A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media

[Display omitted] •Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based homogenization was developed.•Microscopic heterogeneity was considered in fracture modeling for porous media.•Microscopic pore structure influ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational materials science Ročník 176; číslo C; s. 109519
Hlavní autori: He, Bang, Schuler, Louis, Newell, Pania
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier B.V 15.04.2020
Elsevier
Predmet:
ISSN:0927-0256, 1879-0801
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based homogenization was developed.•Microscopic heterogeneity was considered in fracture modeling for porous media.•Microscopic pore structure influences fracture strength and patterns in porous media. Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures, such as pore sizes, pore distribution, and pore shapes. The oscillation of microscopic structures is a substantial challenge in theoretical characterization and is usually ignored in continuous modeling. However, mechanical behavior of porous media such as deformation and failure, are essentially impacted by the microscopic heterogeneity which needs to be considered in modeling a porous media. This research proposes a numerical modeling framework with a capability to investigate the effect of microscopic heterogeneity on the macroscopic fracture behavior in porous media by using a numerical homogenization technique, combined with the phase-field fracture modeling method. This numerical modeling strategy computes a homogenized elasticity tensor based on microscopic heterogeneous pore structures heterogenous porous domain by solving boundary value problems at microscopic domain. The strain energy and subsequent propagation of macroscopic fractures will be updated using homogenized stiffness information. Using this numerical scheme, the microscopic pore structure’s impact on the fracture behavior through the homogenized elastic tensor will be taken into account. This multiscale technique is benchmarked against classical problems. The results highlight the importance of the underlying pore structure and reveal that both fracture strength and propagation path can be influenced by the microscopic heterogeneity.
AbstractList Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures, such as pore sizes, pore distribution, and pore shapes. The oscillation of microscopic structures is a substantial challenge in theoretical characterization and is usually ignored in continuous modeling. However, mechanical behavior of porous media such as deformation and failure, are essentially impacted by the microscopic heterogeneity which needs to be considered in modeling a porous media. Here, this research proposes a numerical modeling framework with a capability to investigate the effect of microscopic heterogeneity on the macroscopic fracture behavior in porous media by using a numerical homogenization technique, combined with the phase-field fracture modeling method. This numerical modeling strategy computes a homogenized elasticity tensor based on microscopic heterogeneous pore structures heterogenous porous domain by solving boundary value problems at microscopic domain. The strain energy and subsequent propagation of macroscopic fractures will be updated using homogenized stiffness information. Using this numerical scheme, the microscopic pore structure’s impact on the fracture behavior through the homogenized elastic tensor will be taken into account. This multiscale technique is benchmarked against classical problems. Finally, the results highlight the importance of the underlying pore structure and reveal that both fracture strength and propagation path can be influenced by the microscopic heterogeneity.
[Display omitted] •Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based homogenization was developed.•Microscopic heterogeneity was considered in fracture modeling for porous media.•Microscopic pore structure influences fracture strength and patterns in porous media. Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures, such as pore sizes, pore distribution, and pore shapes. The oscillation of microscopic structures is a substantial challenge in theoretical characterization and is usually ignored in continuous modeling. However, mechanical behavior of porous media such as deformation and failure, are essentially impacted by the microscopic heterogeneity which needs to be considered in modeling a porous media. This research proposes a numerical modeling framework with a capability to investigate the effect of microscopic heterogeneity on the macroscopic fracture behavior in porous media by using a numerical homogenization technique, combined with the phase-field fracture modeling method. This numerical modeling strategy computes a homogenized elasticity tensor based on microscopic heterogeneous pore structures heterogenous porous domain by solving boundary value problems at microscopic domain. The strain energy and subsequent propagation of macroscopic fractures will be updated using homogenized stiffness information. Using this numerical scheme, the microscopic pore structure’s impact on the fracture behavior through the homogenized elastic tensor will be taken into account. This multiscale technique is benchmarked against classical problems. The results highlight the importance of the underlying pore structure and reveal that both fracture strength and propagation path can be influenced by the microscopic heterogeneity.
ArticleNumber 109519
Author He, Bang
Schuler, Louis
Newell, Pania
Author_xml – sequence: 1
  givenname: Bang
  surname: He
  fullname: He, Bang
  organization: Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States
– sequence: 2
  givenname: Louis
  surname: Schuler
  fullname: Schuler, Louis
  organization: Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States
– sequence: 3
  givenname: Pania
  surname: Newell
  fullname: Newell, Pania
  email: Pania.Newell@utah.edu
  organization: Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States
BackLink https://hal.science/hal-03120820$$DView record in HAL
https://www.osti.gov/servlets/purl/1597009$$D View this record in Osti.gov
BookMark eNqFUcFO3DAUtBCVWGi_oVZvHLLYTpzEhx5WCEqllXppz9aL80K8TeyV7UWCr8chbQ-9cBrpaWbsmbkk5847JOQzZ1vOeH1z2Bo_z5CisVvBxHJVkqszsuFtowrWMn5ONkyJpmBC1hfkMsYDy0rVig35vaPuNGOwBqZi9LN_RGdfIFnvaAcRe3ocMxSDxamnQwCTTgHp7HucrHukfqAZEQLFCWKyho6YMCw26E-RHn1YYMbewkfyYYAp4qc_eEV-3d_9vH0o9j--fb_d7QtTCZkKI6VpO17VyEGUvDQVdiXWpmaKdY0CKRFADkOHZc5bdbzEtpNtW1aiUk1jyivyZfX1-UM695LQjMY7hyZpLlXDmMqk65U0wqSPwc4QnrUHqx92e73cWMkFawV74pn7deWa4GMMOOjs-dZRCmAnzZleptAH_W8KvUyh1ymyvvlP__fB95W7VYm5ryeLYYmDzuQ6w5Km9_Zdj1e-fqv_
CitedBy_id crossref_primary_10_1007_s11709_024_1043_9
crossref_primary_10_1007_s10704_025_00861_3
crossref_primary_10_1016_j_commatsci_2020_109881
crossref_primary_10_1631_jzus_A2100158
crossref_primary_10_1016_j_cma_2022_114927
crossref_primary_10_1155_2020_6690848
crossref_primary_10_1007_s00466_023_02380_1
crossref_primary_10_1016_j_ijsolstr_2022_112098
crossref_primary_10_1002_nme_7489
crossref_primary_10_1007_s11431_022_2200_0
crossref_primary_10_1016_j_ijsolstr_2025_113490
crossref_primary_10_1016_j_mechmat_2023_104868
crossref_primary_10_1063_5_0224861
crossref_primary_10_1016_j_compstruct_2024_118134
crossref_primary_10_1007_s00366_021_01555_9
crossref_primary_10_1016_j_actamat_2025_121187
crossref_primary_10_1016_j_euromechsol_2021_104247
crossref_primary_10_1016_j_jmps_2020_104253
crossref_primary_10_1080_15376494_2020_1795957
crossref_primary_10_1016_j_euromechsol_2025_105815
crossref_primary_10_1007_s00707_023_03798_7
crossref_primary_10_1007_s00707_022_03147_0
crossref_primary_10_1016_j_commatsci_2024_113045
crossref_primary_10_1016_j_engfracmech_2021_107749
crossref_primary_10_1016_j_engfracmech_2022_108811
crossref_primary_10_1016_j_mechmat_2023_104641
crossref_primary_10_3390_sym12071122
Cites_doi 10.1016/j.tafmec.2018.04.011
10.1016/j.jcp.2005.09.024
10.1016/j.cma.2017.04.028
10.1029/2007WR006555
10.1016/j.jngse.2019.05.007
10.1016/j.ijrmms.2016.07.020
10.1016/j.engfracmech.2019.106599
10.1016/j.cma.2016.05.015
10.1016/j.engfracmech.2006.12.002
10.1016/j.petrol.2017.11.007
10.1016/j.cma.2003.12.053
10.1142/S0218202506001285
10.1007/PL00005409
10.1016/j.cma.2012.01.008
10.1016/j.cma.2018.07.021
10.1016/j.jmps.2017.05.008
10.1007/s11665-018-3380-0
10.1016/j.jmps.2017.10.015
10.1007/s11831-016-9171-6
10.1137/140967118
10.1016/j.finel.2017.03.002
10.1108/02644409510799532
10.1016/j.ijrmms.2019.01.001
10.1016/j.cma.2009.03.019
10.1002/nag.2305
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1016/j.finel.2013.05.005
10.1090/S0025-5718-99-01077-7
10.1016/j.cma.2015.09.021
10.1063/1.2174877
10.1007/s00419-006-0023-y
10.1016/j.engfracmech.2017.07.029
10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
10.1016/j.enggeo.2017.04.010
10.1111/jace.15468
10.1016/j.jmps.2017.10.014
10.1016/j.engfracmech.2017.08.004
10.1016/j.jmps.2016.07.019
10.1007/s11440-018-0645-6
10.1016/j.commatsci.2015.11.010
10.1016/j.cma.2003.12.073
10.1007/s10659-007-9107-3
10.1016/j.tafmec.2013.12.004
10.1615/IntJMultCompEng.2013005838
10.1016/S0022-5096(98)00034-9
10.1016/j.cma.2010.04.011
10.1016/j.ijrmms.2018.11.017
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1016/j.cma.2015.07.001
10.1007/s006070170036
10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
10.1016/j.cma.2017.10.001
10.1615/IntJMultCompEng.v1.i4.40
10.1023/A:1006669914946
10.1016/j.mechrescom.2016.07.002
10.1098/rsta.1921.0006
10.1016/j.actamat.2018.03.018
10.1007/s11709-018-0471-9
10.1002/nag.2079
10.1016/j.cma.2019.06.002
10.1016/j.engfracmech.2017.07.028
10.1002/nme.2861
10.1016/0045-7825(95)00844-9
10.1111/j.1365-2389.1994.tb00535.x
10.1007/s11440-018-0734-6
10.1016/S0045-7825(03)00391-8
10.1615/IntJMultCompEng.v1.i1.100
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)
Univ. of Utah, Salt Lake City, UT (United States)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)
– name: Univ. of Utah, Salt Lake City, UT (United States)
DBID AAYXX
CITATION
1XC
OIOZB
OTOTI
DOI 10.1016/j.commatsci.2020.109519
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 1597009
oai:HAL:hal-03120820v1
10_1016_j_commatsci_2020_109519
S0927025620300100
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SMS
VH1
WUQ
~HD
1XC
6XO
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c425t-c55c8b146e1a2313c4eb3e6c6090b79a55eaa5ffbe32024b13e8b5883424977c3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519572500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0927-0256
IngestDate Thu May 18 22:42:05 EDT 2023
Tue Oct 14 20:29:25 EDT 2025
Tue Nov 18 22:24:23 EST 2025
Sat Nov 29 07:07:01 EST 2025
Fri Feb 23 02:49:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Porous media
Finite element method
Computational homogenization
Phase-field
Fracture modeling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-c55c8b146e1a2313c4eb3e6c6090b79a55eaa5ffbe32024b13e8b5883424977c3
Notes SC0019285
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OpenAccessLink https://www.osti.gov/servlets/purl/1597009
ParticipantIDs osti_scitechconnect_1597009
hal_primary_oai_HAL_hal_03120820v1
crossref_citationtrail_10_1016_j_commatsci_2020_109519
crossref_primary_10_1016_j_commatsci_2020_109519
elsevier_sciencedirect_doi_10_1016_j_commatsci_2020_109519
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational materials science
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Ge, Ye (b0455) 2006; 89
Abdulle, Schwab (b0025) 2005
Lu, Viljanen (b0250) 2011
Cottrell, Hughes, Bazilevs (b0100) 2009
Weinan, Engquist, Huang (b0125) 2003; 67
Laubie, Monfared, Radjaï, Pellenq, Ulm (b0240) 2017; 106
Kouznetsova, Geers, Brekelmans (b0225) 2004; 193
Talebi, Silani, Bordas, Kerfriden, Rabczuk (b0415) 2013; 11
Feng, Gray (b0140) 2019; 14
Sutula, Kerfriden, van Dam, Bordas (b0405) 2018; 191
Francfort, Marigo (b0155) 1998; 46
Molnár, Gravouil (b0325) 2017; 130
Kubik (b0235) 1988; Elsevier
C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations 83 (2010) 1273–1311.
Moës, Dolbow, Belytschko (b0310) 1999; 46
Mikaeili, Schrefler (b0290) 2018; 13
Budarapu, Gracie, Yang, Zhuang, Rabczuk (b0075) 2014; 69
B.A. Schrefler, L. Simoni, A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, in: Numerical Methods in Geomechanics, sixth ed., vol. 1, CRC Press, United States, 2017, pp. 205–212.
Yang, Lian, Liang, Nguyen, Bordas (b0440) 2019; 115
Griffith, G.I.T. (b0160) 1921; 221
Engquist, Li, Ren, Vanden-Eijnden E. (b0130) 2007; 2
Hughes (b0195) 1995; 127
Paluszny, Salimzadeh, Zimmerman (b0355) 2018
Bhattacharya, Viceconti (b0045) 2017; 9
Bouchard, Bay, Chastel (b0060) 2003; 192
Peerlings, de Borst, Brekelmans, Geers (b0360) 1998; 3
Wilson, Landis (b0425) 2016; 96
Mohammadnejad, Khoei (b0315) 2013; 73
Miehe, Hofacker, Welschinger (b0275) 2010; 199
Munjiza, Owen, Bicanic (b0335) 1995; 12
Miehe, Mauthe (b0280) 2016; 304
Nguyen, Lian, Rabczuk, Bordas (b0345) 2017; 225
Belytschko, Black (b0030) 1999; 45
Zhou, Zhuang, Zhu, Rabczuk (b0470) 2018; 96
Borst, Réthoré, Abellan (b0055) 2006; 75
Jikov, Kozlov, Oleinik (b0210) 1994
Chen, Lian, Liang, Yang, Nguyen, Bordas (b0090) 2019; 113
Eidel, Fischer (b0135) 2018; 329
Kováčik (b0230) 1999; 18
Sutula, Kerfriden, van Dam, Bordas (b0410) 2018; 191
Mase, Smelser, Mase (b0265) 2010
Sutula, Kerfriden, van Dam, Bordas (b0400) 2018; 191
Mikelic, Wheeler, Wick (b0295) 2015; 13
Martínez-Pañeda, Golahmar, Niordson (b0260) 2018; 342
Ming, Yue (b0305) 2006; 214
T. Belytschko, S.P. Xiao, Coupling Methods for Continuum Model with Molecular Model 1 (1) (2003) 12.
Hirshikesh, Jansari, Kannan, Annabattula, Natarajan (b0175) 2019; 220
Heider, Markert (b0170) 2017; 80
Pramod, Annabattula, Ooi, Song, Natarajan (b0185) 2019; 355
Spencer (b0390) 2012
Crawford (b0105) 1994; 45
Yoshioka, Bourdin (b0445) 2016; 88
Hou, Wu, Cai (b0190) 1999; 68
Borden, Verhoosel, Scott, Hughes, Landis (b0050) 2012; 217–220
Xiao, Belytschko (b0435) 2004; 193
Wu, Nguyen, Thanh Nguyen, Sutula, Bordas, Sinaie (b0430) 2019
Milanese, Cao, Simoni, Schrefler (b0300) 2018
Zhang, Sloan, Vignes, Sheng (b0460) 2017; 322
Dutta, Tarafdar (b0120) 2003; 108
Bensoussan, Lions, Papanicolaou (b0040) 1978
Cioranescu, Donato (b0095) 1999
Jelitto, Schneider (b0200) 2018; 151
Zheng, Liu, Du (b0465) 2015; 295
Abdulle, Nonnenmacher (b0020) 2009; 198
Mohammadnejad, Khoei (b0320) 2013; 37
Pesavento, Schrefler, Sciumè (b0365) 2017; 24
Munjiza, Andrews, White (b0330) 1999; 44
Hirshikesh, Natarajan, Annabattula (b0180) 2019; 13
Su, Sanchez, Yang (b0395) 2012
Neuss, Jäger, Wittum (b0340) 2001; 66
Cao, Hussain, Schrefler (b0080) 2018; 111
Markicevic, Djilali (b0255) 2006; 18
Chakraborty, Zhang, Tonks (b0085) 2016; 113
Francfort, Marigo (b0150) 1998; 46
Ozaki, Aoki, Osada, Takeo, Nakao (b0350) 2018; 101
Zdravkov, Cermák, Sefara, Janku (b0450) 2007; 5
Bourdin, Francfort, Marigo (b0065) 2008; 91
Khalili (b0215) 2008; 44
Gupta, Duarte (b0165) 2014; 38
Sargado, Keilegavlen, Berre, Nordbotten (b0370) 2018; 111
Abdulle (b0015) 2009; 31
Simoni, Schrefler (b0385) 2014; Elsevier
Torres-Sanchez, McLaughlin, Bonallo (b0420) 2018; 27
Jiang, Lian, Nguyen, Liang (b0205) 2019; 68
Brezzi, Fortin (b0070) 1991
de Borst, Verhoosel (b0115) 2016; 312
Abdulle (b0005) 2006; 16
Fischer, Eidel (b0145) 2019
Leguillon, Piat (b0245) 2008; 75
Sheng, Li, Sutula, Tian, Bordas (b0380) 2018; 162
de Borst (b0110) 2018
V. Kouznetsova, M. Geers, W. Brekelmans, Multi-scale first-order and second-order computational homogenization of microstructures towards continua 1, 371–386.
Matache, Babuka, Schwab (b0270) 2000; 86
Abdulle (10.1016/j.commatsci.2020.109519_b0015) 2009; 31
Sutula (10.1016/j.commatsci.2020.109519_b0410) 2018; 191
Neuss (10.1016/j.commatsci.2020.109519_b0340) 2001; 66
Xiao (10.1016/j.commatsci.2020.109519_b0435) 2004; 193
Bouchard (10.1016/j.commatsci.2020.109519_b0060) 2003; 192
Cottrell (10.1016/j.commatsci.2020.109519_b0100) 2009
Paluszny (10.1016/j.commatsci.2020.109519_b0355) 2018
Zheng (10.1016/j.commatsci.2020.109519_b0465) 2015; 295
Matache (10.1016/j.commatsci.2020.109519_b0270) 2000; 86
Engquist (10.1016/j.commatsci.2020.109519_b0130) 2007; 2
Kouznetsova (10.1016/j.commatsci.2020.109519_b0225) 2004; 193
Mohammadnejad (10.1016/j.commatsci.2020.109519_b0315) 2013; 73
Molnár (10.1016/j.commatsci.2020.109519_b0325) 2017; 130
Wilson (10.1016/j.commatsci.2020.109519_b0425) 2016; 96
Heider (10.1016/j.commatsci.2020.109519_b0170) 2017; 80
Pramod (10.1016/j.commatsci.2020.109519_b0185) 2019; 355
Bensoussan (10.1016/j.commatsci.2020.109519_b0040) 1978
Bhattacharya (10.1016/j.commatsci.2020.109519_b0045) 2017; 9
Cao (10.1016/j.commatsci.2020.109519_b0080) 2018; 111
Nguyen (10.1016/j.commatsci.2020.109519_b0345) 2017; 225
Yang (10.1016/j.commatsci.2020.109519_b0440) 2019; 115
Kováčik (10.1016/j.commatsci.2020.109519_b0230) 1999; 18
Bourdin (10.1016/j.commatsci.2020.109519_b0065) 2008; 91
Francfort (10.1016/j.commatsci.2020.109519_b0150) 1998; 46
10.1016/j.commatsci.2020.109519_b0035
Budarapu (10.1016/j.commatsci.2020.109519_b0075) 2014; 69
Hughes (10.1016/j.commatsci.2020.109519_b0195) 1995; 127
Ming (10.1016/j.commatsci.2020.109519_b0305) 2006; 214
Mohammadnejad (10.1016/j.commatsci.2020.109519_b0320) 2013; 37
Simoni (10.1016/j.commatsci.2020.109519_b0385) 2014; Elsevier
Brezzi (10.1016/j.commatsci.2020.109519_b0070) 1991
Fischer (10.1016/j.commatsci.2020.109519_b0145) 2019
Zhou (10.1016/j.commatsci.2020.109519_b0470) 2018; 96
Sargado (10.1016/j.commatsci.2020.109519_b0370) 2018; 111
Sutula (10.1016/j.commatsci.2020.109519_b0405) 2018; 191
Laubie (10.1016/j.commatsci.2020.109519_b0240) 2017; 106
Miehe (10.1016/j.commatsci.2020.109519_b0275) 2010; 199
Moës (10.1016/j.commatsci.2020.109519_b0310) 1999; 46
Pesavento (10.1016/j.commatsci.2020.109519_b0365) 2017; 24
Ozaki (10.1016/j.commatsci.2020.109519_b0350) 2018; 101
Hou (10.1016/j.commatsci.2020.109519_b0190) 1999; 68
Abdulle (10.1016/j.commatsci.2020.109519_b0020) 2009; 198
Peerlings (10.1016/j.commatsci.2020.109519_b0360) 1998; 3
Sheng (10.1016/j.commatsci.2020.109519_b0380) 2018; 162
Zhang (10.1016/j.commatsci.2020.109519_b0455) 2006; 89
10.1016/j.commatsci.2020.109519_b0285
de Borst (10.1016/j.commatsci.2020.109519_b0110) 2018
Jiang (10.1016/j.commatsci.2020.109519_b0205) 2019; 68
Jikov (10.1016/j.commatsci.2020.109519_b0210) 1994
Khalili (10.1016/j.commatsci.2020.109519_b0215) 2008; 44
Miehe (10.1016/j.commatsci.2020.109519_b0280) 2016; 304
Abdulle (10.1016/j.commatsci.2020.109519_b0005) 2006; 16
Francfort (10.1016/j.commatsci.2020.109519_b0155) 1998; 46
Borden (10.1016/j.commatsci.2020.109519_b0050) 2012; 217–220
Su (10.1016/j.commatsci.2020.109519_b0395) 2012
Munjiza (10.1016/j.commatsci.2020.109519_b0330) 1999; 44
Talebi (10.1016/j.commatsci.2020.109519_b0415) 2013; 11
Abdulle (10.1016/j.commatsci.2020.109519_b0025) 2005
Cioranescu (10.1016/j.commatsci.2020.109519_b0095) 1999
Zhang (10.1016/j.commatsci.2020.109519_b0460) 2017; 322
Belytschko (10.1016/j.commatsci.2020.109519_b0030) 1999; 45
Hirshikesh (10.1016/j.commatsci.2020.109519_b0180) 2019; 13
Chakraborty (10.1016/j.commatsci.2020.109519_b0085) 2016; 113
Hirshikesh (10.1016/j.commatsci.2020.109519_b0175) 2019; 220
Martínez-Pañeda (10.1016/j.commatsci.2020.109519_b0260) 2018; 342
Gupta (10.1016/j.commatsci.2020.109519_b0165) 2014; 38
Borst (10.1016/j.commatsci.2020.109519_b0055) 2006; 75
Leguillon (10.1016/j.commatsci.2020.109519_b0245) 2008; 75
Zdravkov (10.1016/j.commatsci.2020.109519_b0450) 2007; 5
de Borst (10.1016/j.commatsci.2020.109519_b0115) 2016; 312
10.1016/j.commatsci.2020.109519_b0375
Spencer (10.1016/j.commatsci.2020.109519_b0390) 2012
Markicevic (10.1016/j.commatsci.2020.109519_b0255) 2006; 18
Yoshioka (10.1016/j.commatsci.2020.109519_b0445) 2016; 88
Lu (10.1016/j.commatsci.2020.109519_b0250) 2011
Torres-Sanchez (10.1016/j.commatsci.2020.109519_b0420) 2018; 27
Munjiza (10.1016/j.commatsci.2020.109519_b0335) 1995; 12
Feng (10.1016/j.commatsci.2020.109519_b0140) 2019; 14
Mikaeili (10.1016/j.commatsci.2020.109519_b0290) 2018; 13
Dutta (10.1016/j.commatsci.2020.109519_b0120) 2003; 108
Weinan (10.1016/j.commatsci.2020.109519_b0125) 2003; 67
Eidel (10.1016/j.commatsci.2020.109519_b0135) 2018; 329
Mikelic (10.1016/j.commatsci.2020.109519_b0295) 2015; 13
Wu (10.1016/j.commatsci.2020.109519_b0430) 2019
Milanese (10.1016/j.commatsci.2020.109519_b0300) 2018
Kubik (10.1016/j.commatsci.2020.109519_b0235) 1988; Elsevier
Chen (10.1016/j.commatsci.2020.109519_b0090) 2019; 113
Crawford (10.1016/j.commatsci.2020.109519_b0105) 1994; 45
Jelitto (10.1016/j.commatsci.2020.109519_b0200) 2018; 151
Griffith (10.1016/j.commatsci.2020.109519_b0160) 1921; 221
10.1016/j.commatsci.2020.109519_b0220
Mase (10.1016/j.commatsci.2020.109519_b0265) 2010
Sutula (10.1016/j.commatsci.2020.109519_b0400) 2018; 191
References_xml – volume: 217–220
  start-page: 77
  year: 2012
  end-page: 95
  ident: b0050
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 220
  year: 2019
  ident: b0175
  article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition
  publication-title: Eng. Fract. Mech.
– volume: 225
  start-page: 68
  year: 2017
  end-page: 82
  ident: b0345
  article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements
  publication-title: Eng. Geol.
– volume: 111
  start-page: 458
  year: 2018
  end-page: 489
  ident: b0370
  article-title: High-accuracy phase-field models for brittle fracture based on a new family of degradation functions
  publication-title: J. Mech. Phys. Solids
– volume: 44
  year: 2008
  ident: b0215
  article-title: Two-phase fluid flow through fractured porous media with deformable matrix
  publication-title: Water Resour. Res.
– reference: V. Kouznetsova, M. Geers, W. Brekelmans, Multi-scale first-order and second-order computational homogenization of microstructures towards continua 1, 371–386.
– year: 1999
  ident: b0095
  article-title: An Introduction to Homogenization
  publication-title: Oxford
– year: 2009
  ident: b0100
  article-title: Isogeometric Analysis: Toward Integration of CAD and FEA
– year: 1991
  ident: b0070
  article-title: Mixed and Hybrid Finite Element Methods
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: b0310
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 2
  start-page: 367
  year: 2007
  end-page: 450
  ident: b0130
  article-title: Heterogeneous multiscale methods: a review
  publication-title: Commun. Comput. Phys.
– volume: 295
  start-page: 150
  year: 2015
  end-page: 171
  ident: b0465
  article-title: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 18
  start-page: 1007
  year: 1999
  end-page: 1010
  ident: b0230
  article-title: Correlation between Young’s modulus and porosity in porous materials
  publication-title: J. Mater. Sci. Lett.
– start-page: 53
  year: 2019
  ident: b0430
  article-title: Phase field modelling of fracture
  publication-title: Adv. Appl. Mech.
– volume: 86
  start-page: 319
  year: 2000
  end-page: 375
  ident: b0270
  article-title: Generalized p-fem in homogenization
  publication-title: Numer. Math.
– volume: 342
  start-page: 742
  year: 2018
  end-page: 761
  ident: b0260
  article-title: A phase field formulation for hydrogen assisted cracking
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: b0150
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
– volume: 191
  start-page: 205
  year: 2018
  end-page: 224
  ident: b0400
  article-title: Minimum energy multiple crack propagation. Part I: theory and state of the art review
  publication-title: Eng. Fract. Mech.
– volume: 75
  start-page: 595
  year: 2006
  end-page: 606
  ident: b0055
  article-title: A numerical approach for arbitrary cracks in a fluid-saturated medium
  publication-title: Arch. Appl. Mech.
– volume: 13
  start-page: 380
  year: 2019
  end-page: 396
  ident: b0180
  article-title: A FEniCS implementation of the phase field method for quasi-static brittle fracture
  publication-title: Front. Struct. Civil Eng.
– start-page: 265
  year: 2018
  end-page: 288
  ident: b0300
  article-title: Fracturing in dry and saturated porous media
  publication-title: Advances in Computational Plasticity: A Book in Honour of d. Roger j
– volume: 96
  start-page: 174
  year: 2018
  end-page: 192
  ident: b0470
  article-title: Phase field modelling of crack propagation, branching and coalescence in rocks
  publication-title: Theoret. Appl. Fract. Mech.
– volume: 31
  start-page: 135
  year: 2009
  end-page: 184
  ident: b0015
  article-title: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs
  publication-title: GAKUTO Int. Ser. Math. Sci. Appl.
– volume: 322
  start-page: 123
  year: 2017
  end-page: 136
  ident: b0460
  article-title: A modifcation of the phase-feld model for mixed mode crack propagation in rock-like materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 271
  year: 2011
  end-page: 305
  ident: b0250
  article-title: 10 – fibrous insulation materials in building engineering applications
  publication-title: Fibrous and Composite Materials for Civil Engineering Applications
– volume: Elsevier
  start-page: 367
  year: 2014
  end-page: 519
  ident: b0385
  article-title: Chapter four – multi field simulation of fracture
  publication-title: Vol. 47 of Advances in Applied Mechanics.
– volume: 38
  start-page: 1397
  year: 2014
  end-page: 1430
  ident: b0165
  article-title: Simulation of non-planar three-dimensional hydraulic fracture propagation
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 89
  year: 2006
  ident: b0455
  article-title: Effective thermal conductivity of two-scale porous media
  publication-title: Appl. Phys. Lett.
– volume: 88
  start-page: 137
  year: 2016
  end-page: 150
  ident: b0445
  article-title: A variational hydraulic fracturing model coupled to a reservoir simulator
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 106
  start-page: 207
  year: 2017
  end-page: 228
  ident: b0240
  article-title: Disorder-induced stiffness degradation of highly disordered porous materials
  publication-title: J. Mech. Phys. Solids
– volume: 37
  start-page: 1247
  year: 2013
  end-page: 1279
  ident: b0320
  article-title: Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 27
  start-page: 2899
  year: 2018
  end-page: 2909
  ident: b0420
  article-title: Effect of pore size, morphology and orientation on the bulk stiffness of a porous Ti35Nb4Sn alloy
  publication-title: J. Mater. Eng. Perform.
– volume: 192
  start-page: 3887
  year: 2003
  end-page: 3908
  ident: b0060
  article-title: Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2012
  ident: b0390
  article-title: Continuum Mechanics
– volume: 75
  start-page: 1840
  year: 2008
  end-page: 1853
  ident: b0245
  article-title: Fracture of porous materials – influence of the pore size
  publication-title: Eng. Fract. Mech.
– volume: 73
  start-page: 77
  year: 2013
  end-page: 95
  ident: b0315
  article-title: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model
  publication-title: Finite Elem. Anal. Des.
– volume: 111
  start-page: 113
  year: 2018
  end-page: 133
  ident: b0080
  article-title: Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
  publication-title: J. Mech. Phys. Solids
– volume: 24
  start-page: 423
  year: 2017
  end-page: 448
  ident: b0365
  article-title: Multiphase flow in deforming porous media: a review
  publication-title: Arch. Comput. Methods Eng.
– volume: 191
  start-page: 257
  year: 2018
  end-page: 276
  ident: b0410
  article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications
  publication-title: Eng. Fract. Mech.
– volume: 193
  start-page: 1645
  year: 2004
  end-page: 1669
  ident: b0435
  article-title: A bridging domain method for coupling continua with molecular dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 151
  start-page: 443
  year: 2018
  end-page: 453
  ident: b0200
  article-title: A geometric model for the fracture toughness of porous materials
  publication-title: Acta Mater.
– volume: 68
  year: 2019
  ident: b0205
  article-title: Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model
  publication-title: J. Natural Gas Sci. Eng.
– year: 1978
  ident: b0040
  article-title: Asymptotic Analysis for Periodic Structure
– volume: 91
  start-page: 5
  year: 2008
  end-page: 148
  ident: b0065
  article-title: The variational approach to fracture
  publication-title: J. Elast.
– volume: 101
  start-page: 3191
  year: 2018
  end-page: 3204
  ident: b0350
  article-title: Finite element analysis of fracture statistics of ceramics: effects of grain size and pore size distributions
  publication-title: J. Am. Ceram. Soc.
– volume: 11
  start-page: 527
  year: 2013
  end-page: 541
  ident: b0415
  article-title: Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture
  publication-title: Int. J. Multiscale Comput. Eng.
– volume: 67
  year: 2003
  ident: b0125
  article-title: Heterogeneous multiscale method: a general methodology for multiscale modeling
  publication-title: Phys. Rev. B
– volume: 304
  start-page: 619
  year: 2016
  end-page: 655
  ident: b0280
  article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 45
  start-page: 493
  year: 1994
  end-page: 502
  ident: b0105
  article-title: The relationship between structure and the hydraulic conductivity of soil
  publication-title: Eur. J. Soil Sci.
– volume: 68
  start-page: 913
  year: 1999
  end-page: 943
  ident: b0190
  article-title: Convergence of multi-scale finite element method for elliptic problems with rapidly oscillating coefficients
  publication-title: Math. Comput.
– volume: 18
  start-page: 33
  year: 2006
  end-page: 101
  ident: b0255
  article-title: Two-scale modeling in porous media: relative permeability predictions
  publication-title: Phys. Fluids
– volume: 113
  start-page: 38
  year: 2016
  end-page: 52
  ident: b0085
  article-title: Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method
  publication-title: Comput. Mater. Sci.
– start-page: 1
  year: 2018
  end-page: 19
  ident: b0355
  article-title: Chapter 1 – finite-element modeling of the growth and interaction of hydraulic fractures in poroelastic rock formations
  publication-title: Hydraulic Fracture Modeling
– reference: C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations 83 (2010) 1273–1311.
– reference: T. Belytschko, S.P. Xiao, Coupling Methods for Continuum Model with Molecular Model 1 (1) (2003) 12.
– volume: Elsevier
  start-page: 345
  year: 1988
  end-page: 353
  ident: b0235
  article-title: Macrodescription OP micropore structure in regard to fluid flow through porous media
  publication-title: Characterization of Porous Solids. Vol. 39 of Studies in Surface Science and Catalysis
– volume: 130
  start-page: 27
  year: 2017
  end-page: 38
  ident: b0325
  article-title: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 9
  start-page: 1375
  year: 2017
  ident: b0045
  article-title: Multiscale modeling methods in biomechanics
  publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med.
– volume: 12
  start-page: 145
  year: 1995
  end-page: 174
  ident: b0335
  article-title: A combined finite-discrete element method in transient dynamics of fracturing solids
  publication-title: Eng. Comput.
– volume: 16
  start-page: 615
  year: 2006
  end-page: 635
  ident: b0005
  article-title: Analysis of a heterogeneous multiscale FEM for problems in elasticity
  publication-title: Math. Models Methods Appl. Sci.
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: b0275
  article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 108
  year: 2003
  ident: b0120
  article-title: Fractal pore structure of sedimentary rocks: simulation by ballistic deposition
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 69
  start-page: 126
  year: 2014
  end-page: 143
  ident: b0075
  article-title: Efficient coarse graining in multiscale modeling of fracture
  publication-title: Theoret. Appl. Fract. Mech.
– reference: B.A. Schrefler, L. Simoni, A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, in: Numerical Methods in Geomechanics, sixth ed., vol. 1, CRC Press, United States, 2017, pp. 205–212.
– volume: 191
  start-page: 225
  year: 2018
  end-page: 256
  ident: b0405
  article-title: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM
  publication-title: Eng. Fract. Mech.
– volume: 45
  start-page: 601
  year: 1999
  end-page: 620
  ident: b0030
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int. J. Numer. Meth. Eng.
– year: 1994
  ident: b0210
  article-title: Homogenization of Differential Operatorsand Integral Functionals
– volume: 214
  start-page: 421
  year: 2006
  end-page: 445
  ident: b0305
  article-title: Numerical methods for multiscale elliptic problems
  publication-title: J. Comput. Phys.
– year: 2012
  ident: b0395
  article-title: Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science
– volume: 14
  start-page: 377
  year: 2019
  end-page: 402
  ident: b0140
  article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity
  publication-title: Acta Geotech.
– volume: 80
  start-page: 38
  year: 2017
  end-page: 46
  ident: b0170
  article-title: A phase-field modeling approach of hydraulic fracture in saturated porous media
  publication-title: Mech. Res. Commun.
– volume: 66
  start-page: 1
  year: 2001
  end-page: 26
  ident: b0340
  article-title: Homogenization and multigrid
  publication-title: Computing
– volume: 46
  year: 1998
  ident: b0155
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
– volume: 312
  start-page: 78
  year: 2016
  end-page: 94
  ident: b0115
  article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 13
  start-page: 367
  year: 2015
  end-page: 398
  ident: b0295
  article-title: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium
  publication-title: SIAM Multiscale Model. Simul.
– volume: 13
  start-page: 1249
  year: 2018
  end-page: 1264
  ident: b0290
  article-title: XFEM, strong discontinuities and second-order work in shear band modeling of saturated porous media
  publication-title: Acta Geotech.
– volume: 329
  start-page: 332
  year: 2018
  end-page: 368
  ident: b0135
  article-title: The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 113
  start-page: 59
  year: 2019
  end-page: 71
  ident: b0090
  article-title: The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2010
  ident: b0265
  article-title: Continuum Mechanics for Engineers
– start-page: 77
  year: 2019
  ident: b0145
  article-title: Convergence and error analysis of FE-HMM/FE
  publication-title: Eur. J. Mech.- A
– volume: 193
  start-page: 5525
  year: 2004
  end-page: 5550
  ident: b0225
  article-title: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 198
  start-page: 2839
  year: 2009
  end-page: 2859
  ident: b0020
  article-title: A short and versatile finite element multiscale code for homogenization problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 1
  year: 2018
  end-page: 12
  ident: b0110
  article-title: Chapter 1 – introduction
  publication-title: Computational Methods for Fracture in Porous Media
– volume: 355
  start-page: 284
  year: 2019
  end-page: 307
  ident: b0185
  article-title: Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 3
  start-page: 323
  year: 1998
  end-page: 342
  ident: b0360
  article-title: Gradient-enhanced damage modelling of concrete fracture
  publication-title: Mech. Cohesive-Frictional Mater.
– volume: 115
  start-page: 145
  year: 2019
  end-page: 156
  ident: b0440
  article-title: Model I cohesive zone models of different rank coals
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 5
  start-page: 385
  year: 2007
  end-page: 395
  ident: b0450
  article-title: Pore classification in the characterization of porous materials: a perspective
  publication-title: Cent. Eur. J. Chem.
– volume: 96
  start-page: 264
  year: 2016
  end-page: 290
  ident: b0425
  article-title: Phase-field modeling of hydraulic fracture
  publication-title: J. Mech. Phys. Solids
– start-page: 3
  year: 2005
  ident: b0025
  article-title: Heterogeneous multiscale fem for diffusion problems on rough surfaces. SIAM Journal on
  publication-title: Multiscale Model. Simul.
– volume: 44
  start-page: 41
  year: 1999
  end-page: 57
  ident: b0330
  article-title: Combined single and smeared crack model in combined finite-discrete element analysis
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 162
  start-page: 801
  year: 2018
  end-page: 812
  ident: b0380
  article-title: XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations
  publication-title: J. Petrol. Sci. Eng.
– volume: 127
  start-page: 387
  year: 1995
  end-page: 401
  ident: b0195
  article-title: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 221
  start-page: 163
  year: 1921
  end-page: 198
  ident: b0160
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. London Ser. A
– volume: 96
  start-page: 174
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0470
  article-title: Phase field modelling of crack propagation, branching and coalescence in rocks
  publication-title: Theoret. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2018.04.011
– volume: 214
  start-page: 421
  issue: 1
  year: 2006
  ident: 10.1016/j.commatsci.2020.109519_b0305
  article-title: Numerical methods for multiscale elliptic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.09.024
– volume: 322
  start-page: 123
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0460
  article-title: A modifcation of the phase-feld model for mixed mode crack propagation in rock-like materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.04.028
– volume: 44
  issue: 5
  year: 2008
  ident: 10.1016/j.commatsci.2020.109519_b0215
  article-title: Two-phase fluid flow through fractured porous media with deformable matrix
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006555
– volume: 68
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0205
  article-title: Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model
  publication-title: J. Natural Gas Sci. Eng.
  doi: 10.1016/j.jngse.2019.05.007
– volume: 88
  start-page: 137
  year: 2016
  ident: 10.1016/j.commatsci.2020.109519_b0445
  article-title: A variational hydraulic fracturing model coupled to a reservoir simulator
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2016.07.020
– start-page: 265
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0300
  article-title: Fracturing in dry and saturated porous media
– year: 1999
  ident: 10.1016/j.commatsci.2020.109519_b0095
  article-title: An Introduction to Homogenization
  publication-title: Oxford
– volume: 220
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0175
  article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106599
– volume: 9
  start-page: 1375
  issue: 3
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0045
  article-title: Multiscale modeling methods in biomechanics
  publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med.
– volume: 312
  start-page: 78
  year: 2016
  ident: 10.1016/j.commatsci.2020.109519_b0115
  article-title: Gradient damage vs phase-field approaches for fracture: similarities and differences
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.05.015
– year: 1991
  ident: 10.1016/j.commatsci.2020.109519_b0070
– volume: 75
  start-page: 1840
  issue: 7
  year: 2008
  ident: 10.1016/j.commatsci.2020.109519_b0245
  article-title: Fracture of porous materials – influence of the pore size
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2006.12.002
– volume: 2
  start-page: 367
  issue: 3
  year: 2007
  ident: 10.1016/j.commatsci.2020.109519_b0130
  article-title: Heterogeneous multiscale methods: a review
  publication-title: Commun. Comput. Phys.
– volume: 162
  start-page: 801
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0380
  article-title: XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2017.11.007
– volume: 193
  start-page: 1645
  issue: 17–20
  year: 2004
  ident: 10.1016/j.commatsci.2020.109519_b0435
  article-title: A bridging domain method for coupling continua with molecular dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.12.053
– volume: 16
  start-page: 615
  year: 2006
  ident: 10.1016/j.commatsci.2020.109519_b0005
  article-title: Analysis of a heterogeneous multiscale FEM for problems in elasticity
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202506001285
– volume: 86
  start-page: 319
  year: 2000
  ident: 10.1016/j.commatsci.2020.109519_b0270
  article-title: Generalized p-fem in homogenization
  publication-title: Numer. Math.
  doi: 10.1007/PL00005409
– volume: 217–220
  start-page: 77
  year: 2012
  ident: 10.1016/j.commatsci.2020.109519_b0050
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.01.008
– start-page: 77
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0145
  article-title: Convergence and error analysis of FE-HMM/FE2 for energetically consistent micro-coupling conditions in linear elastic solids
  publication-title: Eur. J. Mech.- A
– volume: 342
  start-page: 742
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0260
  article-title: A phase field formulation for hydrogen assisted cracking
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.07.021
– volume: 106
  start-page: 207
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0240
  article-title: Disorder-induced stiffness degradation of highly disordered porous materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.05.008
– volume: 27
  start-page: 2899
  issue: 6
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0420
  article-title: Effect of pore size, morphology and orientation on the bulk stiffness of a porous Ti35Nb4Sn alloy
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-018-3380-0
– start-page: 1
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0355
  article-title: Chapter 1 – finite-element modeling of the growth and interaction of hydraulic fractures in poroelastic rock formations
– volume: 111
  start-page: 458
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0370
  article-title: High-accuracy phase-field models for brittle fracture based on a new family of degradation functions
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.10.015
– ident: 10.1016/j.commatsci.2020.109519_b0375
– volume: 24
  start-page: 423
  issue: 2
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0365
  article-title: Multiphase flow in deforming porous media: a review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-016-9171-6
– year: 1994
  ident: 10.1016/j.commatsci.2020.109519_b0210
– volume: 13
  start-page: 367
  year: 2015
  ident: 10.1016/j.commatsci.2020.109519_b0295
  article-title: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium
  publication-title: SIAM Multiscale Model. Simul.
  doi: 10.1137/140967118
– volume: 130
  start-page: 27
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0325
  article-title: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.03.002
– volume: 12
  start-page: 145
  issue: 2
  year: 1995
  ident: 10.1016/j.commatsci.2020.109519_b0335
  article-title: A combined finite-discrete element method in transient dynamics of fracturing solids
  publication-title: Eng. Comput.
  doi: 10.1108/02644409510799532
– volume: 115
  start-page: 145
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0440
  article-title: Model I cohesive zone models of different rank coals
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2019.01.001
– volume: 198
  start-page: 2839
  issue: 37
  year: 2009
  ident: 10.1016/j.commatsci.2020.109519_b0020
  article-title: A short and versatile finite element multiscale code for homogenization problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2009.03.019
– volume: 38
  start-page: 1397
  issue: 13
  year: 2014
  ident: 10.1016/j.commatsci.2020.109519_b0165
  article-title: Simulation of non-planar three-dimensional hydraulic fracture propagation
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2305
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  ident: 10.1016/j.commatsci.2020.109519_b0310
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 73
  start-page: 77
  year: 2013
  ident: 10.1016/j.commatsci.2020.109519_b0315
  article-title: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2013.05.005
– year: 1978
  ident: 10.1016/j.commatsci.2020.109519_b0040
– volume: 68
  start-page: 913
  year: 1999
  ident: 10.1016/j.commatsci.2020.109519_b0190
  article-title: Convergence of multi-scale finite element method for elliptic problems with rapidly oscillating coefficients
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-99-01077-7
– year: 2010
  ident: 10.1016/j.commatsci.2020.109519_b0265
– volume: 304
  start-page: 619
  year: 2016
  ident: 10.1016/j.commatsci.2020.109519_b0280
  article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.09.021
– volume: 18
  start-page: 33
  issue: 3
  year: 2006
  ident: 10.1016/j.commatsci.2020.109519_b0255
  article-title: Two-scale modeling in porous media: relative permeability predictions
  publication-title: Phys. Fluids
  doi: 10.1063/1.2174877
– volume: 75
  start-page: 595
  year: 2006
  ident: 10.1016/j.commatsci.2020.109519_b0055
  article-title: A numerical approach for arbitrary cracks in a fluid-saturated medium
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-006-0023-y
– volume: 191
  start-page: 225
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0405
  article-title: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.07.029
– volume: 44
  start-page: 41
  issue: 1
  year: 1999
  ident: 10.1016/j.commatsci.2020.109519_b0330
  article-title: Combined single and smeared crack model in combined finite-discrete element analysis
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
– volume: 225
  start-page: 68
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0345
  article-title: Modelling hydraulic fractures in porous media using flow cohesive interface elements
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.04.010
– volume: 108
  issue: B2
  year: 2003
  ident: 10.1016/j.commatsci.2020.109519_b0120
  article-title: Fractal pore structure of sedimentary rocks: simulation by ballistic deposition
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 101
  start-page: 3191
  issue: 7
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0350
  article-title: Finite element analysis of fracture statistics of ceramics: effects of grain size and pore size distributions
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15468
– volume: 111
  start-page: 113
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0080
  article-title: Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.10.014
– volume: 191
  start-page: 257
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0410
  article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.08.004
– volume: 96
  start-page: 264
  year: 2016
  ident: 10.1016/j.commatsci.2020.109519_b0425
  article-title: Phase-field modeling of hydraulic fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2016.07.019
– volume: 14
  start-page: 377
  issue: 2
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0140
  article-title: XFEM-based cohesive zone approach for modeling near-wellbore hydraulic fracture complexity
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-018-0645-6
– volume: 113
  start-page: 38
  year: 2016
  ident: 10.1016/j.commatsci.2020.109519_b0085
  article-title: Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.11.010
– volume: 89
  year: 2006
  ident: 10.1016/j.commatsci.2020.109519_b0455
  article-title: Effective thermal conductivity of two-scale porous media
  publication-title: Appl. Phys. Lett.
– volume: 193
  start-page: 5525
  year: 2004
  ident: 10.1016/j.commatsci.2020.109519_b0225
  article-title: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.12.073
– start-page: 1
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0110
  article-title: Chapter 1 – introduction
– volume: Elsevier
  start-page: 367
  year: 2014
  ident: 10.1016/j.commatsci.2020.109519_b0385
  article-title: Chapter four – multi field simulation of fracture
  publication-title: Vol. 47 of Advances in Applied Mechanics.
– volume: 91
  start-page: 5
  issue: 1
  year: 2008
  ident: 10.1016/j.commatsci.2020.109519_b0065
  article-title: The variational approach to fracture
  publication-title: J. Elast.
  doi: 10.1007/s10659-007-9107-3
– volume: 69
  start-page: 126
  year: 2014
  ident: 10.1016/j.commatsci.2020.109519_b0075
  article-title: Efficient coarse graining in multiscale modeling of fracture
  publication-title: Theoret. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2013.12.004
– volume: 11
  start-page: 527
  issue: 6
  year: 2013
  ident: 10.1016/j.commatsci.2020.109519_b0415
  article-title: Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture
  publication-title: Int. J. Multiscale Comput. Eng.
  doi: 10.1615/IntJMultCompEng.2013005838
– volume: 46
  start-page: 1319
  year: 1998
  ident: 10.1016/j.commatsci.2020.109519_b0150
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00034-9
– volume: Elsevier
  start-page: 345
  year: 1988
  ident: 10.1016/j.commatsci.2020.109519_b0235
  article-title: Macrodescription OP micropore structure in regard to fluid flow through porous media
– year: 2009
  ident: 10.1016/j.commatsci.2020.109519_b0100
– volume: 199
  start-page: 2765
  issue: 45
  year: 2010
  ident: 10.1016/j.commatsci.2020.109519_b0275
  article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.04.011
– volume: 113
  start-page: 59
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0090
  article-title: The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2018.11.017
– volume: 45
  start-page: 601
  issue: 5
  year: 1999
  ident: 10.1016/j.commatsci.2020.109519_b0030
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume: 295
  start-page: 150
  year: 2015
  ident: 10.1016/j.commatsci.2020.109519_b0465
  article-title: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.07.001
– volume: 66
  start-page: 1
  year: 2001
  ident: 10.1016/j.commatsci.2020.109519_b0340
  article-title: Homogenization and multigrid
  publication-title: Computing
  doi: 10.1007/s006070170036
– volume: 3
  start-page: 323
  issue: 4
  year: 1998
  ident: 10.1016/j.commatsci.2020.109519_b0360
  article-title: Gradient-enhanced damage modelling of concrete fracture
  publication-title: Mech. Cohesive-Frictional Mater.
  doi: 10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
– volume: 329
  start-page: 332
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0135
  article-title: The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.10.001
– ident: 10.1016/j.commatsci.2020.109519_b0220
  doi: 10.1615/IntJMultCompEng.v1.i4.40
– volume: 18
  start-page: 1007
  year: 1999
  ident: 10.1016/j.commatsci.2020.109519_b0230
  article-title: Correlation between Young’s modulus and porosity in porous materials
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1023/A:1006669914946
– start-page: 53
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0430
  article-title: Phase field modelling of fracture
  publication-title: Adv. Appl. Mech.
– volume: 80
  start-page: 38
  year: 2017
  ident: 10.1016/j.commatsci.2020.109519_b0170
  article-title: A phase-field modeling approach of hydraulic fracture in saturated porous media
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2016.07.002
– volume: 221
  start-page: 163
  year: 1921
  ident: 10.1016/j.commatsci.2020.109519_b0160
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. London Ser. A
  doi: 10.1098/rsta.1921.0006
– volume: 5
  start-page: 385
  issue: 2
  year: 2007
  ident: 10.1016/j.commatsci.2020.109519_b0450
  article-title: Pore classification in the characterization of porous materials: a perspective
  publication-title: Cent. Eur. J. Chem.
– volume: 151
  start-page: 443
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0200
  article-title: A geometric model for the fracture toughness of porous materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.03.018
– volume: 46
  year: 1998
  ident: 10.1016/j.commatsci.2020.109519_b0155
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00034-9
– year: 2012
  ident: 10.1016/j.commatsci.2020.109519_b0390
– start-page: 271
  year: 2011
  ident: 10.1016/j.commatsci.2020.109519_b0250
  article-title: 10 – fibrous insulation materials in building engineering applications
– volume: 31
  start-page: 135
  year: 2009
  ident: 10.1016/j.commatsci.2020.109519_b0015
  article-title: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs
  publication-title: GAKUTO Int. Ser. Math. Sci. Appl.
– volume: 13
  start-page: 380
  issue: 2
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0180
  article-title: A FEniCS implementation of the phase field method for quasi-static brittle fracture
  publication-title: Front. Struct. Civil Eng.
  doi: 10.1007/s11709-018-0471-9
– volume: 37
  start-page: 1247
  issue: 10
  year: 2013
  ident: 10.1016/j.commatsci.2020.109519_b0320
  article-title: Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2079
– volume: 355
  start-page: 284
  year: 2019
  ident: 10.1016/j.commatsci.2020.109519_b0185
  article-title: Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.06.002
– volume: 191
  start-page: 205
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0400
  article-title: Minimum energy multiple crack propagation. Part I: theory and state of the art review
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.07.028
– ident: 10.1016/j.commatsci.2020.109519_b0285
  doi: 10.1002/nme.2861
– volume: 127
  start-page: 387
  issue: 1
  year: 1995
  ident: 10.1016/j.commatsci.2020.109519_b0195
  article-title: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(95)00844-9
– volume: 45
  start-page: 493
  issue: 4
  year: 1994
  ident: 10.1016/j.commatsci.2020.109519_b0105
  article-title: The relationship between structure and the hydraulic conductivity of soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1994.tb00535.x
– start-page: 3
  year: 2005
  ident: 10.1016/j.commatsci.2020.109519_b0025
  article-title: Heterogeneous multiscale fem for diffusion problems on rough surfaces. SIAM Journal on
  publication-title: Multiscale Model. Simul.
– volume: 13
  start-page: 1249
  issue: 6
  year: 2018
  ident: 10.1016/j.commatsci.2020.109519_b0290
  article-title: XFEM, strong discontinuities and second-order work in shear band modeling of saturated porous media
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-018-0734-6
– volume: 192
  start-page: 3887
  issue: 35
  year: 2003
  ident: 10.1016/j.commatsci.2020.109519_b0060
  article-title: Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(03)00391-8
– year: 2012
  ident: 10.1016/j.commatsci.2020.109519_b0395
– volume: 67
  issue: 9
  year: 2003
  ident: 10.1016/j.commatsci.2020.109519_b0125
  article-title: Heterogeneous multiscale method: a general methodology for multiscale modeling
  publication-title: Phys. Rev. B
– ident: 10.1016/j.commatsci.2020.109519_b0035
  doi: 10.1615/IntJMultCompEng.v1.i1.100
SSID ssj0016982
Score 2.4443426
Snippet [Display omitted] •Two-scale homogenization was integrated with phase-field fracture in porous media.•Generalized formulation for quadrilateral element-based...
Most porous media, such as geomaterials and biomaterials are highly heterogeneous in nature, and they contain large variations of microscopic pore structures,...
SourceID osti
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109519
SubjectTerms Computational homogenization
ENGINEERING
Engineering Sciences
Finite element method
Fracture modeling
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
Mechanics
Phase-field
Porous media
Solid mechanics
Title A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media
URI https://dx.doi.org/10.1016/j.commatsci.2020.109519
https://hal.science/hal-03120820
https://www.osti.gov/servlets/purl/1597009
Volume 176
WOSCitedRecordID wos000519572500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6jgMcED9FGSALcYs8JY7TONwiNDRQNXEYqLfI9hx1W0mq0la78L_zXuykKdpUduCSVFb97OR98ftsv_dMyAcexaUUmjPLtWUiKyMmjVbMhlBDiFiZJkLuxyQ9O5PTafZtMPjdxsJs5mlVyZubbPFfVQ1loGwMnb2HujuhUAC_QelwBbXD9Z8UnwfV2m3DzNms_lnDH32sZYAm6yJYzODGGte1oMQgKdxDaE7E8R7QyDzVMrBArFdNCmx49yjGorss8HW8NREnfWbrjodolxaBB7tnDbyJ3a65ul0ObzCbLaDZ2ocjTur1ZcfxYfhtD1hWlW_LL09w9BVlLkCzXWfkKUNitTPkpv1BM0Kal906nrulhStUB3QcenyMbRxva-xm0P7LsnX-hq0r21XRCSpQUOEEHZBDniaZHJLD_MvJ9Gu3DTXOmtPGumfYcRC8tU930ZuDGfrZDmvQW4-_nD8hj_3Eg-YOME_JwFbPyKNeOsrn5Dqnd0GHNtChPejQFjq0hQ6tS-qgQz106A50qIMObaDzgnz_fHL-6ZT5wziYgWF9xUySGKnBrtpIwZwgNsLq2I7NOMxCnWYqSaxSSVlqG8PrEDqKrdSJlLGACX6amvglGVZ1ZV8RmnBhBKbhxfSPZSRUVIYmueBcGiWlliMybt9hYXymejwwZV7s0eOIhF3FhUvWsr_Kx1ZJhf8gHJcsAIL7K78HtXZNYab203xSYBnYSo7sehONyBFqHaVjWmaD_msgHqYRKcxvXt-_y0fk4fZDe0OGq-XaviUPzGZ1-Wv5zkP4D0Q0wVA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical-homogenization+based+phase-field+fracture+modeling+of+linear+elastic+heterogeneous+porous+media&rft.jtitle=Computational+materials+science&rft.au=He%2C+Bang&rft.au=Schuler%2C+Louis&rft.au=Newell%2C+Pania&rft.date=2020-04-15&rft.issn=0927-0256&rft.volume=176&rft.spage=109519&rft_id=info:doi/10.1016%2Fj.commatsci.2020.109519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2020_109519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon