Poisson noise removal from high-resolution STEM images based on periodic block matching

Scanning transmission electron microscopy (STEM) provides sub-ångstrom, atomic resolution images of crystalline structures. However, in many applications, the ability to extract information such as atom positions, from such electron micrographs, is severely obstructed by low signal-to-noise ratios o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced structural and chemical imaging Jg. 1; H. 1; S. 1 - 19
Hauptverfasser: Mevenkamp, Niklas, Binev, Peter, Dahmen, Wolfgang, Voyles, Paul M, Yankovich, Andrew B, Berkels, Benjamin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 25.03.2015
Springer Nature B.V
Schlagworte:
ISSN:2198-0926, 2198-0926
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scanning transmission electron microscopy (STEM) provides sub-ångstrom, atomic resolution images of crystalline structures. However, in many applications, the ability to extract information such as atom positions, from such electron micrographs, is severely obstructed by low signal-to-noise ratios of the acquired images resulting from necessary limitations to the electron dose. We present a denoising strategy tailored to the special features of atomic-resolution electron micrographs of crystals limited by Poisson noise based on the block-matching and 3D-filtering (BM3D) algorithm by Dabov et al. We also present an economized block-matching strategy that exploits the periodic structure of the observed crystals. On simulated single-shot STEM images of inorganic materials, with incident electron doses below 4 C/cm 2 , our new method achieves precisions of 7 to 15 pm and an increase in peak signal-to-noise ratio (PSNR) of 15 to 20 dB compared to noisy images and 2 to 4 dB compared to images denoised with the original BM3D.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2198-0926
2198-0926
DOI:10.1186/s40679-015-0004-8