An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization

In addition to satisfying several competing objectives, many real-world applications are also characterized by a certain degree of noise, manifesting itself in the form of signal distortion or uncertain information. In this paper, extensive studies are carried out to examine the impact of noisy envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 11; H. 3; S. 354 - 381
Hauptverfasser: Goh, C.K., Tan, K.C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.06.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In addition to satisfying several competing objectives, many real-world applications are also characterized by a certain degree of noise, manifesting itself in the form of signal distortion or uncertain information. In this paper, extensive studies are carried out to examine the impact of noisy environments in evolutionary multiobjective optimization. Three noise-handling features are then proposed based upon the analysis of empirical results, including an experiential learning directed perturbation operator that adapts the magnitude and direction of variation according to past experiences for fast convergence, a gene adaptation selection strategy that helps the evolutionary search in escaping from local optima or premature convergence, and a possibilistic archiving model based on the concept of possibility and necessity measures to deal with problem of uncertainties. In addition, the performances of various multiobjective evolutionary algorithms in noisy environments, as well as the robustness and effectiveness of the proposed features are examined based upon five benchmark problems characterized by different difficulties in local optimality, nonuniformity, discontinuity, and nonconvexity
AbstractList Three noise-handling features are then proposed based upon the analysis of empirical results, including an experiential learning directed perturbation operator that adapts the magnitude and direction of variation according to past experiences for fast convergence, a gene adaptation selection strategy that helps the evolutionary search in escaping from local optima or premature convergence, and a possibilistic archiving model based on the concept of possibility and necessity measures to deal with problem of uncertainties.
In addition to satisfying several competing objectives, many real-world applications are also characterized by a certain degree of noise, manifesting itself in the form of signal distortion or uncertain information. In this paper, extensive studies are carried out to examine the impact of noisy environments in evolutionary multiobjective optimization. Three noise-handling features are then proposed based upon the analysis of empirical results, including an experiential learning directed perturbation operator that adapts the magnitude and direction of variation according to past experiences for fast convergence, a gene adaptation selection strategy that helps the evolutionary search in escaping from local optima or premature convergence, and a possibilistic archiving model based on the concept of possibility and necessity measures to deal with problem of uncertainties. In addition, the performances of various multiobjective evolutionary algorithms in noisy environments, as well as the robustness and effectiveness of the proposed features are examined based upon five benchmark problems characterized by different difficulties in local optimality, nonuniformity, discontinuity, and nonconvexity
In addition to satisfying several competing objectives, many real-world applications are also characterized by a certain degree of noise, manifesting itself in the form of signal distortion or uncertain information. In this paper, extensive studies are carried out to examine the impact of noisy environments in evolutionary multiobjective optimization. Three noise-handling features are then proposed based upon the analysis of empirical results, including an experiential learning directed perturbation operator that adapts the magnitude and direction of variation according to past experiences for fast convergence, a gene adaptation selection strategy that helps the evolutionary search in escaping from local optima or premature convergence, and a possibilistic archiving model based on the concept of possibility and necessity measures to deal with problem of uncertainties. In addition, the performances of various multiobjective evolutionary algorithms in noisy environments, as well as the robustness and effectiveness of the proposed features are examined based upon five benchmark problems characterized by different difficulties in local optimality, nonuniformity, discontinuity, and nonconvexity.
Author Tan, K.C.
Goh, C.K.
Author_xml – sequence: 1
  givenname: C.K.
  surname: Goh
  fullname: Goh, C.K.
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore
– sequence: 2
  givenname: K.C.
  surname: Tan
  fullname: Tan, K.C.
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18805599$$DView record in Pascal Francis
BookMark eNp9kc1r3DAQxUVIIR_tvZCLCSQ9eTsjy_o4hmXbBpIGSlp6E4pWDlq80kayF9K_vnI2JJBDYGDm8HtvmHlHZD_E4Aj5jDBDBPX1dvFnPqMAfCYlZVTukUNUDGsAyvfLDFLVQsi_B-Qo5xUAshbVIfl1EarLsHV58Pdm8DFUpX5Gnx-rRdj6FMPahSFXPlSLbezHCTHpsboe-zLerZwd_NZVN5vBr_2_J4eP5ENn-uw-Pfdj8vvb4nb-o766-X45v7iqLaPtUBsHKBrsjOXSIpUtFxKUWqql421nqDWItlHYgBNNJ-UdX8qu4y0TglFmmuaYfNn5blJ8GMsFeu2zdX1vgotj1lIC50zRiTx_l2xYSxUIVcDTN-AqjimUK7TkDASiwAKdPUMmW9N3yQTrs94kvy6f0Vj2tq2azGDH2RRzTq57RUBPmekpMz1lpneZFQl_I7F-eHrqkIzv3xOe7ITeOfeyh1EKXPDmP5f9pVA
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TCYB_2014_2310651
crossref_primary_10_1109_TETCI_2023_3336918
crossref_primary_10_1016_j_ins_2022_05_050
crossref_primary_10_1109_TCYB_2016_2520477
crossref_primary_10_1016_j_ins_2013_06_037
crossref_primary_10_1007_s40747_021_00270_8
crossref_primary_10_1007_s11277_024_11415_6
crossref_primary_10_1016_j_eswa_2010_02_008
crossref_primary_10_1016_j_ijleo_2013_05_101
crossref_primary_10_1109_TEVC_2010_2051443
crossref_primary_10_1109_TSMC_2019_2943973
crossref_primary_10_1016_j_neucom_2023_126761
crossref_primary_10_1016_j_engappai_2025_111676
crossref_primary_10_1016_j_asoc_2023_110631
crossref_primary_10_1109_TCYB_2015_2510698
crossref_primary_10_1109_TEVC_2013_2248159
crossref_primary_10_1016_j_asoc_2024_111600
crossref_primary_10_1016_j_future_2018_06_008
crossref_primary_10_1049_iet_ipr_2020_0535
crossref_primary_10_1109_TEVC_2016_2639360
crossref_primary_10_1007_s10710_012_9164_7
crossref_primary_10_1007_s40747_022_00717_6
crossref_primary_10_1007_s10732_008_9077_z
crossref_primary_10_1016_j_asoc_2018_12_031
crossref_primary_10_1007_s10589_014_9717_1
crossref_primary_10_1016_j_asoc_2019_03_042
crossref_primary_10_1109_TEVC_2013_2244898
crossref_primary_10_1162_evco_a_00170
crossref_primary_10_1109_TEVC_2008_920671
crossref_primary_10_1016_j_ejor_2009_11_003
crossref_primary_10_1109_TCYB_2022_3151974
crossref_primary_10_1109_TEVC_2008_925798
crossref_primary_10_1007_s12293_009_0029_4
crossref_primary_10_1016_j_swevo_2017_08_004
crossref_primary_10_1109_TCYB_2019_2909806
crossref_primary_10_1016_j_swevo_2024_101468
crossref_primary_10_1016_j_eswa_2025_129325
crossref_primary_10_1016_j_neucom_2023_03_073
crossref_primary_10_1007_s00158_021_02852_z
crossref_primary_10_1080_00207721_2011_598964
crossref_primary_10_1109_TEVC_2010_2046666
crossref_primary_10_1016_j_ins_2018_10_005
crossref_primary_10_1109_TSMCB_2012_2209115
crossref_primary_10_1016_j_swevo_2011_03_001
crossref_primary_10_1002_2017WR022068
crossref_primary_10_1109_TEVC_2014_2304415
crossref_primary_10_1109_TEVC_2009_2021467
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TEVC_2016_2574621
crossref_primary_10_1016_j_ejor_2009_05_005
crossref_primary_10_1145_3300148
crossref_primary_10_1162_EVCO_a_00066
crossref_primary_10_1109_TFUZZ_2018_2848261
crossref_primary_10_1002_mcda_1486
crossref_primary_10_1080_00207721_2011_618645
crossref_primary_10_1016_j_swevo_2023_101259
crossref_primary_10_1093_jcde_qwac130
crossref_primary_10_1109_TEVC_2019_2896967
crossref_primary_10_1007_s13369_020_05147_5
crossref_primary_10_1016_j_artint_2015_06_004
crossref_primary_10_1109_TCYB_2018_2881227
crossref_primary_10_1016_j_swevo_2024_101492
crossref_primary_10_3846_tede_2019_10291
crossref_primary_10_1109_TEVC_2018_2872453
crossref_primary_10_1016_j_swevo_2016_09_002
crossref_primary_10_3390_math10060943
crossref_primary_10_1016_j_advwatres_2017_03_023
crossref_primary_10_1007_s11783_017_0934_6
crossref_primary_10_1007_s40815_023_01558_2
crossref_primary_10_1016_j_ins_2019_09_060
crossref_primary_10_2478_jee_2022_0017
crossref_primary_10_1109_TSMC_2024_3357872
crossref_primary_10_1007_s12293_009_0012_0
crossref_primary_10_1016_j_jhydrol_2024_132576
crossref_primary_10_1109_TCYB_2021_3059252
crossref_primary_10_1109_TEVC_2009_2033586
crossref_primary_10_1109_TEVC_2022_3233364
crossref_primary_10_1016_j_advwatres_2011_10_011
crossref_primary_10_1016_j_camwa_2012_02_051
crossref_primary_10_1109_TFUZZ_2020_2979119
crossref_primary_10_1007_s11047_014_9415_z
crossref_primary_10_1007_s12293_015_0175_9
crossref_primary_10_1109_TCYB_2014_2307319
crossref_primary_10_1007_s13042_017_0695_3
crossref_primary_10_1016_j_ejor_2023_08_023
crossref_primary_10_3390_su13010410
crossref_primary_10_1007_s00500_016_2076_3
crossref_primary_10_1016_j_ins_2019_01_066
crossref_primary_10_1016_j_knosys_2018_05_043
crossref_primary_10_1007_s00500_013_1085_8
crossref_primary_10_1109_TEVC_2019_2958075
crossref_primary_10_1016_j_swevo_2023_101420
crossref_primary_10_1038_s41598_024_68436_1
crossref_primary_10_1109_TEVC_2024_3438115
crossref_primary_10_1007_s00500_018_3356_x
crossref_primary_10_1016_j_swevo_2016_12_005
Cites_doi 10.1002/j.1538-7305.1948.tb01338.x
10.1162/106365604773955139
10.1016/S0933-3657(02)00014-3
10.1162/evco.1999.7.3.205
10.1109/TEVC.2003.810760
10.1016/j.ejor.2004.08.038
10.1109/CEC.2002.1007013
10.1109/CEC.2003.1299404
10.1109/TSMCB.2002.804372
10.1016/S0045-7825(99)00386-2
10.1613/jair.842
10.1109/4235.974840
10.1007/3-540-44719-9_23
10.1007/978-1-4684-5287-7
10.1016/S0377-2217(98)00262-8
10.1109/CEC.2000.870296
10.1109/TEVC.2003.812220
10.1017/S0890060401020054
10.1109/CEC.2000.870274
10.1109/TEVC.2003.810758
10.1162/106365600568202
10.1109/TSMCA.2004.824873
10.1109/TEVC.2003.810761
10.1162/evco.1994.2.3.221
10.1109/CEC.2002.1006261
10.1109/4235.910466
10.1214/aoms/1177704472
10.1162/106365600568167
10.1109/4235.797969
10.1007/BF03325101
10.1109/4235.996017
10.1109/ICEC.1994.350045
10.1109/TAES.2004.1310019
10.1109/CEC.2000.870756
10.1109/CEC.2002.1007024
10.1109/4235.735433
10.1109/4235.985690
10.1109/TEVC.2003.810759
10.1007/3-540-44719-9_22
10.1145/298151.298382
10.1023/A:1015516501242
10.1109/CEC.2001.934294
10.1016/S0165-0114(01)00161-0
10.1007/s10462-004-2902-3
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2006.882428
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 381
ExternalDocumentID 2333530511
18805599
10_1109_TEVC_2006_882428
4220676
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c425t-ae01731fac68c1285678099d9de65fa2ca11c39130e73f88b6d8ff65477424a33
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247044400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Sep 27 23:08:56 EDT 2025
Sat Sep 27 21:40:05 EDT 2025
Sun Nov 30 03:54:57 EST 2025
Mon Jul 21 09:13:24 EDT 2025
Tue Nov 18 21:25:31 EST 2025
Sat Nov 29 03:13:45 EST 2025
Tue Aug 26 16:43:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Discontinuity
Local search
Probabilistic approach
Evolutionary algorithm
Empirical method
Multiobjective programming
Optimization
multiobjective optimization
Environment impact
Imperfect information
Evolutionary algorithms (EAs)
Robustness
noisy fitness function
Signal distortion
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-ae01731fac68c1285678099d9de65fa2ca11c39130e73f88b6d8ff65477424a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/55042
PQID 864071171
PQPubID 23500
PageCount 28
ParticipantIDs proquest_miscellaneous_880664923
proquest_miscellaneous_34529079
pascalfrancis_primary_18805599
proquest_journals_864071171
crossref_citationtrail_10_1109_TEVC_2006_882428
ieee_primary_4220676
crossref_primary_10_1109_TEVC_2006_882428
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref15
ref14
ref53
ref52
ref55
ref54
ref17
ref16
branke (ref6) 2001
rana (ref33) 1996
zitzler (ref56) 2001
giraud-carrier (ref8) 2000
ref51
ref50
singh (ref41) 2003
ref46
ref45
ref48
ref42
ref44
goldberg (ref19) 1987
ref43
ref49
coello (ref10) 2002; 16
ref7
ref4
ref3
ref5
ref40
fonseca (ref18) 1993
ref35
goldberg (ref20) 2002
scott (ref39) 1995
ref37
rudolph (ref36) 2001; 1
ref31
ref30
coello (ref9) 1999; 1
rattray (ref34) 1997
ref32
deb (ref12) 1989
ref2
ref1
ref38
tan (ref47) 2003; 18
ref24
corne (ref11) 2000
ref26
ref25
ref22
ref21
ref28
ref27
ref29
hughes (ref23) 2001; 2
References_xml – ident: ref40
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref15
  doi: 10.1162/106365604773955139
– volume: 1
  start-page: 318
  year: 2001
  ident: ref36
  article-title: a partial order approach to noisy fitness functions
  publication-title: Proc Congr Evol Comput
– ident: ref46
  doi: 10.1016/S0933-3657(02)00014-3
– ident: ref13
  doi: 10.1162/evco.1999.7.3.205
– year: 2002
  ident: ref20
  publication-title: The Design of Innovation Lessons from and for Competent Genetic Algorithms
– ident: ref53
  doi: 10.1109/TEVC.2003.810760
– ident: ref48
  doi: 10.1016/j.ejor.2004.08.038
– ident: ref27
  doi: 10.1109/CEC.2002.1007013
– ident: ref49
  doi: 10.1109/CEC.2003.1299404
– ident: ref7
  doi: 10.1109/TSMCB.2002.804372
– start-page: 41
  year: 1987
  ident: ref19
  article-title: genetic algorithms with sharing for multi-modal function optimization
  publication-title: Proc 2nd Int Conf Genetic Algorithms
– ident: ref4
  doi: 10.1016/S0045-7825(99)00386-2
– volume: 18
  start-page: 183
  year: 2003
  ident: ref47
  article-title: an evolutionary algorithm with advanced goal and priority specification for multi-objective optimization
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.842
– ident: ref44
  doi: 10.1109/4235.974840
– ident: ref22
  doi: 10.1007/3-540-44719-9_23
– ident: ref16
  doi: 10.1007/978-1-4684-5287-7
– ident: ref21
  doi: 10.1016/S0377-2217(98)00262-8
– start-page: 839
  year: 2000
  ident: ref11
  article-title: the pareto envelope-based selection algorithm for multiobjective optimization
  publication-title: Proc 6th Int Conf Parallel Problem Solving From Nature (PPSN VI)
– ident: ref52
  doi: 10.1109/CEC.2000.870296
– ident: ref30
  doi: 10.1109/TEVC.2003.812220
– volume: 16
  start-page: 39
  year: 2002
  ident: ref10
  publication-title: Artificial Intelligence in Eng Design Analysis and Manufacturing
  doi: 10.1017/S0890060401020054
– ident: ref29
  doi: 10.1109/CEC.2000.870274
– ident: ref57
  doi: 10.1109/TEVC.2003.810758
– start-page: 416
  year: 1993
  ident: ref18
  article-title: genetic algorithm for multiobjective optimization, formulation, discussion and generalization
  publication-title: Proc 5th Int Conf Genetic Algorithms
– year: 1995
  ident: ref39
  publication-title: Fault tolerant design using single and multi-criteria genetic algorithms
– ident: ref55
  doi: 10.1162/106365600568202
– ident: ref17
  doi: 10.1109/TSMCA.2004.824873
– ident: ref5
  doi: 10.1109/TEVC.2003.810761
– start-page: 243
  year: 2001
  ident: ref6
  article-title: efficient fitness estimation in noisy environments
  publication-title: Proc Genetic Evolutionary Computatation Conf
– ident: ref38
  doi: 10.1162/evco.1994.2.3.221
– start-page: 198
  year: 1996
  ident: ref33
  article-title: searching in the presence of noise
  publication-title: Proc 4th Int Conf Parallel Problem Solving from Nature (PPSN IV)
– ident: ref37
  doi: 10.1109/CEC.2002.1006261
– ident: ref42
  doi: 10.1109/4235.910466
– ident: ref32
  doi: 10.1214/aoms/1177704472
– ident: ref26
  doi: 10.1162/106365600568167
– start-page: 117
  year: 1997
  ident: ref34
  publication-title: Foundations of Genetic Algorithms 4
– ident: ref54
  doi: 10.1109/4235.797969
– volume: 1
  start-page: 269
  year: 1999
  ident: ref9
  article-title: a comprehensive survey of evolutionary-based multiobjective optimization techniques
  publication-title: Int J Knowl Inf Syst
  doi: 10.1007/BF03325101
– start-page: 42
  year: 1989
  ident: ref12
  article-title: an investigation on niche and species formation in genetic function optimization
  publication-title: Proc 3rd Int Conf Genetic Algorithms
– ident: ref14
  doi: 10.1109/4235.996017
– ident: ref3
  doi: 10.1109/ICEC.1994.350045
– ident: ref28
  doi: 10.1109/TAES.2004.1310019
– ident: ref35
  doi: 10.1109/CEC.2000.870756
– ident: ref2
  doi: 10.1109/CEC.2002.1007024
– ident: ref31
  doi: 10.1109/4235.735433
– start-page: 36
  year: 2000
  ident: ref8
  article-title: unifying learning with evolution through baldwinian evolution and lamarckism: a case study
  publication-title: Proc Symp Comput Intell Learning
– ident: ref1
  doi: 10.1109/4235.985690
– ident: ref24
  doi: 10.1109/TEVC.2003.810759
– ident: ref50
  doi: 10.1007/3-540-44719-9_22
– ident: ref51
  doi: 10.1145/298151.298382
– ident: ref45
  doi: 10.1023/A:1015516501242
– year: 2001
  ident: ref56
  publication-title: SPEA2 Improving the strength Pareto evolutionary algorithm
– volume: 2
  start-page: 963
  year: 2001
  ident: ref23
  article-title: constraint handling with uncertain and noisy multi-objective evolution
  publication-title: Proc 2001 Congr Evol Comput
  doi: 10.1109/CEC.2001.934294
– ident: ref43
  doi: 10.1016/S0165-0114(01)00161-0
– ident: ref25
  doi: 10.1007/s10462-004-2902-3
– year: 2003
  ident: ref41
  publication-title: Uncertainty based multi-objective optimization of groundwater remediation design
SSID ssj0014519
Score 2.3088055
Snippet In addition to satisfying several competing objectives, many real-world applications are also characterized by a certain degree of noise, manifesting itself in...
Three noise-handling features are then proposed based upon the analysis of empirical results, including an experiential learning directed perturbation operator...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 354
SubjectTerms Algorithms
Applied sciences
Archiving
Artificial intelligence
Computer science; control theory; systems
Constraint optimization
Convergence
Distortion
Evolutionary
Evolutionary algorithms
Evolutionary algorithms (EAs)
Evolutionary computation
Exact sciences and technology
Learning and adaptive systems
multiobjective optimization
Noise measurement
Noise robustness
noisy fitness function
Optimization
Parallel processing
Search methods
Searching
Signal distortion
Stochastic processes
Strategy
Studies
Working environment noise
Title An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/4220676
https://www.proquest.com/docview/864071171
https://www.proquest.com/docview/34529079
https://www.proquest.com/docview/880664923
Volume 11
WOSCitedRecordID wos000247044400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UfPAe_D6sn3m4lwN722y3TfIosuKDrHKo7FtJ0wRWtJXtruB_70y_XDlPEPpQaNKGTCYz6cz8fgC_tEYrIG3q61RwKsmxPnn5BK9tlQudy0wFmX8lRiM5HqubJTjtamGstVXymf1Dt1UsPyvMnH6V9QZ9AhuPl2FZCFHXanURA4JJqZPpFXqMctyGJAPVux3en9dhB3QnB8S7vmCCKk4VyojUJU6Kq9ks_tmYK2tzsfG9cW7CeuNVsrN6GWzBks23YaNlbGCNAm_DjwX4wR34e5azBZyNImd4jYpJ-cqGC_VvbJKz4UuzRPX0lVVFu0X6UO-V7Bp3naemnHMX7i6Gt-eXfsOx4BvU1pmvLapkyJ02sTRoqyI0Xug0ZiqzceR032jOTajQ0lkROinTOJPOEWMxnqkHOgx_wkpe5HYPmHNCRpmSmVZ6IB3XkUqJnNJI7tIsCjzotdOemAaAnHgwHpPqIBKohARFvJhxUgvKg99dj-cafOOLtjskiK5dIwMPjj9I9v09uHER2poHB62ok0Z9y0RSeJNzwT046Z6i3lEwRee2mJdJSBHrQGB_9p8W-IE4Jvy7_c-HdgBrbfJhwA9hZTad2yNYNS-zSTk9rlb3Gy2d-Sc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_UFtQHbf3AqNV96EvBeNnL1-6jyIml12sp13JvYbPZhRNN5HIn-N87ky-vWIVCHgLZTZadnZ3ZzMzvB_BZKbQCwqSuSmNOJTnGJS-f4LWNtL61ma4g84fxaCQmE_lzBc66WhhjTJV8Zs7ptorlZ4Ve0K-yXtAnsPFoFd6FQdDndbVWFzMgoJQ6nV6izygmbVDSk73x4M9lHXhAhzIg5vUlI1SxqlBOpCpxWmzNZ_Fia67szdX2_430A2w1fiW7qBfCR1gx-Q5st5wNrFHhHdhcAiDchV8XOVtC2ihyhteomJaPbLBUAcemORs8NItUzR5ZVbZbpDf1bsl-4L5z1xR07sHvq8H48tptWBZcjfo6d5VBpfS5VToSGq1ViOYL3cZMZiYKreprxbn2Jdo6E_tWiDTKhLXEWYyn6kD5_j6s5UVuDoBZG4swkyJTUgXCchXKlOgpteA2zULPgV477YluIMiJCeM2qY4inkxIUMSMGSW1oBz40vW4r-E33mi7S4Lo2jUycODkL8k-vwe3LsJbc-CoFXXSKHCZCApwch5zB067p6h5FE5RuSkWZeJTzNqLsT97pQV-IIoIAe_w30M7hfXr8fdhMvw6-nYEG20qosePYW0-W5hP8F4_zKfl7KRa6U9BZvxu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Investigation+on+Noisy+Environments+in+Evolutionary+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Goh%2C+C.K.&rft.au=Tan%2C+K.C.&rft.date=2007-06-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=11&rft.issue=3&rft.spage=354&rft.epage=381&rft_id=info:doi/10.1109%2FTEVC.2006.882428&rft.externalDocID=4220676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon