modeling in porous media: relative permeability predictions publication-title: Phys. Fluids doi: 10.1063/1.2174877 – volume: 75 start-page: 595 year: 2006 ident: 10.1016/j.commatsci.2020.109519_b0055 article-title: A numerical approach for arbitrary cracks in a fluid-saturated medium publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-006-0023-y – volume: 191 start-page: 225 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0405 article-title: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.07.029 – volume: 44 start-page: 41 issue: 1 year: 1999 ident: 10.1016/j.commatsci.2020.109519_b0330 article-title: Combined single and smeared crack model in combined finite-discrete element analysis publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A – volume: 225 start-page: 68 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0345 article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.04.010 – volume: 108 issue: B2 year: 2003 ident: 10.1016/j.commatsci.2020.109519_b0120 article-title: Fractal pore structure of sedimentary rocks: simulation by ballistic deposition publication-title: J. Geophys. Res.: Solid Earth – volume: 101 start-page: 3191 issue: 7 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0350 article-title: Finite element analysis of fracture statistics of ceramics: effects of grain size and pore size distributions publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15468 – volume: 111 start-page: 113 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0080 article-title: Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.10.014 – volume: 191 start-page: 257 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0410 article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.08.004 – volume: 96 start-page: 264 year: 2016 ident: 10.1016/j.commatsci.2020.109519_b0425 article-title: Phase-field modeling of hydraulic fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2016.07.019 – volume: 14 start-page: 377 issue: 2 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0140 article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity publication-title: Acta Geotech. doi: 10.1007/s11440-018-0645-6 – volume: 113 start-page: 38 year: 2016 ident: 10.1016/j.commatsci.2020.109519_b0085 article-title: Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.11.010 – volume: 89 year: 2006 ident: 10.1016/j.commatsci.2020.109519_b0455 article-title: Effective thermal conductivity of two-scale porous media publication-title: Appl. Phys. Lett. – volume: 193 start-page: 5525 year: 2004 ident: 10.1016/j.commatsci.2020.109519_b0225 article-title: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2003.12.073 – start-page: 1 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0110 article-title: Chapter 1 – introduction – volume: Elsevier start-page: 367 year: 2014 ident: 10.1016/j.commatsci.2020.109519_b0385 article-title: Chapter four – multi field simulation of fracture publication-title: Vol. 47 of Advances in Applied Mechanics. – volume: 91 start-page: 5 issue: 1 year: 2008 ident: 10.1016/j.commatsci.2020.109519_b0065 article-title: The variational approach to fracture publication-title: J. Elast. doi: 10.1007/s10659-007-9107-3 – volume: 69 start-page: 126 year: 2014 ident: 10.1016/j.commatsci.2020.109519_b0075 article-title: Efficient coarse graining in multiscale modeling of fracture publication-title: Theoret. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2013.12.004 – volume: 11 start-page: 527 issue: 6 year: 2013 ident: 10.1016/j.commatsci.2020.109519_b0415 article-title: Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture publication-title: Int. J. Multiscale Comput. Eng. doi: 10.1615/IntJMultCompEng.2013005838 – volume: 46 start-page: 1319 year: 1998 ident: 10.1016/j.commatsci.2020.109519_b0150 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00034-9 – volume: Elsevier start-page: 345 year: 1988 ident: 10.1016/j.commatsci.2020.109519_b0235 article-title: Macrodescription OP micropore structure in regard to fluid flow through porous media – year: 2009 ident: 10.1016/j.commatsci.2020.109519_b0100 – volume: 199 start-page: 2765 issue: 45 year: 2010 ident: 10.1016/j.commatsci.2020.109519_b0275 article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.04.011 – volume: 113 start-page: 59 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0090 article-title: The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2018.11.017 – volume: 45 start-page: 601 issue: 5 year: 1999 ident: 10.1016/j.commatsci.2020.109519_b0030 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – volume: 295 start-page: 150 year: 2015 ident: 10.1016/j.commatsci.2020.109519_b0465 article-title: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.07.001 – volume: 66 start-page: 1 year: 2001 ident: 10.1016/j.commatsci.2020.109519_b0340 article-title: Homogenization and multigrid publication-title: Computing doi: 10.1007/s006070170036 – volume: 3 start-page: 323 issue: 4 year: 1998 ident: 10.1016/j.commatsci.2020.109519_b0360 article-title: Gradient-enhanced damage modelling of concrete fracture publication-title: Mech. Cohesive-Frictional Mater. doi: 10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z – volume: 329 start-page: 332 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0135 article-title: The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.10.001 – ident: 10.1016/j.commatsci.2020.109519_b0220 doi: 10.1615/IntJMultCompEng.v1.i4.40 – volume: 18 start-page: 1007 year: 1999 ident: 10.1016/j.commatsci.2020.109519_b0230 article-title: Correlation between Young’s modulus and porosity in porous materials publication-title: J. Mater. Sci. Lett. doi: 10.1023/A:1006669914946 – start-page: 53 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0430 article-title: Phase field modelling of fracture publication-title: Adv. Appl. Mech. – volume: 80 start-page: 38 year: 2017 ident: 10.1016/j.commatsci.2020.109519_b0170 article-title: A phase-field modeling approach of hydraulic fracture in saturated porous media publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2016.07.002 – volume: 221 start-page: 163 year: 1921 ident: 10.1016/j.commatsci.2020.109519_b0160 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. London Ser. A doi: 10.1098/rsta.1921.0006 – volume: 5 start-page: 385 issue: 2 year: 2007 ident: 10.1016/j.commatsci.2020.109519_b0450 article-title: Pore classification in the characterization of porous materials: a perspective publication-title: Cent. Eur. J. Chem. – volume: 151 start-page: 443 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0200 article-title: A geometric model for the fracture toughness of porous materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.03.018 – volume: 46 year: 1998 ident: 10.1016/j.commatsci.2020.109519_b0155 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00034-9 – year: 2012 ident: 10.1016/j.commatsci.2020.109519_b0390 – start-page: 271 year: 2011 ident: 10.1016/j.commatsci.2020.109519_b0250 article-title: 10 – fibrous insulation materials in building engineering applications – volume: 31 start-page: 135 year: 2009 ident: 10.1016/j.commatsci.2020.109519_b0015 article-title: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs publication-title: GAKUTO Int. Ser. Math. Sci. Appl. – volume: 13 start-page: 380 issue: 2 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0180 article-title: A FEniCS implementation of the phase field method for quasi-static brittle fracture publication-title: Front. Struct. Civil Eng. doi: 10.1007/s11709-018-0471-9 – volume: 37 start-page: 1247 issue: 10 year: 2013 ident: 10.1016/j.commatsci.2020.109519_b0320 article-title: Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2079 – volume: 355 start-page: 284 year: 2019 ident: 10.1016/j.commatsci.2020.109519_b0185 article-title: Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.06.002 – volume: 191 start-page: 205 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0400 article-title: Minimum energy multiple crack propagation. Part I: theory and state of the art review publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.07.028 – ident: 10.1016/j.commatsci.2020.109519_b0285 doi: 10.1002/nme.2861 – volume: 127 start-page: 387 issue: 1 year: 1995 ident: 10.1016/j.commatsci.2020.109519_b0195 article-title: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(95)00844-9 – volume: 45 start-page: 493 issue: 4 year: 1994 ident: 10.1016/j.commatsci.2020.109519_b0105 article-title: The relationship between structure and the hydraulic conductivity of soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1994.tb00535.x – start-page: 3 year: 2005 ident: 10.1016/j.commatsci.2020.109519_b0025 article-title: Heterogeneous multiscale fem for diffusion problems on rough surfaces. SIAM Journal on publication-title: Multiscale Model. Simul. – volume: 13 start-page: 1249 issue: 6 year: 2018 ident: 10.1016/j.commatsci.2020.109519_b0290 article-title: XFEM, strong discontinuities and second-order work in shear band modeling of saturated porous media publication-title: Acta Geotech. doi: 10.1007/s11440-018-0734-6 – volume: 192 start-page: 3887 issue: 35 year: 2003 ident: 10.1016/j.commatsci.2020.109519_b0060 article-title: Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(03)00391-8 – year: 2012 ident: 10.1016/j.commatsci.2020.109519_b0395 – volume: 67 issue: 9 year: 2003 ident: 10.1016/j.commatsci.2020.109519_b0125 article-title: Heterogeneous multiscale method: a general methodology for multiscale modeling publication-title: Phys. Rev. B – ident: 10.1016/j.commatsci.2020.109519_b0035 doi: 10.1615/IntJMultCompEng.v1.i1.100 |
| SSID | ssj0016982 |
| Score | 2.4443426 |
| Snippet | [Display omitted]
•Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based... Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures,... |
| SourceID | osti hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 109519 |
| SubjectTerms | Computational homogenization ENGINEERING Engineering Sciences Finite element method Fracture modeling MATERIALS SCIENCE MATHEMATICS AND COMPUTING Mechanics Phase-field Porous media Solid mechanics |
| Title | A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media |
| URI | https://dx.doi.org/10.1016/j.commatsci.2020.109519 https://hal.science/hal-03120820 https://www.osti.gov/servlets/purl/1597009 |
| Volume | 176 |
| WOSCitedRecordID | wos000519572500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6jgMcED9FGSALcYs8JY7TONwiNDRQNXEYqLfI9hx1W0mq0la78L_zXuykKdpUduCSVFb97OR98ftsv_dMyAcexaUUmjPLtWUiKyMmjVbMhlBDiFiZJkLuxyQ9O5PTafZtMPjdxsJs5mlVyZubbPFfVQ1loGwMnb2HujuhUAC_QelwBbXD9Z8UnwfV2m3DzNms_lnDH32sZYAm6yJYzODGGte1oMQgKdxDaE7E8R7QyDzVMrBArFdNCmx49yjGorss8HW8NREnfWbrjodolxaBB7tnDbyJ3a65ul0ObzCbLaDZ2ocjTur1ZcfxYfhtD1hWlW_LL09w9BVlLkCzXWfkKUNitTPkpv1BM0Kal906nrulhStUB3QcenyMbRxva-xm0P7LsnX-hq0r21XRCSpQUOEEHZBDniaZHJLD_MvJ9Gu3DTXOmtPGumfYcRC8tU930ZuDGfrZDmvQW4-_nD8hj_3Eg-YOME_JwFbPyKNeOsrn5Dqnd0GHNtChPejQFjq0hQ6tS-qgQz106A50qIMObaDzgnz_fHL-6ZT5wziYgWF9xUySGKnBrtpIwZwgNsLq2I7NOMxCnWYqSaxSSVlqG8PrEDqKrdSJlLGACX6amvglGVZ1ZV8RmnBhBKbhxfSPZSRUVIYmueBcGiWlliMybt9hYXymejwwZV7s0eOIhF3FhUvWsr_Kx1ZJhf8gHJcsAIL7K78HtXZNYab203xSYBnYSo7sehONyBFqHaVjWmaD_msgHqYRKcxvXt-_y0fk4fZDe0OGq-XaviUPzGZ1-Wv5zkP4D0Q0wVA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical-homogenization+based+phase-field+fracture+modeling+of+linear+elastic+heterogeneous+porous+media&rft.jtitle=Computational+materials+science&rft.au=He%2C+Bang&rft.au=Schuler%2C+Louis&rft.au=Newell%2C+Pania&rft.date=2020-04-15&rft.issn=0927-0256&rft.volume=176&rft.spage=109519&rft_id=info:doi/10.1016%2Fj.commatsci.2020.109519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2020_109519 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |