A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model
The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to ap...
Uloženo v:
| Vydáno v: | Applied mathematical modelling Ročník 35; číslo 8; s. 3905 - 3917 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Inc
01.08.2011
Elsevier |
| Témata: | |
| ISSN: | 0307-904X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to apply bi-level linear programming to supply chain distribution problem and develop an efficient method based on hybrid of genetic algorithm (GA) and particle swarm optimization (PSO). The performance of the proposed method is ascertained by comparing the results with GA and PSO using four problems in the literature and a supply chain distribution model. |
|---|---|
| AbstractList | The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to apply bi-level linear programming to supply chain distribution problem and develop an efficient method based on hybrid of genetic algorithm (GA) and particle swarm optimization (PSO). The performance of the proposed method is ascertained by comparing the results with GA and PSO using four problems in the literature and a supply chain distribution model. |
| Author | Han, Y.S. Kuo, R.J. |
| Author_xml | – sequence: 1 givenname: R.J. surname: Kuo fullname: Kuo, R.J. email: rjkuo@mail.ntust.edu.tw organization: Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 2 givenname: Y.S. surname: Han fullname: Han, Y.S. organization: Department of Manufacturing, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24155266$$DView record in Pascal Francis |
| BookMark | eNp9kb1uFDEUhV0EiSTwAHRuENVM7PnxzIpqFQFBikQDEp11x76z65V_Btu7aFPxDvCEPAleNqKgSHV97fMdXd9zRS588EjIK85qzri42dWwuLphnNesqRkbL8gla9lQrVj39Tm5SmnHGOtLd0l-ren2OEWjaZjpBj1moyjYTYgmbx0Fr-kCsVxapOk7REfDko0zD5BN8HQOkaZgD8Zv6GQqiwe01BqPEOkSwyaCc6e3cp4sOvr7x0-6pgpScct7faTFI-2XxR6p2oLx1AWN9gV5NoNN-PKxXpMv7999vr2r7j99-Hi7vq9U1_S5mvTQaz4wzbsVVwNwNU7YtO2s-7YbByYm3g6ITAytQAFiVT49AZ_FpBSouW-vyZuzbxnv2x5Tls4khdaCx7BPchyZ6NtmJYry9aMSkgI7R_DKJLlE4yAeZdPxvm_EScfPOhVDShHnfxLO5CkcuZMlHHkKR7JGlnAKM_zHKJP_rjdHMPZJ8u2ZxLKkg8EokzLoFWoTUWWpg3mC_gPA5bEh |
| CODEN | AMMODL |
| CitedBy_id | crossref_primary_10_1142_S0217595917500087 crossref_primary_10_1016_j_cie_2018_07_009 crossref_primary_10_1007_s00521_019_04391_7 crossref_primary_10_1016_j_cor_2023_106410 crossref_primary_10_1016_j_autcon_2024_105815 crossref_primary_10_1007_s41060_025_00788_x crossref_primary_10_4018_jkss_2012040105 crossref_primary_10_1016_j_amc_2015_06_025 crossref_primary_10_1016_j_cie_2020_106683 crossref_primary_10_1016_j_ijpe_2013_08_008 crossref_primary_10_1007_s10845_017_1313_7 crossref_primary_10_1155_2022_1765385 crossref_primary_10_1016_j_compchemeng_2021_107409 crossref_primary_10_1155_2012_841410 crossref_primary_10_1016_j_eswa_2012_02_137 crossref_primary_10_1016_j_asoc_2015_09_023 crossref_primary_10_1016_j_jclepro_2021_126401 crossref_primary_10_1007_s10479_021_04121_0 crossref_primary_10_1016_j_eswa_2018_06_037 crossref_primary_10_1016_j_eswa_2021_114561 crossref_primary_10_1002_ese3_472 crossref_primary_10_1007_s00158_022_03335_5 crossref_primary_10_1016_j_ijepes_2014_11_013 crossref_primary_10_1007_s12559_018_9561_1 crossref_primary_10_1093_jcde_qwac100 crossref_primary_10_1016_j_cogsys_2019_06_003 crossref_primary_10_1016_j_asoc_2018_06_021 crossref_primary_10_1108_SCM_02_2018_0070 crossref_primary_10_1088_1402_4896_adf517 crossref_primary_10_3390_app10010190 crossref_primary_10_1016_j_knosys_2013_06_006 crossref_primary_10_1080_00207543_2013_793425 crossref_primary_10_1016_j_compchemeng_2018_07_007 crossref_primary_10_1007_s43069_024_00294_z crossref_primary_10_1109_TNNLS_2013_2280905 crossref_primary_10_1155_2013_378568 crossref_primary_10_2478_jaiscr_2020_0007 crossref_primary_10_1016_j_knosys_2013_08_017 crossref_primary_10_1016_j_cor_2013_07_024 crossref_primary_10_1007_s12293_021_00335_8 crossref_primary_10_1016_j_future_2024_04_021 crossref_primary_10_1007_s40092_017_0203_0 crossref_primary_10_1007_s11831_017_9216_5 crossref_primary_10_1109_TFUZZ_2019_2957263 crossref_primary_10_1051_ro_2017076 crossref_primary_10_1016_j_petlm_2015_12_004 crossref_primary_10_1016_j_ins_2016_01_084 crossref_primary_10_3390_logistics3010002 crossref_primary_10_1002_cjce_23526 crossref_primary_10_1016_j_eswa_2013_08_034 crossref_primary_10_1016_j_asoc_2017_07_044 crossref_primary_10_1016_j_asoc_2022_109468 crossref_primary_10_1016_j_swevo_2012_08_001 crossref_primary_10_1109_ACCESS_2020_2998811 crossref_primary_10_1016_j_cie_2025_111219 crossref_primary_10_1029_2019SW002215 crossref_primary_10_3390_su10051358 crossref_primary_10_5094_APR_2013_051 crossref_primary_10_1080_00207543_2017_1294770 crossref_primary_10_1109_TPWRS_2020_2986455 crossref_primary_10_1155_2016_1379315 crossref_primary_10_1111_mice_70039 crossref_primary_10_1155_2015_827021 crossref_primary_10_1007_s12597_020_00486_1 crossref_primary_10_1016_j_eswa_2016_09_034 crossref_primary_10_5325_transportationj_59_4_0369 crossref_primary_10_1016_j_sbspro_2012_03_087 crossref_primary_10_1016_j_clscn_2021_100025 crossref_primary_10_1007_s13198_014_0308_4 crossref_primary_10_1109_TCBB_2015_2459690 crossref_primary_10_15446_innovar_v35n96_104948 crossref_primary_10_1016_j_apm_2015_03_005 crossref_primary_10_1016_j_asoc_2019_105718 crossref_primary_10_1007_s00500_021_05775_5 crossref_primary_10_1007_s00170_021_08648_1 crossref_primary_10_1007_s00500_019_04106_z crossref_primary_10_1016_j_enpol_2011_11_090 crossref_primary_10_1155_2017_1853131 crossref_primary_10_1016_j_apm_2015_10_022 crossref_primary_10_1088_1674_4926_34_6_065007 crossref_primary_10_1007_s00500_019_03930_7 crossref_primary_10_1016_j_enbuild_2015_09_002 crossref_primary_10_1016_j_apm_2014_12_016 crossref_primary_10_1155_2018_1626182 crossref_primary_10_1007_s10845_014_0964_x crossref_primary_10_1108_IMDS_08_2015_0343 crossref_primary_10_3390_app122010462 crossref_primary_10_1016_j_compchemeng_2019_01_021 crossref_primary_10_1016_j_energy_2011_11_015 crossref_primary_10_1016_j_ifacol_2017_08_1766 crossref_primary_10_1016_j_neucom_2015_04_035 crossref_primary_10_1016_j_jmsy_2014_12_002 crossref_primary_10_3390_s21237839 crossref_primary_10_1016_j_apm_2014_10_012 crossref_primary_10_1109_ACCESS_2019_2960395 crossref_primary_10_1111_coin_12073 crossref_primary_10_1080_01969722_2017_1285162 crossref_primary_10_1016_j_asoc_2015_01_004 crossref_primary_10_1016_j_jclepro_2019_118125 crossref_primary_10_1007_s00500_019_04539_6 crossref_primary_10_1016_j_energy_2024_134160 crossref_primary_10_1002_fld_5341 crossref_primary_10_1139_cjce_2015_0144 crossref_primary_10_1016_j_eswa_2015_02_058 crossref_primary_10_1109_ACCESS_2020_2999540 crossref_primary_10_1016_j_asoc_2017_11_004 crossref_primary_10_1061__ASCE_CP_1943_5487_0000725 crossref_primary_10_1109_ACCESS_2019_2942611 crossref_primary_10_1007_s40314_021_01453_2 crossref_primary_10_1007_s12597_020_00478_1 crossref_primary_10_1016_j_cie_2023_109384 |
| Cites_doi | 10.1109/4235.985692 10.1016/j.camwa.2009.02.028 10.1016/j.aml.2006.07.013 10.1109/TAP.2004.825102 10.1016/j.asoc.2007.01.010 10.1109/WCICA.2006.1713047 10.1016/j.cie.2005.01.022 10.1016/0305-0548(82)90007-7 10.1007/BF00121266 10.1051/ro/1994280100011 10.1016/j.ejor.2006.06.034 10.1109/TSMCC.2004.841908 10.1016/S0305-0548(01)00066-1 10.1016/j.asoc.2007.07.002 10.1109/ICNC.2007.223 10.1016/0377-2217(94)90155-4 10.1016/S0165-0114(01)00134-8 10.1287/mnsc.30.8.1004 10.1016/j.engappai.2007.01.004 10.1016/0377-2217(94)00215-0 10.1287/opre.8.1.101 10.1016/j.camwa.2003.12.003 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2011.02.008 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Applied Sciences |
| EndPage | 3917 |
| ExternalDocumentID | 24155266 10_1016_j_apm_2011_02_008 S0307904X11000655 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c425t-bd75d170d1491c7a1c8be233fd5348706b137ee06736e6a69005ba1f6bccacf53 |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291081800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Sun Sep 28 12:10:03 EDT 2025 Mon Jul 21 09:18:14 EDT 2025 Sat Nov 29 08:15:34 EST 2025 Tue Nov 18 21:18:58 EST 2025 Fri Feb 23 02:30:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Supply chain management Bi-level linear programming Genetic algorithm Particle swarm optimization Evolutionary algorithm Bilevel programming Swarm intelligence Modeling Logistics |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c425t-bd75d170d1491c7a1c8be233fd5348706b137ee06736e6a69005ba1f6bccacf53 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apm.2011.02.008 |
| PQID | 880653296 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_880653296 pascalfrancis_primary_24155266 crossref_primary_10_1016_j_apm_2011_02_008 crossref_citationtrail_10_1016_j_apm_2011_02_008 elsevier_sciencedirect_doi_10_1016_j_apm_2011_02_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-08-01 |
| PublicationDateYYYYMMDD | 2011-08-01 |
| PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | G.M. Wang, X.J. Wang, Z.P. Wan, Y.L. Chen, Genetic algorithms for solving linear bilevel programming, in: Proceedings of the IEEE Sixth international Conference on Parallel and Distributed Computing, 2005. R.C. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks Perth Australia, 1995, pp. 1942–1948. Kuo, Huang (b0080) 2009; 58 Fan, Liang, Zahara (b0180) 2006; 50 Oduguwa, Roy (b0050) 2002 Simchi-Levi, Kaminsky, Simchi-Levi (b0015) 2004 Shih, Wen, Lee, Lan, Hsiao (b0070) 2004; 48 Bialas, Karwan (b0140) 1984; 30 Liu, Hart (b0145) 1994; 79 Goldberg (b0090) 1989 Clerc, Kennedy (b0010) 2002; 6 Lan, Wen, Shih, Lee (b0075) 2007; 20 Wang, Jiao, Li (b0170) 2005; 35 Kao, Zahara (b0135) 2007; 8 Wen, Hsu (b0025) 1991; 42 Hejazi, Memarian, Jahanshahloo, Sepehri (b0500) 2002; 29 Wen, Huang (b0065) 1996; 13 H.S. Shih, Fuzzy Multi-Level Optimization, Ph.D. Dissertation, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, USA, 1995. Holland (b0085) 1975 J. Liu, X. Fan, Z. Qu, An improved particle swarm optimization with mutation based on similarity, in: Third International Conference on Natural Computation (ICNC 2007), vol. 4, 2007, pp. 824–828. Dantzing, Wolfe (b0020) 1960; 8 Mathieu, Pittard, Anandalingam (b0040) 1994; 28 Bard, Falk (b0150) 1982; 9 Wen, Huang (b0060) 1996; 88 Arumugam, Rao (b0120) 2008; 8 Fan, Zahara (b0125) 2007; 181 Boeringer, Werner (b0100) 2004 Khilwani, Prakash, Shankar, Tiwari (b0005) 2008; 21 S. Du, W. Li, K. Cao, A learning algorithm of artificial neural network based on GA–PSO, in: The Sixth World Congress on Intelligent Control and Automation WCICA, vol. 1, IEEE, 2006, pp. 3633–3637. Gendreau, Marcotte, Savard (b0045) 1996; 8 Boyd, Richerson (b0105) 1985 Wang, Qiu (b0110) 2005 Sakawa, Nishizaki (b0035) 2002; 127 Dantzing (10.1016/j.apm.2011.02.008_b0020) 1960; 8 Liu (10.1016/j.apm.2011.02.008_b0145) 1994; 79 Bialas (10.1016/j.apm.2011.02.008_b0140) 1984; 30 Khilwani (10.1016/j.apm.2011.02.008_b0005) 2008; 21 Wen (10.1016/j.apm.2011.02.008_b0025) 1991; 42 Simchi-Levi (10.1016/j.apm.2011.02.008_b0015) 2004 Fan (10.1016/j.apm.2011.02.008_b0180) 2006; 50 Clerc (10.1016/j.apm.2011.02.008_b0010) 2002; 6 Wang (10.1016/j.apm.2011.02.008_b0110) 2005 Fan (10.1016/j.apm.2011.02.008_b0125) 2007; 181 Gendreau (10.1016/j.apm.2011.02.008_b0045) 1996; 8 Boyd (10.1016/j.apm.2011.02.008_b0105) 1985 Kuo (10.1016/j.apm.2011.02.008_b0080) 2009; 58 Goldberg (10.1016/j.apm.2011.02.008_b0090) 1989 Hejazi (10.1016/j.apm.2011.02.008_b0500) 2002; 29 Arumugam (10.1016/j.apm.2011.02.008_b0120) 2008; 8 Wen (10.1016/j.apm.2011.02.008_b0060) 1996; 88 Shih (10.1016/j.apm.2011.02.008_b0070) 2004; 48 Boeringer (10.1016/j.apm.2011.02.008_b0100) 2004 Mathieu (10.1016/j.apm.2011.02.008_b0040) 1994; 28 Wang (10.1016/j.apm.2011.02.008_b0170) 2005; 35 Lan (10.1016/j.apm.2011.02.008_b0075) 2007; 20 10.1016/j.apm.2011.02.008_b0115 Sakawa (10.1016/j.apm.2011.02.008_b0035) 2002; 127 Wen (10.1016/j.apm.2011.02.008_b0065) 1996; 13 10.1016/j.apm.2011.02.008_b0095 10.1016/j.apm.2011.02.008_b0055 10.1016/j.apm.2011.02.008_b0030 Bard (10.1016/j.apm.2011.02.008_b0150) 1982; 9 10.1016/j.apm.2011.02.008_b0130 Holland (10.1016/j.apm.2011.02.008_b0085) 1975 Oduguwa (10.1016/j.apm.2011.02.008_b0050) 2002 Kao (10.1016/j.apm.2011.02.008_b0135) 2007; 8 |
| References_xml | – start-page: 771 year: 2004 end-page: 779 ident: b0100 article-title: Particle swarm optimization versus genetic algorithms for phased array synthesis publication-title: IEEE Trans. Antennas Propag. – volume: 79 start-page: 164 year: 1994 end-page: 166 ident: b0145 article-title: Characterizing an optimal solution to the linear bilevel programming problem publication-title: Eur. J. Oper. Res. – volume: 13 start-page: 113 year: 1996 end-page: 119 ident: b0065 article-title: A Tabu search approach for solving the linear bilevel programming problem publication-title: J. Chin. Inst. Indus. Eng. – year: 1975 ident: b0085 article-title: Adaptation in Natural and Artificial Systems – reference: J. Liu, X. Fan, Z. Qu, An improved particle swarm optimization with mutation based on similarity, in: Third International Conference on Natural Computation (ICNC 2007), vol. 4, 2007, pp. 824–828. – volume: 58 start-page: 678 year: 2009 end-page: 685 ident: b0080 article-title: Application of particle swarm optimization algorithm for solving bi-level linear programming problem publication-title: Comput. Math. Appl. – reference: S. Du, W. Li, K. Cao, A learning algorithm of artificial neural network based on GA–PSO, in: The Sixth World Congress on Intelligent Control and Automation WCICA, vol. 1, IEEE, 2006, pp. 3633–3637. – volume: 8 start-page: 324 year: 2008 end-page: 336 ident: b0120 article-title: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems publication-title: Appl. Soft Comput. – year: 1985 ident: b0105 article-title: Culture and the Evolutionary Process – reference: R.C. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks Perth Australia, 1995, pp. 1942–1948. – volume: 8 start-page: 101 year: 1960 end-page: 111 ident: b0020 article-title: Decomposition principle for linear programs publication-title: Oper. Res. – volume: 28 start-page: 1 year: 1994 end-page: 21 ident: b0040 article-title: Genetic algorithm based approach to bi-level linear programming publication-title: Oper. Res. – volume: 50 start-page: 401 year: 2006 end-page: 425 ident: b0180 article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search publication-title: Comput.Ind. Eng. – year: 1989 ident: b0090 article-title: Genetic Algorithm in Search, Optimization & Machine Learning – volume: 42 start-page: 25 year: 1991 end-page: 133 ident: b0025 article-title: Linear bi-level programming problems – a review publication-title: J. Oper. Res. Soc. – volume: 35 start-page: 221 year: 2005 end-page: 232 ident: b0170 article-title: An evolutionary algorithm for solving nonlinear bi-level programming problem based on a new constraint-handling scheme publication-title: IEEE Trans. Syst. Man Cybernet. – Part C – volume: 29 start-page: 1913 year: 2002 end-page: 1925 ident: b0500 article-title: Linear bi-level programming solution by genetic algorithm publication-title: Comput. Oper. Res. – reference: G.M. Wang, X.J. Wang, Z.P. Wan, Y.L. Chen, Genetic algorithms for solving linear bilevel programming, in: Proceedings of the IEEE Sixth international Conference on Parallel and Distributed Computing, 2005. – volume: 20 start-page: 880 year: 2007 end-page: 884 ident: b0075 article-title: A hybrid neural network approach to bilevel programming problems publication-title: Appl. Math. Lett. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: b0010 article-title: The particle swarm-explosion stability and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 106 year: 2008 end-page: 128 ident: b0005 article-title: Fast clonal algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 127 start-page: 185 year: 2002 end-page: 197 ident: b0035 article-title: Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithms publication-title: Fuzzy Set. Syst. – volume: 88 start-page: 563 year: 1996 end-page: 571 ident: b0060 article-title: A simple Tabu Search method to solve the mixed-integer problem bi-level programming problem publication-title: Eur. J. Oper. Res. – volume: 8 start-page: 849 year: 2007 end-page: 857 ident: b0135 article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions publication-title: Appl. Soft Comput. – reference: H.S. Shih, Fuzzy Multi-Level Optimization, Ph.D. Dissertation, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, USA, 1995. – volume: 30 start-page: 1004 year: 1984 end-page: 1020 ident: b0140 article-title: Two-level linear programming publication-title: Manage. Sci. – volume: 181 start-page: 527 year: 2007 end-page: 548 ident: b0125 article-title: A hybrid simplex search and particle swarm optimization for unconstrained optimization publication-title: Eur. J. Oper. Res. – volume: 8 start-page: 217 year: 1996 end-page: 233 ident: b0045 article-title: A hybrid Tabu-ascent algorithm for the linear bilevel programming problem publication-title: J. Global Optim. – volume: 9 start-page: 77 year: 1982 end-page: 100 ident: b0150 article-title: An explicit solution to the multi-level programming problem publication-title: Comput. Oper. Res. – start-page: 322 year: 2002 end-page: 327 ident: b0050 article-title: Bi-level optimization using genetic algorithm publication-title: IEEE Int. Conf. Artif. Intell. Syst. – volume: 48 start-page: 95 year: 2004 end-page: 108 ident: b0070 article-title: A neural network approach to multi-objective and multilevel programming problems publication-title: Comput. Math. Appl. – start-page: 765 year: 2005 end-page: 768 ident: b0110 article-title: A modified particle swarm optimizer with roulette selection operator publication-title: Proc. Nat. Lang. Process. Knowl. Eng. – year: 2004 ident: b0015 article-title: Managing the Supply Chain: the Definitive Guide for the Business Professional – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.apm.2011.02.008_b0010 article-title: The particle swarm-explosion stability and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 58 start-page: 678 year: 2009 ident: 10.1016/j.apm.2011.02.008_b0080 article-title: Application of particle swarm optimization algorithm for solving bi-level linear programming problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.02.028 – start-page: 765 year: 2005 ident: 10.1016/j.apm.2011.02.008_b0110 article-title: A modified particle swarm optimizer with roulette selection operator publication-title: Proc. Nat. Lang. Process. Knowl. Eng. – volume: 20 start-page: 880 year: 2007 ident: 10.1016/j.apm.2011.02.008_b0075 article-title: A hybrid neural network approach to bilevel programming problems publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.07.013 – year: 1975 ident: 10.1016/j.apm.2011.02.008_b0085 – start-page: 771 year: 2004 ident: 10.1016/j.apm.2011.02.008_b0100 article-title: Particle swarm optimization versus genetic algorithms for phased array synthesis publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2004.825102 – volume: 42 start-page: 25 issue: 2 year: 1991 ident: 10.1016/j.apm.2011.02.008_b0025 article-title: Linear bi-level programming problems – a review publication-title: J. Oper. Res. Soc. – start-page: 322 year: 2002 ident: 10.1016/j.apm.2011.02.008_b0050 article-title: Bi-level optimization using genetic algorithm publication-title: IEEE Int. Conf. Artif. Intell. Syst. – volume: 8 start-page: 324 issue: 1 year: 2008 ident: 10.1016/j.apm.2011.02.008_b0120 article-title: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.01.010 – ident: 10.1016/j.apm.2011.02.008_b0130 doi: 10.1109/WCICA.2006.1713047 – volume: 50 start-page: 401 year: 2006 ident: 10.1016/j.apm.2011.02.008_b0180 article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search publication-title: Comput.Ind. Eng. doi: 10.1016/j.cie.2005.01.022 – volume: 9 start-page: 77 issue: 1 year: 1982 ident: 10.1016/j.apm.2011.02.008_b0150 article-title: An explicit solution to the multi-level programming problem publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(82)90007-7 – volume: 8 start-page: 217 issue: 3 year: 1996 ident: 10.1016/j.apm.2011.02.008_b0045 article-title: A hybrid Tabu-ascent algorithm for the linear bilevel programming problem publication-title: J. Global Optim. doi: 10.1007/BF00121266 – volume: 28 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.apm.2011.02.008_b0040 article-title: Genetic algorithm based approach to bi-level linear programming publication-title: Oper. Res. doi: 10.1051/ro/1994280100011 – volume: 181 start-page: 527 issue: 2 year: 2007 ident: 10.1016/j.apm.2011.02.008_b0125 article-title: A hybrid simplex search and particle swarm optimization for unconstrained optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.06.034 – volume: 35 start-page: 221 issue: 2 year: 2005 ident: 10.1016/j.apm.2011.02.008_b0170 article-title: An evolutionary algorithm for solving nonlinear bi-level programming problem based on a new constraint-handling scheme publication-title: IEEE Trans. Syst. Man Cybernet. – Part C doi: 10.1109/TSMCC.2004.841908 – volume: 29 start-page: 1913 year: 2002 ident: 10.1016/j.apm.2011.02.008_b0500 article-title: Linear bi-level programming solution by genetic algorithm publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(01)00066-1 – year: 1989 ident: 10.1016/j.apm.2011.02.008_b0090 – volume: 8 start-page: 849 issue: 2 year: 2007 ident: 10.1016/j.apm.2011.02.008_b0135 article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.07.002 – ident: 10.1016/j.apm.2011.02.008_b0030 – ident: 10.1016/j.apm.2011.02.008_b0115 doi: 10.1109/ICNC.2007.223 – ident: 10.1016/j.apm.2011.02.008_b0095 – volume: 79 start-page: 164 year: 1994 ident: 10.1016/j.apm.2011.02.008_b0145 article-title: Characterizing an optimal solution to the linear bilevel programming problem publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(94)90155-4 – ident: 10.1016/j.apm.2011.02.008_b0055 – volume: 127 start-page: 185 year: 2002 ident: 10.1016/j.apm.2011.02.008_b0035 article-title: Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithms publication-title: Fuzzy Set. Syst. doi: 10.1016/S0165-0114(01)00134-8 – volume: 30 start-page: 1004 issue: 8 year: 1984 ident: 10.1016/j.apm.2011.02.008_b0140 article-title: Two-level linear programming publication-title: Manage. Sci. doi: 10.1287/mnsc.30.8.1004 – volume: 21 start-page: 106 year: 2008 ident: 10.1016/j.apm.2011.02.008_b0005 article-title: Fast clonal algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2007.01.004 – year: 1985 ident: 10.1016/j.apm.2011.02.008_b0105 – volume: 88 start-page: 563 year: 1996 ident: 10.1016/j.apm.2011.02.008_b0060 article-title: A simple Tabu Search method to solve the mixed-integer problem bi-level programming problem publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(94)00215-0 – volume: 13 start-page: 113 year: 1996 ident: 10.1016/j.apm.2011.02.008_b0065 article-title: A Tabu search approach for solving the linear bilevel programming problem publication-title: J. Chin. Inst. Indus. Eng. – year: 2004 ident: 10.1016/j.apm.2011.02.008_b0015 – volume: 8 start-page: 101 issue: 1 year: 1960 ident: 10.1016/j.apm.2011.02.008_b0020 article-title: Decomposition principle for linear programs publication-title: Oper. Res. doi: 10.1287/opre.8.1.101 – volume: 48 start-page: 95 year: 2004 ident: 10.1016/j.apm.2011.02.008_b0070 article-title: A neural network approach to multi-objective and multilevel programming problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2003.12.003 |
| SSID | ssj0005904 |
| Score | 2.3921485 |
| Snippet | The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3905 |
| SubjectTerms | Applied sciences Bi-level linear programming Exact sciences and technology Genetic algorithm Genetic algorithms Linear programming Logistics Management Mathematical models Operational research and scientific management Operational research. Management science Optimization Particle swarm optimization Supply chain management Supply chains |
| Title | A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model |
| URI | https://dx.doi.org/10.1016/j.apm.2011.02.008 https://www.proquest.com/docview/880653296 |
| Volume | 35 |
| WOSCitedRecordID | wos000291081800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0307-904X databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NQEH4KKQcQQqwiLNUcEAciIzuOt2OEUhUUAkKpFE5Pz882TZU4Jk5Le-M38IuZeYtjqChw4BArsp4XeT7PjGf5hrHniRykkRCJg7_CGXoic0RQZE4shAwiV6BLodj1J9F0Gs_nyYdO55vthTlbRmUZn58n1X8VNe5DYVPr7D-Iuzkp7sD_KHTcothx-1eCH_WPL6gNi9xAXJQrRtbl5_VmsT3W8zAqc1S__io2q_4atcbKtGOqqkO8PxVmSBfOkmqK-uSKEiW2ruVa6QZ2NYim76BmkWgJNU8tpR5qmhN6QR3Fi1IP2mk7wNbrXTV0sdS-QquW1oiqxJKK4H7cJa0OdaD2kwnVZu3Aq4lTmP4sN3ISV9djWt2rqUoMxuKWIvUTN2gZZT_RHZ6XFL6OPZy8EtXK8LESAWu8s242oz99zw-OJhM-G89nL6ovDs0do_y8GcJyje0NoiCJu2xv9GY8f7srE0rcoSXTpLu3mXFVI_jLVX_n29yqRI1Ps9CjUi5ZfeXKzO6w2-YbBEYaBXdZJy_vsZvvGonU99n3EWgUwboAgyJoUASIIrAoAoUiaKMIEEVgUAQWRaBRBC0UgUERODACQhEoFAGeQaMIFIpA4eMBOzoYz14fOmZ8hyPREGydNIuCzIvcDD_CPRkJT8ZpPvD9Igv8IaXXU8-P8pwmJYV5KMIEH3YqvCJMUavIIvAfsm65LvNHDLw88HKJpsZF8xHJUPgiTn1Jn9vEZxT2mGsfPJeG255GrCy5LWI84SgrTrLi7oCjrHrsZXNIpYldrlo8tNLkxjPVHidHHF512P5Pkm8uRG5zgK5xj4GFAke1Trk6Uebr05rHVPDgD5Lw8Z-XPGE3di_cU9bdbk7zZ-y6PNsu6s2-AfQPhD7Jsg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+of+genetic+algorithm+and+particle+swarm+optimization+for+solving+bi-level+linear+programming+problem+-+A+case+study+on+supply+chain+model&rft.jtitle=Applied+mathematical+modelling&rft.au=Kuo%2C+R+J&rft.au=Han%2C+Y+S&rft.date=2011-08-01&rft.issn=0307-904X&rft.volume=35&rft.issue=8&rft.spage=3905&rft.epage=3917&rft_id=info:doi/10.1016%2Fj.apm.2011.02.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |