Improved Backward Error Bounds for LU and Cholesky Factorizations

Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\widehat L| |\wideh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications Jg. 35; H. 2; S. 684 - 698
Hauptverfasser: Rump, Siegfried M., Jeannerod, Claude-Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2014
Schlagworte:
ISSN:0895-4798, 1095-7162
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\widehat L| |\widehat U|$ or $|\Delta A| \le \gamma_{n+1} |\widehat R^T| |\widehat R|$. Here, $\widehat L$, $\widehat U$, and $\widehat R$ denote the computed factors, and $\gamma_n$ is the usual fraction $nu/(1-nu) = nu + {\mathcal O}(u^2)$ with $u$ the unit roundoff. Similarly, when solving an $n\times n$ triangular system $Tx = b$ by substitution, the computed solution $\widehat x$ satisfies $(T+\Delta T)\widehat x = b$ with $|\Delta T| \le \gamma_n |T|$. All these error bounds contain quadratic terms in $u$ and limit $n$ to satisfy either $nu<1$ or $(n+1)u < 1$. We show in this paper that the constants $\gamma_n$ and $\gamma_{n+1}$ can be replaced by $nu$ and $(n+1)u$, respectively, and that the restrictions on $n$ can be removed. To get these new bounds the main ingredient is a general framework for bounding expressions of the form $|\rho-s|$, where $s$ is the exact sum of a floating-point number and $n-1$ real numbers and where $\rho$ is a real number approximating the computed sum $\widehat s$. By instantiating this framework with suitable values of $\rho$, we obtain improved versions of the well-known Lemma 8.4 from [N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002] (used for analyzing triangular system solving and LU factorization) and of its Cholesky variant. All our results hold for rounding to nearest with any tie-breaking strategy and whatever the order of summation. [PUBLICATION ABSTRACT]
AbstractList Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\hat L| |\hat U|$ or $|\Delta A| \le \gamma_{n+1} |\hat R^T| |\hat R|$. Here, $\hat L$, $\hat U$, and $\hat R$ denote the computed factors, and $\gamma_n$ is the usual fraction $nu/(1-nu) = nu + {\mathcal O}(u^2)$ with $u$ the unit roundoff. Similarly, when solving an $n\times n$ triangular system $Tx = b$ by substitution, the computed solution $\hat x$ satisfies $(T+\Delta T)\hat x = b$ with $|\Delta T| \le \gamma_n |T|$. All these error bounds contain quadratic terms in $u$ and limit $n$ to satisfy either $nu<1$ or $(n+1)u < 1$. We show in this paper that the constants $\gamma_n$ and $\gamma_{n+1}$ can be replaced by $nu$ and $(n+1)u$, respectively, and that the restrictions on $n$ can be removed. To get these new bounds the main ingredient is a general framework for bounding expressions of the form $|\rho-s|$, where $s$ is the exact sum of a floating-point number and $n-1$ real numbers, and where $\rho$ is a real number approximating the computed sum $\hat s$. By instantiating this framework with suitable values of $\rho$, we obtain improved versions of the well-known Lemma~8.4 in Higham's ASNA~\cite[p.~142]{Hig02} (used for analyzing triangular system solving and LU factorization) and of its Cholesky variant~\cite[solution to Problem~10.3]{Hig02}. All our results hold for rounding to nearest with any tie-breaking strategy and no matter what the order of summation.
Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\widehat L| |\widehat U|$ or $|\Delta A| \le \gamma_{n+1} |\widehat R^T| |\widehat R|$. Here, $\widehat L$, $\widehat U$, and $\widehat R$ denote the computed factors, and $\gamma_n$ is the usual fraction $nu/(1-nu) = nu + {\mathcal O}(u^2)$ with $u$ the unit roundoff. Similarly, when solving an $n\times n$ triangular system $Tx = b$ by substitution, the computed solution $\widehat x$ satisfies $(T+\Delta T)\widehat x = b$ with $|\Delta T| \le \gamma_n |T|$. All these error bounds contain quadratic terms in $u$ and limit $n$ to satisfy either $nu<1$ or $(n+1)u < 1$. We show in this paper that the constants $\gamma_n$ and $\gamma_{n+1}$ can be replaced by $nu$ and $(n+1)u$, respectively, and that the restrictions on $n$ can be removed. To get these new bounds the main ingredient is a general framework for bounding expressions of the form $|\rho-s|$, where $s$ is the exact sum of a floating-point number and $n-1$ real numbers and where $\rho$ is a real number approximating the computed sum $\widehat s$. By instantiating this framework with suitable values of $\rho$, we obtain improved versions of the well-known Lemma 8.4 from [N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002] (used for analyzing triangular system solving and LU factorization) and of its Cholesky variant. All our results hold for rounding to nearest with any tie-breaking strategy and whatever the order of summation. [PUBLICATION ABSTRACT]
Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\widehat L| |\widehat U|$ or $|\Delta A| \le \gamma_{n+1} |\widehat R theta | |\widehat R|$. Here, $\widehat L$, $\widehat U$, and $\widehat R$ denote the computed factors, and $\gamma_n$ is the usual fraction $nu/(1-nu) = nu + {\mathcal O}(u arrow up )$ with $u$ the unit roundoff. Similarly, when solving an $n\times n$ triangular system $Tx = b$ by substitution, the computed solution $\widehat x$ satisfies $(T+\Delta T)\widehat x = b$ with $|\Delta T| \le \gamma_n
Author Rump, Siegfried M.
Jeannerod, Claude-Pierre
Author_xml – sequence: 1
  givenname: Siegfried M.
  surname: Rump
  fullname: Rump, Siegfried M.
– sequence: 2
  givenname: Claude-Pierre
  surname: Jeannerod
  fullname: Jeannerod, Claude-Pierre
BackLink https://inria.hal.science/hal-00841361$$DView record in HAL
BookMark eNptkE1PwkAQhjdGEwE9-A-aeNFDZWfb7scRCAgJiRc5N9vtNhRKF3dbDP56t2IwIV7mnUye-Xr76Lo2tUboAfALQMSGEGFBGIngCvUAiyRkQMk16mHu85gJfov6zm0wBhoL6KHRYre35qDzYCzV9lPaPJhaa2wwNm2du6Dw6XIVyDoPJmtTabc9BjOpGmPLL9mUpnZ36KaQldP3vzpAq9n0fTIPl2-vi8loGaqYJE0ocBFDplmReREsAygSzXhEFWY4o0IlWneBMZqrnJAippQLJWReRJITGg3Q82nuWlbp3pY7aY-pkWU6Hy3TroYxjyGicCCefTqx_rePVrsm3ZVO6aqStTatSyFJADCNow59vEA3prW1_8RThCfAGRd_y5U1zlldnC8AnHbGp2fjPTu8YFXZ_HjVWFlW_3R8A-g1gzQ
CitedBy_id crossref_primary_10_1137_20M1334796
crossref_primary_10_1007_s10817_015_9339_z
crossref_primary_10_1002_nla_1998
crossref_primary_10_1137_18M1226312
crossref_primary_10_1016_j_tcs_2017_03_034
crossref_primary_10_1587_nolta_6_360
crossref_primary_10_1007_s10915_025_02978_y
crossref_primary_10_1365_s13291_016_0138_1
crossref_primary_10_1016_j_parco_2019_102571
crossref_primary_10_1080_10556788_2018_1435649
crossref_primary_10_1109_TMAG_2022_3156289
crossref_primary_10_1137_22M1519523
Cites_doi 10.1007/s10543-011-0342-4
10.1007/PL00009321
10.1145/227699.227701
10.1137/050645671
10.1137/1037130
10.1137/120894488
ContentType Journal Article
Copyright 2014, Society for Industrial and Applied Mathematics
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014, Society for Industrial and Applied Mathematics
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
7SC
8FD
L7M
L~C
L~D
1XC
VOOES
DOI 10.1137/130927231
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Agriculture Science Database
Computing Database
Military Database
Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Agricultural Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1095-7162
EndPage 698
ExternalDocumentID oai:HAL:hal-00841361v2
3315621561
10_1137_130927231
GroupedDBID -~X
.4S
.DC
123
186
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFHD
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
YNT
ZKB
ZY4
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7SC
8FD
L7M
L~C
L~D
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c425t-90f41be7fb41b97b11f5e7836c070b69c5ee9c5e776dcd22f46689c9adf3a8263
IEDL.DBID K7-
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338830100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-4798
IngestDate Sat Nov 29 15:15:20 EST 2025
Fri Sep 05 12:28:09 EDT 2025
Sat Aug 16 22:52:41 EDT 2025
Sat Nov 29 02:43:42 EST 2025
Tue Nov 18 21:30:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords floating-point summation
rounding error analysis
LU factorization
triangular system solving
Cholesky factorization
backward error
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-90f41be7fb41b97b11f5e7836c070b69c5ee9c5e776dcd22f46689c9adf3a8263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://inria.hal.science/hal-00841361
PQID 1528518789
PQPubID 666305
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_00841361v2
proquest_miscellaneous_1551106432
proquest_journals_1528518789
crossref_primary_10_1137_130927231
crossref_citationtrail_10_1137_130927231
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 2014
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb9
atypb8
Wilkinson J. H. (atypb11) 1974; 10
atypb1
atypb2
atypb5
atypb7
References_xml – ident: atypb7
  doi: 10.1007/s10543-011-0342-4
– ident: atypb9
  doi: 10.1007/PL00009321
– volume: 10
  start-page: 354
  year: 1974
  ident: atypb11
  publication-title: IMA Bull.
– ident: atypb2
  doi: 10.1145/227699.227701
– ident: atypb8
  doi: 10.1137/050645671
– ident: atypb1
  doi: 10.1137/1037130
– ident: atypb5
  doi: 10.1137/120894488
SSID ssj0016491
Score 2.167513
Snippet Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 684
SubjectTerms Algorithms
Arithmetic
Cholesky factorization
Computation
Computer Arithmetic
Computer Science
Error analysis
Errors
Floating point arithmetic
Mathematical models
Numerical Analysis
Title Improved Backward Error Bounds for LU and Cholesky Factorizations
URI https://www.proquest.com/docview/1528518789
https://www.proquest.com/docview/1551106432
https://inria.hal.science/hal-00841361
Volume 35
WOSCitedRecordID wos000338830100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: 7WY
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M0C
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: P5Z
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M0K
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M7P
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: K7-
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M7S
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: PATMY
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: KB.
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M1Q
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: BENPR
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M2O
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20140731
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M2P
  dateStart: 19800301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RjQd4YHyKwlaZiQdezGrnw_HT1FatJm0rHWxi8BIltiOmTemWdJP473fnpEEgxAsvv0SxFVm2z3e-s-8H8N4ZR-FMxS3qbh5mQ8sTN8y5Q8kzkbaRs8aTTaj5PDk_14vW4Va3xyrXa6JfqO3SkI98D_UMGgeJSvT-9Q0n1iiKrrYUGj3YFFIKmueHindRhDhsGPMSHZEHKWkzC4lA7eHSraWSgfhNH_V-0GnIPxZlr2lmW__bxqfwpLUx2aiZFM_ggSufw-PjLkFr_QJGjTPBWTYmBx5OEzatqmXFxkSzVDM0ZdnRGctKyybEoFtf_mQzT82zvrf5Es5m09PJAW_ZFLhBuVxxPSxCkTtV5PjQKheiiBzd4TAo9XmsTeQcgVKxNVbKIozjRBud2SLIcBMSvIKNclm618BCGwptYlsYRRpeakPhyEzEicLqKuzDh3WfpqZNNU6MF1ep33IEKu26vw-7XdXrJr_GXyvhwHTllBH7YHSU0jfiAxBBLO5kH7bXg5K2clinv0akD--6YpQgCotkpVveUh1sPFlm8s2_f_EWHqG5FDYOmG3YWFW3bgcemrvVRV0NoKe-fhvA5ng6X3we-IlIOP6IeDyceDwkFCeE8pPHhcdTQuXf1RfERfT9HtqI6oo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqEQ5QMtDLAXqVlTqJWLtPBwfEFoeq0Usqx5ApaeQ2I5aFWUhWUD8qf5GZvKqQKg3Dr0kUjyykvjzzHjGng9g22pL6UzpGLTdjhd3jRPabuJYnHnaV8a3RpdkE3I0Ci8u1Lcp-NOchaFtlY1OLBW1GWuKke-gnUHnIJSh2ru-cYg1irKrDYVGBYsT-3CPS7Zi9_gQx_eLEP2js4OBU7MKOBrxOXFUN_V4YmWa4E3JhPPUt3SWQSP6k0Bp31q6SBkYbYRIvSAIlVaxSd0YnXEX-52GWdTjkqgi5PcfbdYi8CqGvlD5FLEK60pG3JU7aCqUkMLlT-zf9E_affnMCJSWrb_4v_2Td7BQ-9CsV4H-PUzZbAnmT9sCtMUy9KpgiTVsnwKUOA3YUZ6Pc7ZPNFIFQ1edDc9ZnBl2QAzBxe8H1i-ph5pzqStw_irfsAoz2Tiza8A843GlA5NqSR6MUJrSrTEPQoni0uvA12YMI12XUidGj6uoXFK5MmqHuwOfW9Hrqn7Ii0IIhLadKn4PesOInhHfAXcDfic6sNGAIKr1TBH9RUAHPrXNqCEo7RNndnxLMvjy5HmK9X938RHmBmenw2h4PDr5AG_RNfSqYNMGzEzyW7sJb_Td5FeRb5WwZ3D52ph6BOluPKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Backward+Error+Bounds+for+LU+and+Cholesky+Factorizations&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Rump%2C+Siegfried+M.&rft.au=Jeannerod%2C+Claude-Pierre&rft.date=2014-01-01&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=35&rft.issue=2&rft.spage=684&rft.epage=698&rft_id=info:doi/10.1137%2F130927231&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_130927231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon