A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model

The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematical modelling Ročník 35; číslo 8; s. 3905 - 3917
Hlavní autoři: Kuo, R.J., Han, Y.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Inc 01.08.2011
Elsevier
Témata:
ISSN:0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to apply bi-level linear programming to supply chain distribution problem and develop an efficient method based on hybrid of genetic algorithm (GA) and particle swarm optimization (PSO). The performance of the proposed method is ascertained by comparing the results with GA and PSO using four problems in the literature and a supply chain distribution model.
AbstractList The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper level and lower level objectives. Thus, this paper intends to apply bi-level linear programming to supply chain distribution problem and develop an efficient method based on hybrid of genetic algorithm (GA) and particle swarm optimization (PSO). The performance of the proposed method is ascertained by comparing the results with GA and PSO using four problems in the literature and a supply chain distribution model.
Author Han, Y.S.
Kuo, R.J.
Author_xml – sequence: 1
  givenname: R.J.
  surname: Kuo
  fullname: Kuo, R.J.
  email: rjkuo@mail.ntust.edu.tw
  organization: Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 2
  givenname: Y.S.
  surname: Han
  fullname: Han, Y.S.
  organization: Department of Manufacturing, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24155266$$DView record in Pascal Francis
BookMark eNp9kb1uFDEUhV0EiSTwAHRuENVM7PnxzIpqFQFBikQDEp11x76z65V_Btu7aFPxDvCEPAleNqKgSHV97fMdXd9zRS588EjIK85qzri42dWwuLphnNesqRkbL8gla9lQrVj39Tm5SmnHGOtLd0l-ren2OEWjaZjpBj1moyjYTYgmbx0Fr-kCsVxapOk7REfDko0zD5BN8HQOkaZgD8Zv6GQqiwe01BqPEOkSwyaCc6e3cp4sOvr7x0-6pgpScct7faTFI-2XxR6p2oLx1AWN9gV5NoNN-PKxXpMv7999vr2r7j99-Hi7vq9U1_S5mvTQaz4wzbsVVwNwNU7YtO2s-7YbByYm3g6ITAytQAFiVT49AZ_FpBSouW-vyZuzbxnv2x5Tls4khdaCx7BPchyZ6NtmJYry9aMSkgI7R_DKJLlE4yAeZdPxvm_EScfPOhVDShHnfxLO5CkcuZMlHHkKR7JGlnAKM_zHKJP_rjdHMPZJ8u2ZxLKkg8EokzLoFWoTUWWpg3mC_gPA5bEh
CODEN AMMODL
CitedBy_id crossref_primary_10_1142_S0217595917500087
crossref_primary_10_1016_j_cie_2018_07_009
crossref_primary_10_1007_s00521_019_04391_7
crossref_primary_10_1016_j_cor_2023_106410
crossref_primary_10_1016_j_autcon_2024_105815
crossref_primary_10_1007_s41060_025_00788_x
crossref_primary_10_4018_jkss_2012040105
crossref_primary_10_1016_j_amc_2015_06_025
crossref_primary_10_1016_j_cie_2020_106683
crossref_primary_10_1016_j_ijpe_2013_08_008
crossref_primary_10_1007_s10845_017_1313_7
crossref_primary_10_1155_2022_1765385
crossref_primary_10_1016_j_compchemeng_2021_107409
crossref_primary_10_1155_2012_841410
crossref_primary_10_1016_j_eswa_2012_02_137
crossref_primary_10_1016_j_asoc_2015_09_023
crossref_primary_10_1016_j_jclepro_2021_126401
crossref_primary_10_1007_s10479_021_04121_0
crossref_primary_10_1016_j_eswa_2018_06_037
crossref_primary_10_1016_j_eswa_2021_114561
crossref_primary_10_1002_ese3_472
crossref_primary_10_1007_s00158_022_03335_5
crossref_primary_10_1016_j_ijepes_2014_11_013
crossref_primary_10_1007_s12559_018_9561_1
crossref_primary_10_1093_jcde_qwac100
crossref_primary_10_1016_j_cogsys_2019_06_003
crossref_primary_10_1016_j_asoc_2018_06_021
crossref_primary_10_1108_SCM_02_2018_0070
crossref_primary_10_1088_1402_4896_adf517
crossref_primary_10_3390_app10010190
crossref_primary_10_1016_j_knosys_2013_06_006
crossref_primary_10_1080_00207543_2013_793425
crossref_primary_10_1016_j_compchemeng_2018_07_007
crossref_primary_10_1007_s43069_024_00294_z
crossref_primary_10_1109_TNNLS_2013_2280905
crossref_primary_10_1155_2013_378568
crossref_primary_10_2478_jaiscr_2020_0007
crossref_primary_10_1016_j_knosys_2013_08_017
crossref_primary_10_1016_j_cor_2013_07_024
crossref_primary_10_1007_s12293_021_00335_8
crossref_primary_10_1016_j_future_2024_04_021
crossref_primary_10_1007_s40092_017_0203_0
crossref_primary_10_1007_s11831_017_9216_5
crossref_primary_10_1109_TFUZZ_2019_2957263
crossref_primary_10_1051_ro_2017076
crossref_primary_10_1016_j_petlm_2015_12_004
crossref_primary_10_1016_j_ins_2016_01_084
crossref_primary_10_3390_logistics3010002
crossref_primary_10_1002_cjce_23526
crossref_primary_10_1016_j_eswa_2013_08_034
crossref_primary_10_1016_j_asoc_2017_07_044
crossref_primary_10_1016_j_asoc_2022_109468
crossref_primary_10_1016_j_swevo_2012_08_001
crossref_primary_10_1109_ACCESS_2020_2998811
crossref_primary_10_1016_j_cie_2025_111219
crossref_primary_10_1029_2019SW002215
crossref_primary_10_3390_su10051358
crossref_primary_10_5094_APR_2013_051
crossref_primary_10_1080_00207543_2017_1294770
crossref_primary_10_1109_TPWRS_2020_2986455
crossref_primary_10_1155_2016_1379315
crossref_primary_10_1111_mice_70039
crossref_primary_10_1155_2015_827021
crossref_primary_10_1007_s12597_020_00486_1
crossref_primary_10_1016_j_eswa_2016_09_034
crossref_primary_10_5325_transportationj_59_4_0369
crossref_primary_10_1016_j_sbspro_2012_03_087
crossref_primary_10_1016_j_clscn_2021_100025
crossref_primary_10_1007_s13198_014_0308_4
crossref_primary_10_1109_TCBB_2015_2459690
crossref_primary_10_15446_innovar_v35n96_104948
crossref_primary_10_1016_j_apm_2015_03_005
crossref_primary_10_1016_j_asoc_2019_105718
crossref_primary_10_1007_s00500_021_05775_5
crossref_primary_10_1007_s00170_021_08648_1
crossref_primary_10_1007_s00500_019_04106_z
crossref_primary_10_1016_j_enpol_2011_11_090
crossref_primary_10_1155_2017_1853131
crossref_primary_10_1016_j_apm_2015_10_022
crossref_primary_10_1088_1674_4926_34_6_065007
crossref_primary_10_1007_s00500_019_03930_7
crossref_primary_10_1016_j_enbuild_2015_09_002
crossref_primary_10_1016_j_apm_2014_12_016
crossref_primary_10_1155_2018_1626182
crossref_primary_10_1007_s10845_014_0964_x
crossref_primary_10_1108_IMDS_08_2015_0343
crossref_primary_10_3390_app122010462
crossref_primary_10_1016_j_compchemeng_2019_01_021
crossref_primary_10_1016_j_energy_2011_11_015
crossref_primary_10_1016_j_ifacol_2017_08_1766
crossref_primary_10_1016_j_neucom_2015_04_035
crossref_primary_10_1016_j_jmsy_2014_12_002
crossref_primary_10_3390_s21237839
crossref_primary_10_1016_j_apm_2014_10_012
crossref_primary_10_1109_ACCESS_2019_2960395
crossref_primary_10_1111_coin_12073
crossref_primary_10_1080_01969722_2017_1285162
crossref_primary_10_1016_j_asoc_2015_01_004
crossref_primary_10_1016_j_jclepro_2019_118125
crossref_primary_10_1007_s00500_019_04539_6
crossref_primary_10_1016_j_energy_2024_134160
crossref_primary_10_1002_fld_5341
crossref_primary_10_1139_cjce_2015_0144
crossref_primary_10_1016_j_eswa_2015_02_058
crossref_primary_10_1109_ACCESS_2020_2999540
crossref_primary_10_1016_j_asoc_2017_11_004
crossref_primary_10_1061__ASCE_CP_1943_5487_0000725
crossref_primary_10_1109_ACCESS_2019_2942611
crossref_primary_10_1007_s40314_021_01453_2
crossref_primary_10_1007_s12597_020_00478_1
crossref_primary_10_1016_j_cie_2023_109384
Cites_doi 10.1109/4235.985692
10.1016/j.camwa.2009.02.028
10.1016/j.aml.2006.07.013
10.1109/TAP.2004.825102
10.1016/j.asoc.2007.01.010
10.1109/WCICA.2006.1713047
10.1016/j.cie.2005.01.022
10.1016/0305-0548(82)90007-7
10.1007/BF00121266
10.1051/ro/1994280100011
10.1016/j.ejor.2006.06.034
10.1109/TSMCC.2004.841908
10.1016/S0305-0548(01)00066-1
10.1016/j.asoc.2007.07.002
10.1109/ICNC.2007.223
10.1016/0377-2217(94)90155-4
10.1016/S0165-0114(01)00134-8
10.1287/mnsc.30.8.1004
10.1016/j.engappai.2007.01.004
10.1016/0377-2217(94)00215-0
10.1287/opre.8.1.101
10.1016/j.camwa.2003.12.003
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2011.02.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EndPage 3917
ExternalDocumentID 24155266
10_1016_j_apm_2011_02_008
S0307904X11000655
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c425t-bd75d170d1491c7a1c8be233fd5348706b137ee06736e6a69005ba1f6bccacf53
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291081800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sun Sep 28 12:10:03 EDT 2025
Mon Jul 21 09:18:14 EDT 2025
Sat Nov 29 08:15:34 EST 2025
Tue Nov 18 21:18:58 EST 2025
Fri Feb 23 02:30:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Supply chain management
Bi-level linear programming
Genetic algorithm
Particle swarm optimization
Evolutionary algorithm
Bilevel programming
Swarm intelligence
Modeling
Logistics
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-bd75d170d1491c7a1c8be233fd5348706b137ee06736e6a69005ba1f6bccacf53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.apm.2011.02.008
PQID 880653296
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_880653296
pascalfrancis_primary_24155266
crossref_primary_10_1016_j_apm_2011_02_008
crossref_citationtrail_10_1016_j_apm_2011_02_008
elsevier_sciencedirect_doi_10_1016_j_apm_2011_02_008
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied mathematical modelling
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References G.M. Wang, X.J. Wang, Z.P. Wan, Y.L. Chen, Genetic algorithms for solving linear bilevel programming, in: Proceedings of the IEEE Sixth international Conference on Parallel and Distributed Computing, 2005.
R.C. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks Perth Australia, 1995, pp. 1942–1948.
Kuo, Huang (b0080) 2009; 58
Fan, Liang, Zahara (b0180) 2006; 50
Oduguwa, Roy (b0050) 2002
Simchi-Levi, Kaminsky, Simchi-Levi (b0015) 2004
Shih, Wen, Lee, Lan, Hsiao (b0070) 2004; 48
Bialas, Karwan (b0140) 1984; 30
Liu, Hart (b0145) 1994; 79
Goldberg (b0090) 1989
Clerc, Kennedy (b0010) 2002; 6
Lan, Wen, Shih, Lee (b0075) 2007; 20
Wang, Jiao, Li (b0170) 2005; 35
Kao, Zahara (b0135) 2007; 8
Wen, Hsu (b0025) 1991; 42
Hejazi, Memarian, Jahanshahloo, Sepehri (b0500) 2002; 29
Wen, Huang (b0065) 1996; 13
H.S. Shih, Fuzzy Multi-Level Optimization, Ph.D. Dissertation, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, USA, 1995.
Holland (b0085) 1975
J. Liu, X. Fan, Z. Qu, An improved particle swarm optimization with mutation based on similarity, in: Third International Conference on Natural Computation (ICNC 2007), vol. 4, 2007, pp. 824–828.
Dantzing, Wolfe (b0020) 1960; 8
Mathieu, Pittard, Anandalingam (b0040) 1994; 28
Bard, Falk (b0150) 1982; 9
Wen, Huang (b0060) 1996; 88
Arumugam, Rao (b0120) 2008; 8
Fan, Zahara (b0125) 2007; 181
Boeringer, Werner (b0100) 2004
Khilwani, Prakash, Shankar, Tiwari (b0005) 2008; 21
S. Du, W. Li, K. Cao, A learning algorithm of artificial neural network based on GA–PSO, in: The Sixth World Congress on Intelligent Control and Automation WCICA, vol. 1, IEEE, 2006, pp. 3633–3637.
Gendreau, Marcotte, Savard (b0045) 1996; 8
Boyd, Richerson (b0105) 1985
Wang, Qiu (b0110) 2005
Sakawa, Nishizaki (b0035) 2002; 127
Dantzing (10.1016/j.apm.2011.02.008_b0020) 1960; 8
Liu (10.1016/j.apm.2011.02.008_b0145) 1994; 79
Bialas (10.1016/j.apm.2011.02.008_b0140) 1984; 30
Khilwani (10.1016/j.apm.2011.02.008_b0005) 2008; 21
Wen (10.1016/j.apm.2011.02.008_b0025) 1991; 42
Simchi-Levi (10.1016/j.apm.2011.02.008_b0015) 2004
Fan (10.1016/j.apm.2011.02.008_b0180) 2006; 50
Clerc (10.1016/j.apm.2011.02.008_b0010) 2002; 6
Wang (10.1016/j.apm.2011.02.008_b0110) 2005
Fan (10.1016/j.apm.2011.02.008_b0125) 2007; 181
Gendreau (10.1016/j.apm.2011.02.008_b0045) 1996; 8
Boyd (10.1016/j.apm.2011.02.008_b0105) 1985
Kuo (10.1016/j.apm.2011.02.008_b0080) 2009; 58
Goldberg (10.1016/j.apm.2011.02.008_b0090) 1989
Hejazi (10.1016/j.apm.2011.02.008_b0500) 2002; 29
Arumugam (10.1016/j.apm.2011.02.008_b0120) 2008; 8
Wen (10.1016/j.apm.2011.02.008_b0060) 1996; 88
Shih (10.1016/j.apm.2011.02.008_b0070) 2004; 48
Boeringer (10.1016/j.apm.2011.02.008_b0100) 2004
Mathieu (10.1016/j.apm.2011.02.008_b0040) 1994; 28
Wang (10.1016/j.apm.2011.02.008_b0170) 2005; 35
Lan (10.1016/j.apm.2011.02.008_b0075) 2007; 20
10.1016/j.apm.2011.02.008_b0115
Sakawa (10.1016/j.apm.2011.02.008_b0035) 2002; 127
Wen (10.1016/j.apm.2011.02.008_b0065) 1996; 13
10.1016/j.apm.2011.02.008_b0095
10.1016/j.apm.2011.02.008_b0055
10.1016/j.apm.2011.02.008_b0030
Bard (10.1016/j.apm.2011.02.008_b0150) 1982; 9
10.1016/j.apm.2011.02.008_b0130
Holland (10.1016/j.apm.2011.02.008_b0085) 1975
Oduguwa (10.1016/j.apm.2011.02.008_b0050) 2002
Kao (10.1016/j.apm.2011.02.008_b0135) 2007; 8
References_xml – start-page: 771
  year: 2004
  end-page: 779
  ident: b0100
  article-title: Particle swarm optimization versus genetic algorithms for phased array synthesis
  publication-title: IEEE Trans. Antennas Propag.
– volume: 79
  start-page: 164
  year: 1994
  end-page: 166
  ident: b0145
  article-title: Characterizing an optimal solution to the linear bilevel programming problem
  publication-title: Eur. J. Oper. Res.
– volume: 13
  start-page: 113
  year: 1996
  end-page: 119
  ident: b0065
  article-title: A Tabu search approach for solving the linear bilevel programming problem
  publication-title: J. Chin. Inst. Indus. Eng.
– year: 1975
  ident: b0085
  article-title: Adaptation in Natural and Artificial Systems
– reference: J. Liu, X. Fan, Z. Qu, An improved particle swarm optimization with mutation based on similarity, in: Third International Conference on Natural Computation (ICNC 2007), vol. 4, 2007, pp. 824–828.
– volume: 58
  start-page: 678
  year: 2009
  end-page: 685
  ident: b0080
  article-title: Application of particle swarm optimization algorithm for solving bi-level linear programming problem
  publication-title: Comput. Math. Appl.
– reference: S. Du, W. Li, K. Cao, A learning algorithm of artificial neural network based on GA–PSO, in: The Sixth World Congress on Intelligent Control and Automation WCICA, vol. 1, IEEE, 2006, pp. 3633–3637.
– volume: 8
  start-page: 324
  year: 2008
  end-page: 336
  ident: b0120
  article-title: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems
  publication-title: Appl. Soft Comput.
– year: 1985
  ident: b0105
  article-title: Culture and the Evolutionary Process
– reference: R.C. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks Perth Australia, 1995, pp. 1942–1948.
– volume: 8
  start-page: 101
  year: 1960
  end-page: 111
  ident: b0020
  article-title: Decomposition principle for linear programs
  publication-title: Oper. Res.
– volume: 28
  start-page: 1
  year: 1994
  end-page: 21
  ident: b0040
  article-title: Genetic algorithm based approach to bi-level linear programming
  publication-title: Oper. Res.
– volume: 50
  start-page: 401
  year: 2006
  end-page: 425
  ident: b0180
  article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
  publication-title: Comput.Ind. Eng.
– year: 1989
  ident: b0090
  article-title: Genetic Algorithm in Search, Optimization & Machine Learning
– volume: 42
  start-page: 25
  year: 1991
  end-page: 133
  ident: b0025
  article-title: Linear bi-level programming problems – a review
  publication-title: J. Oper. Res. Soc.
– volume: 35
  start-page: 221
  year: 2005
  end-page: 232
  ident: b0170
  article-title: An evolutionary algorithm for solving nonlinear bi-level programming problem based on a new constraint-handling scheme
  publication-title: IEEE Trans. Syst. Man Cybernet. – Part C
– volume: 29
  start-page: 1913
  year: 2002
  end-page: 1925
  ident: b0500
  article-title: Linear bi-level programming solution by genetic algorithm
  publication-title: Comput. Oper. Res.
– reference: G.M. Wang, X.J. Wang, Z.P. Wan, Y.L. Chen, Genetic algorithms for solving linear bilevel programming, in: Proceedings of the IEEE Sixth international Conference on Parallel and Distributed Computing, 2005.
– volume: 20
  start-page: 880
  year: 2007
  end-page: 884
  ident: b0075
  article-title: A hybrid neural network approach to bilevel programming problems
  publication-title: Appl. Math. Lett.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b0010
  article-title: The particle swarm-explosion stability and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 106
  year: 2008
  end-page: 128
  ident: b0005
  article-title: Fast clonal algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 127
  start-page: 185
  year: 2002
  end-page: 197
  ident: b0035
  article-title: Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithms
  publication-title: Fuzzy Set. Syst.
– volume: 88
  start-page: 563
  year: 1996
  end-page: 571
  ident: b0060
  article-title: A simple Tabu Search method to solve the mixed-integer problem bi-level programming problem
  publication-title: Eur. J. Oper. Res.
– volume: 8
  start-page: 849
  year: 2007
  end-page: 857
  ident: b0135
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Appl. Soft Comput.
– reference: H.S. Shih, Fuzzy Multi-Level Optimization, Ph.D. Dissertation, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, USA, 1995.
– volume: 30
  start-page: 1004
  year: 1984
  end-page: 1020
  ident: b0140
  article-title: Two-level linear programming
  publication-title: Manage. Sci.
– volume: 181
  start-page: 527
  year: 2007
  end-page: 548
  ident: b0125
  article-title: A hybrid simplex search and particle swarm optimization for unconstrained optimization
  publication-title: Eur. J. Oper. Res.
– volume: 8
  start-page: 217
  year: 1996
  end-page: 233
  ident: b0045
  article-title: A hybrid Tabu-ascent algorithm for the linear bilevel programming problem
  publication-title: J. Global Optim.
– volume: 9
  start-page: 77
  year: 1982
  end-page: 100
  ident: b0150
  article-title: An explicit solution to the multi-level programming problem
  publication-title: Comput. Oper. Res.
– start-page: 322
  year: 2002
  end-page: 327
  ident: b0050
  article-title: Bi-level optimization using genetic algorithm
  publication-title: IEEE Int. Conf. Artif. Intell. Syst.
– volume: 48
  start-page: 95
  year: 2004
  end-page: 108
  ident: b0070
  article-title: A neural network approach to multi-objective and multilevel programming problems
  publication-title: Comput. Math. Appl.
– start-page: 765
  year: 2005
  end-page: 768
  ident: b0110
  article-title: A modified particle swarm optimizer with roulette selection operator
  publication-title: Proc. Nat. Lang. Process. Knowl. Eng.
– year: 2004
  ident: b0015
  article-title: Managing the Supply Chain: the Definitive Guide for the Business Professional
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.apm.2011.02.008_b0010
  article-title: The particle swarm-explosion stability and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 58
  start-page: 678
  year: 2009
  ident: 10.1016/j.apm.2011.02.008_b0080
  article-title: Application of particle swarm optimization algorithm for solving bi-level linear programming problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.02.028
– start-page: 765
  year: 2005
  ident: 10.1016/j.apm.2011.02.008_b0110
  article-title: A modified particle swarm optimizer with roulette selection operator
  publication-title: Proc. Nat. Lang. Process. Knowl. Eng.
– volume: 20
  start-page: 880
  year: 2007
  ident: 10.1016/j.apm.2011.02.008_b0075
  article-title: A hybrid neural network approach to bilevel programming problems
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.07.013
– year: 1975
  ident: 10.1016/j.apm.2011.02.008_b0085
– start-page: 771
  year: 2004
  ident: 10.1016/j.apm.2011.02.008_b0100
  article-title: Particle swarm optimization versus genetic algorithms for phased array synthesis
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2004.825102
– volume: 42
  start-page: 25
  issue: 2
  year: 1991
  ident: 10.1016/j.apm.2011.02.008_b0025
  article-title: Linear bi-level programming problems – a review
  publication-title: J. Oper. Res. Soc.
– start-page: 322
  year: 2002
  ident: 10.1016/j.apm.2011.02.008_b0050
  article-title: Bi-level optimization using genetic algorithm
  publication-title: IEEE Int. Conf. Artif. Intell. Syst.
– volume: 8
  start-page: 324
  issue: 1
  year: 2008
  ident: 10.1016/j.apm.2011.02.008_b0120
  article-title: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.01.010
– ident: 10.1016/j.apm.2011.02.008_b0130
  doi: 10.1109/WCICA.2006.1713047
– volume: 50
  start-page: 401
  year: 2006
  ident: 10.1016/j.apm.2011.02.008_b0180
  article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
  publication-title: Comput.Ind. Eng.
  doi: 10.1016/j.cie.2005.01.022
– volume: 9
  start-page: 77
  issue: 1
  year: 1982
  ident: 10.1016/j.apm.2011.02.008_b0150
  article-title: An explicit solution to the multi-level programming problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(82)90007-7
– volume: 8
  start-page: 217
  issue: 3
  year: 1996
  ident: 10.1016/j.apm.2011.02.008_b0045
  article-title: A hybrid Tabu-ascent algorithm for the linear bilevel programming problem
  publication-title: J. Global Optim.
  doi: 10.1007/BF00121266
– volume: 28
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.apm.2011.02.008_b0040
  article-title: Genetic algorithm based approach to bi-level linear programming
  publication-title: Oper. Res.
  doi: 10.1051/ro/1994280100011
– volume: 181
  start-page: 527
  issue: 2
  year: 2007
  ident: 10.1016/j.apm.2011.02.008_b0125
  article-title: A hybrid simplex search and particle swarm optimization for unconstrained optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.034
– volume: 35
  start-page: 221
  issue: 2
  year: 2005
  ident: 10.1016/j.apm.2011.02.008_b0170
  article-title: An evolutionary algorithm for solving nonlinear bi-level programming problem based on a new constraint-handling scheme
  publication-title: IEEE Trans. Syst. Man Cybernet. – Part C
  doi: 10.1109/TSMCC.2004.841908
– volume: 29
  start-page: 1913
  year: 2002
  ident: 10.1016/j.apm.2011.02.008_b0500
  article-title: Linear bi-level programming solution by genetic algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(01)00066-1
– year: 1989
  ident: 10.1016/j.apm.2011.02.008_b0090
– volume: 8
  start-page: 849
  issue: 2
  year: 2007
  ident: 10.1016/j.apm.2011.02.008_b0135
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.002
– ident: 10.1016/j.apm.2011.02.008_b0030
– ident: 10.1016/j.apm.2011.02.008_b0115
  doi: 10.1109/ICNC.2007.223
– ident: 10.1016/j.apm.2011.02.008_b0095
– volume: 79
  start-page: 164
  year: 1994
  ident: 10.1016/j.apm.2011.02.008_b0145
  article-title: Characterizing an optimal solution to the linear bilevel programming problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(94)90155-4
– ident: 10.1016/j.apm.2011.02.008_b0055
– volume: 127
  start-page: 185
  year: 2002
  ident: 10.1016/j.apm.2011.02.008_b0035
  article-title: Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithms
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/S0165-0114(01)00134-8
– volume: 30
  start-page: 1004
  issue: 8
  year: 1984
  ident: 10.1016/j.apm.2011.02.008_b0140
  article-title: Two-level linear programming
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.30.8.1004
– volume: 21
  start-page: 106
  year: 2008
  ident: 10.1016/j.apm.2011.02.008_b0005
  article-title: Fast clonal algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2007.01.004
– year: 1985
  ident: 10.1016/j.apm.2011.02.008_b0105
– volume: 88
  start-page: 563
  year: 1996
  ident: 10.1016/j.apm.2011.02.008_b0060
  article-title: A simple Tabu Search method to solve the mixed-integer problem bi-level programming problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(94)00215-0
– volume: 13
  start-page: 113
  year: 1996
  ident: 10.1016/j.apm.2011.02.008_b0065
  article-title: A Tabu search approach for solving the linear bilevel programming problem
  publication-title: J. Chin. Inst. Indus. Eng.
– year: 2004
  ident: 10.1016/j.apm.2011.02.008_b0015
– volume: 8
  start-page: 101
  issue: 1
  year: 1960
  ident: 10.1016/j.apm.2011.02.008_b0020
  article-title: Decomposition principle for linear programs
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.1.101
– volume: 48
  start-page: 95
  year: 2004
  ident: 10.1016/j.apm.2011.02.008_b0070
  article-title: A neural network approach to multi-objective and multilevel programming problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2003.12.003
SSID ssj0005904
Score 2.3921485
Snippet The main goal of supply chain management is to coordinate and collaborate the supply chain partners seamlessly. On the other hand, bi-level linear programming...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3905
SubjectTerms Applied sciences
Bi-level linear programming
Exact sciences and technology
Genetic algorithm
Genetic algorithms
Linear programming
Logistics
Management
Mathematical models
Operational research and scientific management
Operational research. Management science
Optimization
Particle swarm optimization
Supply chain management
Supply chains
Title A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model
URI https://dx.doi.org/10.1016/j.apm.2011.02.008
https://www.proquest.com/docview/880653296
Volume 35
WOSCitedRecordID wos000291081800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NQEH4KKQcQQqwiLNUcEAciIzuOt2OEUhUUAkKpFE5Pz882TZU4Jk5Le-M38IuZeYtjqChw4BArsp4XeT7PjGf5hrHniRykkRCJg7_CGXoic0RQZE4shAwiV6BLodj1J9F0Gs_nyYdO55vthTlbRmUZn58n1X8VNe5DYVPr7D-Iuzkp7sD_KHTcothx-1eCH_WPL6gNi9xAXJQrRtbl5_VmsT3W8zAqc1S__io2q_4atcbKtGOqqkO8PxVmSBfOkmqK-uSKEiW2ruVa6QZ2NYim76BmkWgJNU8tpR5qmhN6QR3Fi1IP2mk7wNbrXTV0sdS-QquW1oiqxJKK4H7cJa0OdaD2kwnVZu3Aq4lTmP4sN3ISV9djWt2rqUoMxuKWIvUTN2gZZT_RHZ6XFL6OPZy8EtXK8LESAWu8s242oz99zw-OJhM-G89nL6ovDs0do_y8GcJyje0NoiCJu2xv9GY8f7srE0rcoSXTpLu3mXFVI_jLVX_n29yqRI1Ps9CjUi5ZfeXKzO6w2-YbBEYaBXdZJy_vsZvvGonU99n3EWgUwboAgyJoUASIIrAoAoUiaKMIEEVgUAQWRaBRBC0UgUERODACQhEoFAGeQaMIFIpA4eMBOzoYz14fOmZ8hyPREGydNIuCzIvcDD_CPRkJT8ZpPvD9Igv8IaXXU8-P8pwmJYV5KMIEH3YqvCJMUavIIvAfsm65LvNHDLw88HKJpsZF8xHJUPgiTn1Jn9vEZxT2mGsfPJeG255GrCy5LWI84SgrTrLi7oCjrHrsZXNIpYldrlo8tNLkxjPVHidHHF512P5Pkm8uRG5zgK5xj4GFAke1Trk6Uebr05rHVPDgD5Lw8Z-XPGE3di_cU9bdbk7zZ-y6PNsu6s2-AfQPhD7Jsg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+of+genetic+algorithm+and+particle+swarm+optimization+for+solving+bi-level+linear+programming+problem+-+A+case+study+on+supply+chain+model&rft.jtitle=Applied+mathematical+modelling&rft.au=Kuo%2C+R+J&rft.au=Han%2C+Y+S&rft.date=2011-08-01&rft.issn=0307-904X&rft.volume=35&rft.issue=8&rft.spage=3905&rft.epage=3917&rft_id=info:doi/10.1016%2Fj.apm.2011.02.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon