A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model

The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling Jg. 35; H. 8; S. 3905 - 3917
Hauptverfasser: Kuo, R.J., Han, Y.S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Inc 01.08.2011
Elsevier
Schlagworte:
ISSN:0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to apply bi-level linear programming to supply chain distribution problem and develop an efficient method based on hybrid of genetic algorithm (GA) and particle swarm optimization (PSO). The performance of the proposed method is ascertained by comparing the results with GA and PSO using four problems in the literature and a supply chain distribution model.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0307-904X
DOI:10.1016/j.apm.2011.02.008