An approximate dynamic programming approach for the vehicle routing problem with stochastic demands

This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization perspective. The methods extend the rollout algorithm by implementing different base sequences (i.e. a priori solutions), look-ahead policies...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 196; číslo 2; s. 509 - 515
Hlavní autori: Novoa, Clara, Storer, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.07.2009
Elsevier
Elsevier Sequoia S.A
Edícia:European Journal of Operational Research
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization perspective. The methods extend the rollout algorithm by implementing different base sequences (i.e. a priori solutions), look-ahead policies, and pruning schemes. The paper also considers computing the cost-to-go with Monte Carlo simulation in addition to direct approaches. The best new method found is a two-step lookahead rollout started with a stochastic base sequence. The routing cost is about 4.8% less than the one-step rollout algorithm started with a deterministic sequence. Results also show that Monte Carlo cost-to-go estimation reduces computation time 65% in large instances with little or no loss in solution quality. Moreover, the paper compares results to the perfect information case from solving exact a posteriori solutions for sampled vehicle routing problems. The confidence interval for the overall mean difference is (3.56%, 4.11%).
AbstractList This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization perspective. The methods extend the rollout algorithm by implementing different base sequences (i.e. a priori solutions), look-ahead policies, and pruning schemes. The paper also considers computing the cost-to-go with Monte Carlo simulation in addition to direct approaches. The best new method found is a two-step lookahead rollout started with a stochastic base sequence. The routing cost is about 4.8% less than the one-step rollout algorithm started with a deterministic sequence. Results also show that Monte Carlo cost-to-go estimation reduces computation time 65% in large instances with little or no loss in solution quality. Moreover, the paper compares results to the perfect information case from solving exact a posteriori solutions for sampled vehicle routing problems. The confidence interval for the overall mean difference is (3.56%, 4.11%).
This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization perspective. The methods extend the rollout algorithm by implementing different base sequences (i.e. a priori solutions), look-ahead policies, and pruning schemes. The paper also considers computing the cost-to-go with Monte Carlo simulation in addition to direct approaches. The best new method found is a two-step lookahead rollout started with a stochastic base sequence. The routing cost is about 4.8% less than the one-step rollout algorithm started with a deterministic sequence. Results also show that Monte Carlo cost-to-go estimation reduces computation time 65% in large instances with little or no loss in solution quality. Moreover, the paper compares results to the perfect information case from solving exact a posteriori solutions for sampled vehicle routing problems. The confidence interval for the overall mean difference is (3.56%, 4.11%). [PUBLICATION ABSTRACT]
This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization perspective. The methods extend the rollout algorithm by implementing different base sequences (i.e. a priori solutions), look-ahead policies, and pruning schemes. The paper also considers computing the cost-to-go with Monte Carlo simulation in addition to direct approaches. The best new method found is a two-step lookahead rollout started with a stochastic base sequence. The routing cost is about 4.8% less than the one-step rollout algorithm started with a deterministic sequence. Results also show that Monte Carlo cost-to-go estimation reduces computation time 65% in large instances with little or no loss in solution quality. Moreover, the paper compares results to the perfect information case from solving exact a posteriori solutions for sampled vehicle routing problems. The confidence interval for the overall mean difference is (3.56%, 4.11%).
Author Storer, Robert
Novoa, Clara
Author_xml – sequence: 1
  givenname: Clara
  surname: Novoa
  fullname: Novoa, Clara
  email: cn17@txstate.edu
  organization: Texas State University, Ingram School of Engineering, Industrial Engineering Program, San Marcos, TX 78666, USA
– sequence: 2
  givenname: Robert
  surname: Storer
  fullname: Storer, Robert
  email: rhs2@lehigh.edu
  organization: Industrial and Systems Engineering Department, Lehigh University, Bethlehem, PA 18015, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21235489$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a196_3ay_3a2009_3ai_3a2_3ap_3a509-515.htm$$DView record in RePEc
BookMark eNp9UU2P1DAMjdAiMbvwBzhVSBxbkjSdpBKX1YovsRIXOEdp6m5TtUlJMgPz73HVhQOHjeQ4st97duxrcuWDB0JeM1oxyo7vpgqmECtOqapoXVFePyMHpiQvj-pIr8iB1lKWnDP5glynNFFKWcOaA7G3vjDrGsNvt5gMRX_xZnG2wMhDNMvi_MOeN3YshhCLPEJxhtHZGYoYTnkDYLqbYSl-uTwWKQc7mpRRpIfF-D69JM8HMyd49ehvyI-PH77ffS7vv336cnd7X1rBm1wq6Dn00rSip62gTAlDlRLS1h1TQy9Z0zZ2aMBgrB2ablBSdiCHTnHRUkXrG_Jm18V-fp4gZT2FU_RYUnMqkC7YBvq6gyKsYPUa8d_xogEPThCSPuvasPaI9wUNJ9qic9sTbUVrMIKz02NeUO3tY0mTrJmHaLx16Z8qZ7xuhGoRp3acjSGlCIO2Lpvsgs_RuFkzqrc96klvXehtj5rWGveIVP4f9a_6k6T3Owlw3mcHUSfrwFvoXQSbdR_cU_Q_6IG5VQ
CODEN EJORDT
CitedBy_id crossref_primary_10_1016_j_trpro_2017_03_015
crossref_primary_10_1371_journal_pone_0155176
crossref_primary_10_1016_j_ejor_2012_08_015
crossref_primary_10_1016_j_omega_2014_09_010
crossref_primary_10_1002_nav_22234
crossref_primary_10_1016_j_ejor_2018_03_034
crossref_primary_10_1016_j_knosys_2021_107378
crossref_primary_10_1080_00207179_2016_1144237
crossref_primary_10_1007_s10957_011_9902_7
crossref_primary_10_1287_trsc_2016_0709
crossref_primary_10_1016_j_cor_2014_03_027
crossref_primary_10_1016_j_eswa_2015_10_012
crossref_primary_10_1080_23302674_2020_1865475
crossref_primary_10_1093_imaman_dpv024
crossref_primary_10_1016_j_ejor_2016_09_040
crossref_primary_10_1109_TITS_2019_2934423
crossref_primary_10_1016_j_ijpe_2016_03_014
crossref_primary_10_1080_00207543_2015_1057625
crossref_primary_10_1155_2018_9848104
crossref_primary_10_1111_itor_12965
crossref_primary_10_1287_trsc_2013_0510
crossref_primary_10_1007_s00500_014_1257_1
crossref_primary_10_1016_j_trc_2022_103782
crossref_primary_10_1109_TITS_2020_3030218
crossref_primary_10_1016_j_cor_2012_12_015
crossref_primary_10_1016_j_tre_2017_11_005
crossref_primary_10_1287_trsc_2017_0761
crossref_primary_10_1080_09720502_2014_914284
crossref_primary_10_1155_2015_901583
crossref_primary_10_1260_1748_3018_9_4_449
crossref_primary_10_1007_s12351_017_0314_9
crossref_primary_10_1155_2018_1092092
crossref_primary_10_1016_j_compind_2020_103323
crossref_primary_10_1108_IJLM_05_2017_0109
crossref_primary_10_1109_TSG_2019_2918524
crossref_primary_10_3390_electronics12194167
crossref_primary_10_3390_math9131572
crossref_primary_10_1016_j_tre_2021_102464
crossref_primary_10_1080_00207543_2016_1201221
crossref_primary_10_1016_j_ins_2018_11_006
crossref_primary_10_1287_trsc_2017_0767
crossref_primary_10_1109_TAES_2021_3057649
crossref_primary_10_1016_j_cor_2017_02_008
crossref_primary_10_1016_j_asoc_2013_01_007
crossref_primary_10_1109_JOE_2022_3177858
crossref_primary_10_3390_a17050180
crossref_primary_10_1109_TITS_2016_2520918
crossref_primary_10_1002_net_21628
crossref_primary_10_1108_02635571211278947
crossref_primary_10_1142_S0219649214500221
crossref_primary_10_1016_j_ejor_2018_10_045
crossref_primary_10_1007_s10729_016_9388_9
crossref_primary_10_1109_TEM_2022_3209962
crossref_primary_10_1177_03611981241236479
crossref_primary_10_1016_j_iswa_2023_200225
crossref_primary_10_1155_2021_6634132
crossref_primary_10_1007_s12351_019_00506_z
crossref_primary_10_1016_j_cie_2021_107871
crossref_primary_10_1080_0305215X_2019_1570180
crossref_primary_10_1155_2016_2804525
crossref_primary_10_3389_fphy_2022_835412
crossref_primary_10_1109_ACCESS_2023_3328404
crossref_primary_10_1080_23302674_2024_2365239
crossref_primary_10_3390_math12010028
crossref_primary_10_1287_trsc_2022_1129
crossref_primary_10_1016_j_trb_2015_06_008
crossref_primary_10_1109_TAC_2019_2906423
crossref_primary_10_1080_01605682_2023_2219693
crossref_primary_10_1155_2013_672078
crossref_primary_10_1287_trsc_2018_0840
crossref_primary_10_1016_j_cie_2022_108837
crossref_primary_10_1016_j_ijpe_2022_108751
crossref_primary_10_1080_01446193_2019_1608369
crossref_primary_10_3390_math10152699
crossref_primary_10_1108_BPMJ_02_2017_0047
crossref_primary_10_1287_trsc_2018_0876
crossref_primary_10_3390_data7050054
crossref_primary_10_1016_j_cor_2023_106338
crossref_primary_10_1007_s12351_021_00655_0
crossref_primary_10_1016_j_cor_2022_105884
crossref_primary_10_1016_j_ejor_2011_12_030
crossref_primary_10_1016_j_ejor_2018_09_027
crossref_primary_10_1080_00207543_2015_1043403
crossref_primary_10_1016_j_tre_2016_09_002
crossref_primary_10_1016_j_ejor_2015_08_050
crossref_primary_10_1109_TR_2019_2916898
crossref_primary_10_1007_s11067_015_9315_5
crossref_primary_10_1016_j_trc_2010_09_007
crossref_primary_10_1016_j_ejor_2014_04_024
crossref_primary_10_1007_s10479_011_0918_z
crossref_primary_10_1016_j_biosystemseng_2018_04_003
crossref_primary_10_1287_opre_1120_1127
crossref_primary_10_1016_j_tre_2021_102358
crossref_primary_10_1287_trsc_2022_0099
crossref_primary_10_1016_j_cie_2015_12_007
crossref_primary_10_1007_s00291_020_00609_6
crossref_primary_10_3390_su12135333
crossref_primary_10_1016_j_jocs_2019_04_003
crossref_primary_10_1109_TITS_2025_3562860
crossref_primary_10_1016_j_trc_2019_12_020
crossref_primary_10_1109_TITS_2016_2521779
crossref_primary_10_3390_su162310378
crossref_primary_10_3390_pr10081488
crossref_primary_10_1287_trsc_2016_0719
crossref_primary_10_1109_TITS_2024_3438788
crossref_primary_10_1007_s10479_022_04674_8
crossref_primary_10_1016_j_cie_2023_109822
crossref_primary_10_11627_jksie_2024_47_2_168
crossref_primary_10_1016_j_trc_2024_104801
crossref_primary_10_1155_2016_8461857
crossref_primary_10_1155_2021_9589476
crossref_primary_10_1109_TITS_2024_3357060
crossref_primary_10_1287_opre_1100_0857
crossref_primary_10_3390_app14198642
crossref_primary_10_3390_sym11040546
crossref_primary_10_1287_trsc_2016_0682
crossref_primary_10_1007_s11831_021_09574_x
crossref_primary_10_1016_j_heliyon_2024_e31758
crossref_primary_10_1109_ACCESS_2017_2769666
crossref_primary_10_1016_j_cie_2011_10_001
crossref_primary_10_1080_00207721_2011_618646
crossref_primary_10_1051_matecconf_201925203003
crossref_primary_10_1287_trsc_2015_0591
crossref_primary_10_1016_j_ejor_2021_07_014
crossref_primary_10_1080_23270012_2020_1811166
crossref_primary_10_12677_OJTT_2021_104034
crossref_primary_10_1007_s10696_024_09551_z
crossref_primary_10_3390_su9020288
crossref_primary_10_1002_mcda_1519
crossref_primary_10_1016_j_ejor_2015_02_038
crossref_primary_10_3138_infor_51_1_31
crossref_primary_10_1016_j_trd_2017_04_016
crossref_primary_10_1287_trsc_2018_0887
crossref_primary_10_1016_j_jairtraman_2023_102397
crossref_primary_10_1016_j_tre_2021_102496
crossref_primary_10_1299_kikaic_76_3220
crossref_primary_10_1016_j_ejor_2021_09_019
crossref_primary_10_3233_IFS_151578
crossref_primary_10_1016_j_tre_2015_11_004
Cites_doi 10.1287/trsc.23.3.166
10.1287/opre.51.6.850.24925
10.1080/03081069208717490
10.1287/ijoc.1040.0079
10.1016/0377-2217(95)00050-X
10.1287/trsc.36.1.94.574
10.1007/BF02022035
10.1287/trsc.33.4.381
10.1287/trsc.29.4.342
10.1016/0377-2217(89)90354-8
10.1287/opre.44.2.286
10.1023/A:1009634810396
10.1287/trsc.34.1.99.12278
10.1023/A:1009635226865
10.1287/opre.40.3.574
10.1287/trsc.1050.0114
10.1007/s10479-005-5729-7
10.1016/S0305-0548(99)00146-X
10.1287/opre.49.5.796.10608
10.1287/trsc.29.2.143
10.1016/0377-2217(92)90323-2
10.1023/A:1025605803490
10.1016/0377-2217(93)90132-7
10.1007/s10107-002-0323-0
10.1007/BF02098286
10.1287/opre.1040.0114
10.1023/A:1018995927636
10.1287/opre.1060.0347
10.1016/S0166-218X(01)00351-1
10.1287/opre.50.3.415.7751
ContentType Journal Article
Copyright 2008 Elsevier B.V.
2009 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jul 16, 2009
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: 2009 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jul 16, 2009
DBID AAYXX
CITATION
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2008.03.023
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 515
ExternalDocumentID 1627811241
eeeejores_v_3a196_3ay_3a2009_3ai_3a2_3ap_3a509_515_htm
21235489
10_1016_j_ejor_2008_03_023
S0377221708003172
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c425t-8ed2ed7a94d0940184a08847c3b18fd71595cf5ea8479f5bf877be7fb82490803
ISICitedReferencesCount 191
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263206800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Nov 30 04:10:13 EST 2025
Wed Aug 18 03:50:56 EDT 2021
Mon Jul 21 09:17:16 EDT 2025
Tue Nov 18 21:23:31 EST 2025
Sat Nov 29 01:40:55 EST 2025
Fri Feb 23 02:27:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Stochastic vehicle routing
Approximate dynamic programming
Transportation
Monte Carlo method
Filtering
Vehicle routing problem
Routing
Modeling
Confidence interval
Exact solution
Computation time
Pruning(tree)
Cost estimation
Dynamic programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-8ed2ed7a94d0940184a08847c3b18fd71595cf5ea8479f5bf877be7fb82490803
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 204159410
PQPubID 45678
PageCount 7
ParticipantIDs proquest_journals_204159410
repec_primary_eeeejores_v_3a196_3ay_3a2009_3ai_3a2_3ap_3a509_515_htm
pascalfrancis_primary_21235489
crossref_citationtrail_10_1016_j_ejor_2008_03_023
crossref_primary_10_1016_j_ejor_2008_03_023
elsevier_sciencedirect_doi_10_1016_j_ejor_2008_03_023
PublicationCentury 2000
PublicationDate 2009-07-16
PublicationDateYYYYMMDD 2009-07-16
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Chepuri, Homem-De-Mello (bib12) 2005; 134
Dror, Laporte, Trudeau (bib17) 1989; 23
Adelman (bib1) 2004; 52
Gendreau, Guertin, Potvin, Taillard (bib19) 1999; 33
Sutton, Barto (bib43) 1998
Bianchi, Birattari, Chiarandini, Manfrin, Mastrolilli, Paquete, Rossi-Doria, Schiavinotto (bib11) 2004
Bastian, Rinnooy Kan (bib2) 1992; 56
Secomandi (bib40) 2001; 49
Marković, H., Ćavar, I., Carić, T., 2005. Using data mining to forecast uncertain demands in stochastic vehicle routing problem. In: 13th International Symposium on Elecronics in Transport (ISEP), Slovenia, pp. 1–6.
Novoa, C., 2005. Static and dynamic approaches for solving the vehicle routing problem with stochastic demands. Ph.D. Thesis, Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA.
Psaraftis (bib34) 1995; 61
Ladányi, Ralphs, Trotter (bib25) 2001
de Farias, Van-Roy (bib13) 2003; 51
Bertsekas, Tsitsiklis, Wu (bib7) 1997; 3
Gendreau, Laporte, Séguin (bib20) 1995; 29
Bertsekas, Tsitsiklis (bib6) 1996
Van-Roy, B., Bertsekas, D.P., Lee, Y., Tsitsiklis, J.N., 1998. A neuro-dynamic approach to retailer inventory management. Technical Report, R-96, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology.
Dror (bib15) 1993; 64
Ichoua, Gendreau, Potvin (bib23) 2006; 40
.
Toth, Vigo (bib47) 2002; 123
Bertsimas (bib8) 1992; 40
Bertsimas, Simchi-Levi (bib10) 1996; 44
Ralphs, Kopman, Pulleyblank, Trotter (bib36) 2003; 94
Bertsimas, Chervi, Peterson (bib9) 1995; 29
Dror, Ball, Golden (bib16) 1985; 4
Secomandi, N., 1998. Exact and heuristic dynamic programming algorithms for the vehicle routing problem with stochastic demands. Ph.D. Thesis, Department of Decision and Information Sciences, University of Houston, Houston, TX.
Bertsekas (bib4) 2001; vol. 2
Secomandi, N., Margot, F., in review. Reoptimization approaches for the vehicle problem with stochastic demands, Operations Research
Yang, Mathur, Ballou (bib49) 2000; 34
Secomandi (bib39) 2000; 27
Hjorring, Holt (bib22) 1999; 86
Bertsekas, Castanon (bib5) 1999
Dessouky, Ordoñez, Jia, Shen (bib14) 2005
Novoa, C., Berger, R., Linderoth, J., Storer, R., 2006. A set-partitioning-based model for the stochastic vehicle routing problem. Technical Report, 06T-008, Industrial and Systems Engineering, Lehigh University.
Teodorovic, Pavkovic (bib44) 1992; 16
Erera, A.L., Savelsbergh, M., Uyar, E., 2007. Fixed routes with backup vehicles for stochastic vehicle routing problems with time constraints. Technical Report, The Supply Chain and Logistics Institute, School of Industrial and Systems Engineering, Georgia Institute of Technology.
and at
Topaloglu, Powell (bib45) 2006; 18
Kleywegt, Nori, Savelsbergh (bib24) 2002; 36
Ralphs, T.K., 2006. SYMPHONY User’s Manual, Available at
Powell (bib32) 2007
Laporte, Louveaux, Mercure (bib26) 1989; 39
Secomandi (bib41) 2003; 9
Bertsekas (bib3) 2000; vol. 1
Topaloglu, Powell (bib46) 2007; 55
Gendreau, Laporte, Séguin (bib21) 1996; 88
Powell, Jaillet, Odoni (bib33) 1995; 8
Nemhauser, Wolsey (bib29) 1999
Savelsbergh, Goetschalckx (bib37) 1995; 16
Laporte, Louveaux, Van-Hamme (bib27) 2002; 50
Dror (10.1016/j.ejor.2008.03.023_bib15) 1993; 64
Yang (10.1016/j.ejor.2008.03.023_bib49) 2000; 34
Laporte (10.1016/j.ejor.2008.03.023_bib26) 1989; 39
Gendreau (10.1016/j.ejor.2008.03.023_bib21) 1996; 88
Dror (10.1016/j.ejor.2008.03.023_bib17) 1989; 23
Topaloglu (10.1016/j.ejor.2008.03.023_bib46) 2007; 55
Bertsekas (10.1016/j.ejor.2008.03.023_bib7) 1997; 3
Chepuri (10.1016/j.ejor.2008.03.023_bib12) 2005; 134
Bertsimas (10.1016/j.ejor.2008.03.023_bib10) 1996; 44
Gendreau (10.1016/j.ejor.2008.03.023_bib20) 1995; 29
Secomandi (10.1016/j.ejor.2008.03.023_bib39) 2000; 27
10.1016/j.ejor.2008.03.023_bib28
Ralphs (10.1016/j.ejor.2008.03.023_bib36) 2003; 94
Sutton (10.1016/j.ejor.2008.03.023_bib43) 1998
Kleywegt (10.1016/j.ejor.2008.03.023_bib24) 2002; 36
Powell (10.1016/j.ejor.2008.03.023_bib32) 2007
Bertsekas (10.1016/j.ejor.2008.03.023_bib6) 1996
Bastian (10.1016/j.ejor.2008.03.023_bib2) 1992; 56
Bertsimas (10.1016/j.ejor.2008.03.023_bib9) 1995; 29
Toth (10.1016/j.ejor.2008.03.023_bib47) 2002; 123
10.1016/j.ejor.2008.03.023_bib18
Topaloglu (10.1016/j.ejor.2008.03.023_bib45) 2006; 18
Secomandi (10.1016/j.ejor.2008.03.023_bib41) 2003; 9
Adelman (10.1016/j.ejor.2008.03.023_bib1) 2004; 52
Ladányi (10.1016/j.ejor.2008.03.023_bib25) 2001
Bertsekas (10.1016/j.ejor.2008.03.023_bib5) 1999
Bertsekas (10.1016/j.ejor.2008.03.023_bib3) 2000; vol. 1
10.1016/j.ejor.2008.03.023_bib42
Secomandi (10.1016/j.ejor.2008.03.023_bib40) 2001; 49
Ichoua (10.1016/j.ejor.2008.03.023_bib23) 2006; 40
Bianchi (10.1016/j.ejor.2008.03.023_bib11) 2004
Bertsimas (10.1016/j.ejor.2008.03.023_bib8) 1992; 40
Savelsbergh (10.1016/j.ejor.2008.03.023_bib37) 1995; 16
Dror (10.1016/j.ejor.2008.03.023_bib16) 1985; 4
10.1016/j.ejor.2008.03.023_bib48
Bertsekas (10.1016/j.ejor.2008.03.023_bib4) 2001; vol. 2
Laporte (10.1016/j.ejor.2008.03.023_bib27) 2002; 50
Teodorovic (10.1016/j.ejor.2008.03.023_bib44) 1992; 16
Powell (10.1016/j.ejor.2008.03.023_bib33) 1995; 8
Nemhauser (10.1016/j.ejor.2008.03.023_bib29) 1999
Dessouky (10.1016/j.ejor.2008.03.023_bib14) 2005
de Farias (10.1016/j.ejor.2008.03.023_bib13) 2003; 51
Hjorring (10.1016/j.ejor.2008.03.023_bib22) 1999; 86
10.1016/j.ejor.2008.03.023_bib31
10.1016/j.ejor.2008.03.023_bib30
10.1016/j.ejor.2008.03.023_bib35
10.1016/j.ejor.2008.03.023_bib38
Gendreau (10.1016/j.ejor.2008.03.023_bib19) 1999; 33
Psaraftis (10.1016/j.ejor.2008.03.023_bib34) 1995; 61
References_xml – volume: 52
  start-page: 499
  year: 2004
  end-page: 504
  ident: bib1
  article-title: A price-directed approach to stochastic inventory routing
  publication-title: Operations Research
– volume: 33
  start-page: 381
  year: 1999
  end-page: 390
  ident: bib19
  article-title: Parallel tabu search for real-time vehicle routing and dispatching
  publication-title: Transportation Science
– volume: 3
  start-page: 245
  year: 1997
  end-page: 262
  ident: bib7
  article-title: Rollout algorithms for combinatorial optimization
  publication-title: Journal of Heuristics
– volume: 40
  start-page: 574
  year: 1992
  end-page: 585
  ident: bib8
  article-title: A vehicle routing problem with stochastic demand
  publication-title: Operations Research
– volume: 55
  start-page: 319
  year: 2007
  end-page: 350
  ident: bib46
  article-title: Sensitivity analysis of a dynamic fleet management model using approximate dynamic programming
  publication-title: Operations Research
– start-page: 309
  year: 2005
  end-page: 339
  ident: bib14
  article-title: Rapid Distribution of Medical Supplies
  publication-title: Patient Flow: Reducing Delay Management in Health Care Systems
– volume: 88
  start-page: 3
  year: 1996
  end-page: 12
  ident: bib21
  article-title: Invited review: Stochastic vehicle routing
  publication-title: European Journal of Operational Research
– reference: and at
– volume: 27
  start-page: 1201
  year: 2000
  end-page: 1225
  ident: bib39
  article-title: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands
  publication-title: Computers and Operations Research
– volume: 39
  start-page: 71
  year: 1989
  end-page: 78
  ident: bib26
  article-title: Models and exact solutions for a class of stochastic location-routing problems
  publication-title: European Journal of Operational Research
– volume: 16
  start-page: 163
  year: 1995
  end-page: 188
  ident: bib37
  article-title: A comparison of the efficiency of fixed versus variable vehicle routes
  publication-title: Journal of Business Logistics
– volume: 44
  start-page: 286
  year: 1996
  end-page: 304
  ident: bib10
  article-title: A new generation of vehicle routing research: Robust algorithms, addressing uncertainty
  publication-title: Operations Research
– volume: 36
  start-page: 94
  year: 2002
  end-page: 118
  ident: bib24
  article-title: The stochastic inventory routing problem with direct deliveries
  publication-title: Transportation Science
– volume: 29
  start-page: 342
  year: 1995
  end-page: 352
  ident: bib9
  article-title: Computational approaches to stochastic vehicle routing problems
  publication-title: Transportation Science
– reference: Secomandi, N., Margot, F., in review. Reoptimization approaches for the vehicle problem with stochastic demands, Operations Research
– reference: Secomandi, N., 1998. Exact and heuristic dynamic programming algorithms for the vehicle routing problem with stochastic demands. Ph.D. Thesis, Department of Decision and Information Sciences, University of Houston, Houston, TX.
– reference: Novoa, C., Berger, R., Linderoth, J., Storer, R., 2006. A set-partitioning-based model for the stochastic vehicle routing problem. Technical Report, 06T-008, Industrial and Systems Engineering, Lehigh University.
– volume: 94
  start-page: 343
  year: 2003
  end-page: 359
  ident: bib36
  article-title: On the capacitated vehicle routing problem
  publication-title: Mathematical Programming
– volume: 4
  start-page: 3
  year: 1985
  end-page: 23
  ident: bib16
  article-title: A computational comparison of algorithms for the inventory routing problem
  publication-title: Annals of Operations Research
– volume: 40
  start-page: 211
  year: 2006
  end-page: 225
  ident: bib23
  article-title: Exploiting knowledge about future demands for real-time vehicle dispatching
  publication-title: Transportation Science
– reference: Novoa, C., 2005. Static and dynamic approaches for solving the vehicle routing problem with stochastic demands. Ph.D. Thesis, Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA.
– year: 1999
  ident: bib29
  article-title: Integer and Combinatorial Optimization
– reference: .
– volume: 64
  start-page: 432
  year: 1993
  end-page: 441
  ident: bib15
  article-title: Modeling vehicle routing with uncertain demands as a stochastic program: Properties of the corresponding solution
  publication-title: European Journal of Operational Research
– volume: 51
  start-page: 850
  year: 2003
  end-page: 865
  ident: bib13
  article-title: The linear programming approach to approximate dynamic programming
  publication-title: Operations Research
– reference: Marković, H., Ćavar, I., Carić, T., 2005. Using data mining to forecast uncertain demands in stochastic vehicle routing problem. In: 13th International Symposium on Elecronics in Transport (ISEP), Slovenia, pp. 1–6.
– volume: vol. 1
  year: 2000
  ident: bib3
  publication-title: Dynamic Programming and Optimal Control
– year: 2004
  ident: bib11
  publication-title: Metaheuristics for the vehicle routing problem with stochastic demands. Parallel problem solving from nature PPSN VIII
– volume: 56
  start-page: 407
  year: 1992
  end-page: 412
  ident: bib2
  article-title: The stochastic vehicle routing problem revisited
  publication-title: European Journal of Operational Research
– volume: 23
  start-page: 166
  year: 1989
  end-page: 176
  ident: bib17
  article-title: Vehicle routing with stochastic demands: Properties and solution frameworks
  publication-title: Transportation Science
– volume: 50
  start-page: 415
  year: 2002
  end-page: 423
  ident: bib27
  article-title: An integer L-Shaped algorithm for the capacitated vehicle routing problem with stochastic demands
  publication-title: Operations Research
– reference: Ralphs, T.K., 2006. SYMPHONY User’s Manual, Available at
– volume: 34
  start-page: 99
  year: 2000
  end-page: 112
  ident: bib49
  article-title: Stochastic vehicle routing problem with restocking
  publication-title: Transportation Science
– volume: 134
  start-page: 153
  year: 2005
  end-page: 181
  ident: bib12
  article-title: Solving the vehicle routing problem with stochastic demands using the cross entropy method
  publication-title: Annals of Operations Research
– volume: 8
  start-page: 141
  year: 1995
  end-page: 295
  ident: bib33
  article-title: Stochastic and dynamic networks and routing
  publication-title: Network routing
– volume: 16
  start-page: 261
  year: 1992
  end-page: 273
  ident: bib44
  article-title: A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand
  publication-title: Transportation Planning and Technology
– reference: Erera, A.L., Savelsbergh, M., Uyar, E., 2007. Fixed routes with backup vehicles for stochastic vehicle routing problems with time constraints. Technical Report, The Supply Chain and Logistics Institute, School of Industrial and Systems Engineering, Georgia Institute of Technology.
– volume: 61
  start-page: 143
  year: 1995
  end-page: 164
  ident: bib34
  article-title: Dynamic vehicle routing: Status and prospects
  publication-title: Annals of Operations Research
– volume: 49
  start-page: 796
  year: 2001
  end-page: 802
  ident: bib40
  article-title: A rollout policy for the vehicle routing problem with stochastic demands
  publication-title: Operations Research
– reference: Van-Roy, B., Bertsekas, D.P., Lee, Y., Tsitsiklis, J.N., 1998. A neuro-dynamic approach to retailer inventory management. Technical Report, R-96, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology.
– volume: 86
  start-page: 569
  year: 1999
  end-page: 584
  ident: bib22
  article-title: New optimality cuts for a single-vehicle stochastic routing problem
  publication-title: Annals of Operations Research
– year: 2007
  ident: bib32
  publication-title: Approximate dynamic programming: solving the curses of dimensionality
– start-page: 89
  year: 1999
  end-page: 108
  ident: bib5
  article-title: Rollout algorithms for stochastic scheduling problems
  publication-title: Journal of Heuristics
– volume: 29
  start-page: 143
  year: 1995
  end-page: 155
  ident: bib20
  article-title: An exact algorithm for the vehicle routing problem with stochastic demands and customers
  publication-title: Transportation Science
– volume: 18
  start-page: 31
  year: 2006
  end-page: 42
  ident: bib45
  article-title: Dynamic programming approximations for stochastic, time-staged integer multicommodity flow problems
  publication-title: INFORMS Journal on Computing
– start-page: 223
  year: 2001
  end-page: 260
  ident: bib25
  article-title: Branch cut and price: Sequential and parallel
  publication-title: Computational Combinatorial Optimization
– volume: 9
  start-page: 321
  year: 2003
  end-page: 352
  ident: bib41
  article-title: Analysis of a rollout approach to sequencing problems with stochastic routing applications
  publication-title: Journal of Heuristics
– year: 1998
  ident: bib43
  article-title: Reinforcement Learning
– year: 1996
  ident: bib6
  article-title: Neuro-Dynamic Programming
– volume: 123
  start-page: 487
  year: 2002
  end-page: 512
  ident: bib47
  article-title: Models, relaxations and exact approaches for the capacitated vehicle routing problem
  publication-title: Discrete Applied Mathematics
– volume: vol. 2
  year: 2001
  ident: bib4
  publication-title: Dynamic Programming and Optimal Control
– volume: 23
  start-page: 166
  issue: 3
  year: 1989
  ident: 10.1016/j.ejor.2008.03.023_bib17
  article-title: Vehicle routing with stochastic demands: Properties and solution frameworks
  publication-title: Transportation Science
  doi: 10.1287/trsc.23.3.166
– volume: 51
  start-page: 850
  issue: 6
  year: 2003
  ident: 10.1016/j.ejor.2008.03.023_bib13
  article-title: The linear programming approach to approximate dynamic programming
  publication-title: Operations Research
  doi: 10.1287/opre.51.6.850.24925
– volume: vol. 2
  year: 2001
  ident: 10.1016/j.ejor.2008.03.023_bib4
– volume: 16
  start-page: 261
  year: 1992
  ident: 10.1016/j.ejor.2008.03.023_bib44
  article-title: A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand
  publication-title: Transportation Planning and Technology
  doi: 10.1080/03081069208717490
– year: 1998
  ident: 10.1016/j.ejor.2008.03.023_bib43
– ident: 10.1016/j.ejor.2008.03.023_bib31
– volume: 18
  start-page: 31
  issue: 1
  year: 2006
  ident: 10.1016/j.ejor.2008.03.023_bib45
  article-title: Dynamic programming approximations for stochastic, time-staged integer multicommodity flow problems
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1040.0079
– ident: 10.1016/j.ejor.2008.03.023_bib35
– year: 1999
  ident: 10.1016/j.ejor.2008.03.023_bib29
– volume: 88
  start-page: 3
  year: 1996
  ident: 10.1016/j.ejor.2008.03.023_bib21
  article-title: Invited review: Stochastic vehicle routing
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00050-X
– volume: 36
  start-page: 94
  issue: 1
  year: 2002
  ident: 10.1016/j.ejor.2008.03.023_bib24
  article-title: The stochastic inventory routing problem with direct deliveries
  publication-title: Transportation Science
  doi: 10.1287/trsc.36.1.94.574
– volume: 4
  start-page: 3
  year: 1985
  ident: 10.1016/j.ejor.2008.03.023_bib16
  article-title: A computational comparison of algorithms for the inventory routing problem
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02022035
– volume: 33
  start-page: 381
  issue: 4
  year: 1999
  ident: 10.1016/j.ejor.2008.03.023_bib19
  article-title: Parallel tabu search for real-time vehicle routing and dispatching
  publication-title: Transportation Science
  doi: 10.1287/trsc.33.4.381
– volume: 29
  start-page: 342
  issue: 4
  year: 1995
  ident: 10.1016/j.ejor.2008.03.023_bib9
  article-title: Computational approaches to stochastic vehicle routing problems
  publication-title: Transportation Science
  doi: 10.1287/trsc.29.4.342
– volume: 39
  start-page: 71
  year: 1989
  ident: 10.1016/j.ejor.2008.03.023_bib26
  article-title: Models and exact solutions for a class of stochastic location-routing problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(89)90354-8
– volume: 44
  start-page: 286
  issue: 2
  year: 1996
  ident: 10.1016/j.ejor.2008.03.023_bib10
  article-title: A new generation of vehicle routing research: Robust algorithms, addressing uncertainty
  publication-title: Operations Research
  doi: 10.1287/opre.44.2.286
– year: 1996
  ident: 10.1016/j.ejor.2008.03.023_bib6
– start-page: 89
  year: 1999
  ident: 10.1016/j.ejor.2008.03.023_bib5
  article-title: Rollout algorithms for stochastic scheduling problems
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009634810396
– volume: 34
  start-page: 99
  issue: 1
  year: 2000
  ident: 10.1016/j.ejor.2008.03.023_bib49
  article-title: Stochastic vehicle routing problem with restocking
  publication-title: Transportation Science
  doi: 10.1287/trsc.34.1.99.12278
– volume: 3
  start-page: 245
  year: 1997
  ident: 10.1016/j.ejor.2008.03.023_bib7
  article-title: Rollout algorithms for combinatorial optimization
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009635226865
– volume: 40
  start-page: 574
  issue: 3
  year: 1992
  ident: 10.1016/j.ejor.2008.03.023_bib8
  article-title: A vehicle routing problem with stochastic demand
  publication-title: Operations Research
  doi: 10.1287/opre.40.3.574
– volume: 40
  start-page: 211
  issue: 2
  year: 2006
  ident: 10.1016/j.ejor.2008.03.023_bib23
  article-title: Exploiting knowledge about future demands for real-time vehicle dispatching
  publication-title: Transportation Science
  doi: 10.1287/trsc.1050.0114
– ident: 10.1016/j.ejor.2008.03.023_bib42
– volume: 134
  start-page: 153
  year: 2005
  ident: 10.1016/j.ejor.2008.03.023_bib12
  article-title: Solving the vehicle routing problem with stochastic demands using the cross entropy method
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-005-5729-7
– volume: vol. 1
  year: 2000
  ident: 10.1016/j.ejor.2008.03.023_bib3
– ident: 10.1016/j.ejor.2008.03.023_bib18
– year: 2004
  ident: 10.1016/j.ejor.2008.03.023_bib11
– start-page: 223
  year: 2001
  ident: 10.1016/j.ejor.2008.03.023_bib25
  article-title: Branch cut and price: Sequential and parallel
– volume: 27
  start-page: 1201
  year: 2000
  ident: 10.1016/j.ejor.2008.03.023_bib39
  article-title: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(99)00146-X
– volume: 49
  start-page: 796
  issue: 5
  year: 2001
  ident: 10.1016/j.ejor.2008.03.023_bib40
  article-title: A rollout policy for the vehicle routing problem with stochastic demands
  publication-title: Operations Research
  doi: 10.1287/opre.49.5.796.10608
– volume: 29
  start-page: 143
  issue: 2
  year: 1995
  ident: 10.1016/j.ejor.2008.03.023_bib20
  article-title: An exact algorithm for the vehicle routing problem with stochastic demands and customers
  publication-title: Transportation Science
  doi: 10.1287/trsc.29.2.143
– volume: 56
  start-page: 407
  year: 1992
  ident: 10.1016/j.ejor.2008.03.023_bib2
  article-title: The stochastic vehicle routing problem revisited
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(92)90323-2
– volume: 9
  start-page: 321
  year: 2003
  ident: 10.1016/j.ejor.2008.03.023_bib41
  article-title: Analysis of a rollout approach to sequencing problems with stochastic routing applications
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1025605803490
– volume: 64
  start-page: 432
  year: 1993
  ident: 10.1016/j.ejor.2008.03.023_bib15
  article-title: Modeling vehicle routing with uncertain demands as a stochastic program: Properties of the corresponding solution
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)90132-7
– volume: 94
  start-page: 343
  issue: 2–3
  year: 2003
  ident: 10.1016/j.ejor.2008.03.023_bib36
  article-title: On the capacitated vehicle routing problem
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-002-0323-0
– volume: 16
  start-page: 163
  year: 1995
  ident: 10.1016/j.ejor.2008.03.023_bib37
  article-title: A comparison of the efficiency of fixed versus variable vehicle routes
  publication-title: Journal of Business Logistics
– ident: 10.1016/j.ejor.2008.03.023_bib28
– volume: 61
  start-page: 143
  year: 1995
  ident: 10.1016/j.ejor.2008.03.023_bib34
  article-title: Dynamic vehicle routing: Status and prospects
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02098286
– volume: 52
  start-page: 499
  issue: 4
  year: 2004
  ident: 10.1016/j.ejor.2008.03.023_bib1
  article-title: A price-directed approach to stochastic inventory routing
  publication-title: Operations Research
  doi: 10.1287/opre.1040.0114
– volume: 86
  start-page: 569
  year: 1999
  ident: 10.1016/j.ejor.2008.03.023_bib22
  article-title: New optimality cuts for a single-vehicle stochastic routing problem
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1018995927636
– ident: 10.1016/j.ejor.2008.03.023_bib30
– volume: 55
  start-page: 319
  issue: 2
  year: 2007
  ident: 10.1016/j.ejor.2008.03.023_bib46
  article-title: Sensitivity analysis of a dynamic fleet management model using approximate dynamic programming
  publication-title: Operations Research
  doi: 10.1287/opre.1060.0347
– ident: 10.1016/j.ejor.2008.03.023_bib38
– start-page: 309
  year: 2005
  ident: 10.1016/j.ejor.2008.03.023_bib14
  article-title: Rapid Distribution of Medical Supplies
– volume: 8
  start-page: 141
  year: 1995
  ident: 10.1016/j.ejor.2008.03.023_bib33
  article-title: Stochastic and dynamic networks and routing
– year: 2007
  ident: 10.1016/j.ejor.2008.03.023_bib32
– volume: 123
  start-page: 487
  year: 2002
  ident: 10.1016/j.ejor.2008.03.023_bib47
  article-title: Models, relaxations and exact approaches for the capacitated vehicle routing problem
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/S0166-218X(01)00351-1
– volume: 50
  start-page: 415
  issue: 3
  year: 2002
  ident: 10.1016/j.ejor.2008.03.023_bib27
  article-title: An integer L-Shaped algorithm for the capacitated vehicle routing problem with stochastic demands
  publication-title: Operations Research
  doi: 10.1287/opre.50.3.415.7751
– ident: 10.1016/j.ejor.2008.03.023_bib48
SSID ssj0001515
Score 2.4171312
Snippet This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization...
This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 509
SubjectTerms Applied sciences
Approximate dynamic programming
Dynamic programming
Exact sciences and technology
Logistics
Monte Carlo simulation
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Routing
Stochastic models
Stochastic vehicle routing
Studies
Transportation
Transportation Stochastic vehicle routing Approximate dynamic programming
Title An approximate dynamic programming approach for the vehicle routing problem with stochastic demands
URI https://dx.doi.org/10.1016/j.ejor.2008.03.023
http://econpapers.repec.org/article/eeeejores/v_3a196_3ay_3a2009_3ai_3a2_3ap_3a509-515.htm
https://www.proquest.com/docview/204159410
Volume 196
WOSCitedRecordID wos000263206800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqFSEQ4kcBrQwmP_BWpWqTuI4fKxgCHiakDalvVuJc1FZrUqVZVR73n3OO7TTdYAIkKiVNreZHe599X5z77gh5r0l1Mk7AS4ApDz8pT_AMPDESSShC9CFjVReb4Ofn0WwmvnU6N04Ls73ieR7tdmL9X02NbWhsLZ39C3M3B8UG3Eaj4xrNjus_Mvw0N4nCdwskozBITcl5F4i1qkWJNpF4E2O4hbk-zKAsrisjT6_LzNgA9qpQ81jncx6ksHLS4F9O51tqiw2lm2S02YT2s87FtqgJq44ManzCBd76QyvU-2AyQuufPKOVNDNkd1QyRpnFuef7RqM5BDPQRtz3JpGpJdCMxKa4rYWc3xpX2Ui0XDQzCtA7o7-ZiFgOYVmUNkw2GI6MnvlWVu0LfVH6mjRjRg6FXrzrcyZwYOxOv5zNvjbuXDO--lGU_RFWeWWCBG-f6Xfs5sk63mCfy0yxlIO7mW4Ja1AtUnP5nDy1dyN0alD0gnQg75GHTgzRI89c0Q9qfUCPPG5lsHxJ1DSnLbRRizbaQht1aKOINopooxZt1KKNWrRRjTa6Rxu1aHtFvn86u_zw2bN1OzyFHqDyIkh9SHkswlRnZxxHYYy-LOQqSMZRlnJk0ExlDGJsExlLsojzBHiWRL5-DD0KXpOjvMjhmFBgQZwIBSlTLEzTSawiHZgcx-BnkzQb9cnY_d9S2aT2urbKlXTRi0upbWSrrQYSbdQng2aftUnpcu-3mTOjtKTUkE2JqLt3v9MDmzen0lyRhZHokxMHAml76AYPgIRa4C_sk481LprdAF94CtjIrQxi7Cm4_oGL7oX4ttCbuKxxwc4iEbRyXq3e_OPVn5BH--79lhxV5TW8Iw_UtlpsylPbRX4Czs7hwg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximate+dynamic+programming+approach+for+the+vehicle+routing+problem+with+stochastic+demands&rft.jtitle=European+journal+of+operational+research&rft.au=Novoa%2C+Clara&rft.au=Storer%2C+Robert&rft.date=2009-07-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=196&rft.issue=2&rft.spage=509&rft.epage=515&rft_id=info:doi/10.1016%2Fj.ejor.2008.03.023&rft.externalDocID=S0377221708003172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon