Bifurcation, chaos analysis and control in a discrete-time predator–prey system

The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in difference equations Ročník 2019; číslo 1; s. 1 - 22
Hlavní autori: Liu, Weiyi, Cai, Donghan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 17.01.2019
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior.
AbstractList The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior.
Abstract The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior.
ArticleNumber 11
Author Liu, Weiyi
Cai, Donghan
Author_xml – sequence: 1
  givenname: Weiyi
  surname: Liu
  fullname: Liu, Weiyi
  email: weiyiliu@whu.edu.cn
  organization: School of Mathematics and Statistics, Wuhan University
– sequence: 2
  givenname: Donghan
  surname: Cai
  fullname: Cai, Donghan
  organization: School of Mathematics and Statistics, Wuhan University
BookMark eNp9UctqHDEQFMGG-PUBvg346okljUYjHWMTxwZDCNhn0Su1HC2zo7WkPewt_-A_9JdE6zFxCCSnLpquqqbqkOxNcUJCThn9xJiSF5l1UvKWMt0y3dNWfiAHTKqhZUoMe3_gj-Qw5yWlXAulDsj3y-A3yUIJcTpv7A-IuYEJxm0OO-AaG6eS4tiEqYHGhWwTFmxLWGGzTuigxPTy87nCbZO3ueDqmOx7GDOevM0j8nD95f7qpr379vX26vNdawXvS6ugF4ovqBqcHqjwTIGQ3CkBC6ERO6t6LUE5GFCg1Ew7b1XnGXhHPQjaHZHbWddFWJp1CitIWxMhmNdFTI8GUgl2RNN3wgnfabXwnUCKSg8cwffIq6djfdU6m7XWKT5tMBezjJtUY8iG1-Ro37FB1Ss2X9kUc07of7syanYtmLkFU1swuxaMrJzhL44N5TXtkiCM_2XymZmry_SI6f2nf5N-AW14nsM
CitedBy_id crossref_primary_10_1007_s11071_025_11063_w
crossref_primary_10_1016_j_cam_2022_114666
crossref_primary_10_1155_2023_8873611
crossref_primary_10_1186_s13662_021_03523_5
crossref_primary_10_1007_s12591_023_00669_4
crossref_primary_10_1007_s12190_025_02491_3
crossref_primary_10_1186_s42787_019_0055_4
crossref_primary_10_3390_d13010023
crossref_primary_10_1007_s11766_024_3821_5
crossref_primary_10_1155_2021_6209908
crossref_primary_10_1155_2024_5782500
crossref_primary_10_1007_s12346_024_01124_7
crossref_primary_10_1016_j_cnsns_2020_105313
crossref_primary_10_1155_2023_4555469
crossref_primary_10_1155_2022_6931354
crossref_primary_10_1007_s12190_024_02119_y
crossref_primary_10_12677_DSC_2022_113013
crossref_primary_10_1155_2023_7518261
crossref_primary_10_1007_s40995_023_01472_0
crossref_primary_10_1007_s12190_020_01491_9
Cites_doi 10.1016/j.amc.2017.11.063
10.1016/j.aml.2006.08.020
10.1016/j.jde.2017.11.025
10.1007/978-3-642-59281-2
10.1142/S0218127411030581
10.1155/2018/8635937
10.1016/j.nonrwa.2010.06.026
10.1016/j.nonrwa.2012.09.020
10.1007/s12591-016-0328-4
10.1007/s11071-017-3643-6
10.1093/biomet/47.3-4.219
10.1186/s13662-018-1540-z
10.1007/978-1-4757-9631-5
10.1155/S0161171293000213
10.1186/s13662-018-1621-z
10.1002/mma.4943
10.1016/j.chaos.2004.10.003
10.1016/j.jmaa.2006.12.079
10.1080/10236198.2017.1367389
10.1016/0022-247X(78)90115-4
10.1186/s13662-018-1516-z
10.1016/j.jfranklin.2010.03.016
10.1016/S0960-0779(02)00079-6
10.1142/S021812749300074X
10.3389/fncom.2018.00047
10.1016/S0893-9659(03)90096-6
10.1016/S0960-0779(03)00028-6
10.1155/2018/2386954
10.1016/j.nonrwa.2011.02.009
10.1016/j.jmaa.2011.08.011
ContentType Journal Article
Copyright The Author(s) 2019
Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-019-1950-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 22
ExternalDocumentID oai_doaj_org_article_534d4f398bf34e0e8972eaf5e2a46d15
10_1186_s13662_019_1950_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71271158
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c425t-8a5482b087d9704f18a462d84ab49ee3c8596a8da7e4e6919dfc83f1afd0fa403
IEDL.DBID K7-
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455980500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Fri Oct 03 12:51:55 EDT 2025
Tue Sep 30 18:43:50 EDT 2025
Sat Nov 29 05:35:22 EST 2025
Tue Nov 18 22:35:06 EST 2025
Fri Feb 21 02:36:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neimark–Sacker bifurcation
34H10
34H20
37N25
39A28
Marotto’s chaos
34H15
Predator–prey model
Chaos control
Local stability
Bifurcation control
37M20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-8a5482b087d9704f18a462d84ab49ee3c8596a8da7e4e6919dfc83f1afd0fa403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2168053178?pq-origsite=%requestingapplication%
PQID 2168053178
PQPubID 237355
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_534d4f398bf34e0e8972eaf5e2a46d15
proquest_journals_2168053178
crossref_primary_10_1186_s13662_019_1950_6
crossref_citationtrail_10_1186_s13662_019_1950_6
springer_journals_10_1186_s13662_019_1950_6
PublicationCentury 2000
PublicationDate 2019-01-17
PublicationDateYYYYMMDD 2019-01-17
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-17
  day: 17
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References MarottoF.R.Snap-back repellers imply chaos in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document}J. Math. Anal. Appl.197863119922350117510.1016/0022-247X(78)90115-4
BanerjeeC.DasP.Impulsive effect on Tri-Trophic food chain model with mixed functional responses under seasonal perturbationsDiffer. Equ. Dyn. Syst.2018261–3157176375998510.1007/s12591-016-0328-4
LiaoK.L.ShihC.W.Snapback repellers and homoclinic orbits for multi-dimensional mapsJ. Math. Anal. Appl.20123861387400283489310.1016/j.jmaa.2011.08.011
LiM.M.WangJ.R.Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equationsAppl. Math. Comput.20183242542653743671
ArrowsmithD.K.CartwrightJ.H.E.LansburyA.N.PlaceC.M.The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative systemInt. J. Bifurc. Chaos199334803842124824810.1142/S021812749300074X
LiangZ.Q.PanH.W.Qualitative analysis of a ratio-dependent Holling–Tanner modelJ. Math. Anal. Appl.20073342954964233864010.1016/j.jmaa.2006.12.079
YuanS.L.JingZ.J.JiangT.Bifurcation and chaos in the Tinkerbell mapInt. J. Bifurc. Chaos Appl. Sci. Eng.2011211131373156287196610.1142/S0218127411030581
YangW.S.Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional responseNonlinear Anal., Real World Appl.201314313231330300450310.1016/j.nonrwa.2012.09.020
HanM.A.ShengL.J.ZhangX.Bifurcation theory for finitely smooth planar autonomous differential systemsJ. Differ. Equ.2018264535963618374139910.1016/j.jde.2017.11.025
MarottoF.R.On redefining a snap-back repellerChaos Solitons Fractals20052512528212362610.1016/j.chaos.2004.10.003
Aziz-AlaouiM.A.Daher OkiyeM.Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemesAppl. Math. Lett.200316710691075201307410.1016/S0893-9659(03)90096-6
Aziz-AlaouiM.A.Study of a Leslie–Gower-type tritrophic population modelChaos Solitons Fractals200214812751293192452710.1016/S0960-0779(02)00079-6
XuY.LiuM.YangY.Analysis of a stochastic two-predators one-prey system with modified Leslie–Gower and Holling-type II schemesJ. Appl. Anal. Comput.2017727137273602448
ElabbasyE.M.AgizaH.N.El-MetwallyH.DlsadanyA.A.Bifurcation analysis, chaos and control in the Burgers mappingInt. J. Nonlinear Sci.20074317118523657861394.37123
Edelstein-KeshetL.Mathematical Models in Biology1988New YorkRandom House0674.92001
PengR.WangM.X.Global stability of the equilibrium of a diffusive Holling–Tanner prey-predator modelAppl. Math. Lett.2007206664670231441010.1016/j.aml.2006.08.020
Zhang, H.Y., Ma, S.N., Huang, T.S., Cong, X.B., Gao, Z.C., Zhang, F.F.: Complex dynamics on the routes to chaos in a discrete predator–prey system with Crowley–Martin type functional response. Discrete Dyn. Nat. Soc. 2018 (2018). https://doi.org/10.1155/2018/2386954
Baek, H.: Complex dynamics of a discrete-time predator–prey system with Ivlev functional response. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/8635937
NindjinA.F.TiaK.T.OkouH.TetchiA.Stability of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes and time-delay in two dimensionsAdv. Differ. Equ.20182018380099310.1186/s13662-018-1621-z
ZhangX.ZhangQ.L.Bifurcation analysis and control of a discrete harvested prey-predator system with Beddington–DeAngelis functional responseJ. Franklin Inst.2010347710761096266929010.1016/j.jfranklin.2010.03.016
GopalsamyK.WengP.Feedback regulation of logistic growthInt. J. Math. Math. Sci.1993161177192120012610.1155/S0161171293000213
RomanovskiV.G.HanM.A.HuangW.T.Bifurcation of critical periods of a quintic systemElectron. J. Differ. Equ.20182018378118110.1186/s13662-018-1516-z
GuQ.L.L.TianZ.Q.K.KovacicG.ZhouD.CaiD.The dynamics of balanced spiking neuronal networks under Poisson drive is not chaoticFront. Comput. Neurosci.20181210.3389/fncom.2018.00047
ChenZ.YuP.Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functionsJ. Franklin Inst.20052641231124821436701093.37508
BaiY.Z.MuX.Q.Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptibleJ. Appl. Anal. Comput.2018824024123760100
GuckenheimerJ.HolmesP.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields2002New YorkSpringer0515.34001
HuZ.Y.TengZ.D.ZhangL.Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional responseNonlinear Anal., Real World Appl.201112423562377280102510.1016/j.nonrwa.2011.02.009
WigginsS.Introduction to Applied Nonlinear Dynamical System and Chaos2003New YorkSpringer1027.37002
LuoX.S.ChenG.R.El-MetwallyB.H.Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systemChaos Solitons Fractals200318477578310.1016/S0960-0779(03)00028-6
DegnH.HoldenA.V.OlsenL.F.Chaos in Biological Systems1987New YorkSpringer10.1007/978-1-4757-9631-5
CaoX.K.WangJ.R.Finite-time stability of a class of oscillating systems with two delaysMath. Methods Appl. Sci.2018411349434954384357110.1002/mma.4943
LeslieP.H.GowerJ.C.The properties of a stochastic model for the predator–prey type of interaction between two speciesBiometrika1960473–421923412260310.1093/biomet/47.3-4.219
KolmogorovA.N.Sulla teoria di Volterra della Lotta per I’esistenzaG. Ist. Ital. Attuari193677480(in Italian)
WuD.Y.ZhaoH.Y.Complex dynamics of a discrete predator–prey model with the prey subject to the Allee effectJ. Differ. Equ. Appl.2017231117651806374231310.1080/10236198.2017.1367389
WeiC.J.LiuJ.N.ZhangS.W.Analysis of a stochastic eco-epidemiological model with modified Leslie–Gower functional responseAdv. Differ. Equ.20182018379717210.1186/s13662-018-1540-z
HeZ.M.LaiX.Bifurcation and chaotic behavior of a discrete-time predator–prey systemNonlinear Anal., Real World Appl.2011121403417272902910.1016/j.nonrwa.2010.06.026
AlligoodK.SauerT.YorkeJ.Chaos: An Introduction to Dynamical System1997New YorkSpringer10.1007/978-3-642-59281-2
HawkinsB.A.CornellH.V.Theoretical Approaches to Biological Control2004CambridgeCambridge University Press0926.92001
RenJ.L.SiegmundS.Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional responseNonlinear Dyn.20179011941370793610.1007/s11071-017-3643-6
A.F. Nindjin (1950_CR10) 2018; 2018
1950_CR20
K. Gopalsamy (1950_CR32) 1993; 16
W.S. Yang (1950_CR8) 2013; 14
1950_CR21
D.K. Arrowsmith (1950_CR38) 1993; 3
E.M. Elabbasy (1950_CR29) 2007; 4
V.G. Romanovski (1950_CR16) 2018; 2018
Z. Chen (1950_CR28) 2005; 26
X.S. Luo (1950_CR30) 2003; 18
F.R. Marotto (1950_CR34) 2005; 25
X.K. Cao (1950_CR18) 2018; 41
M.A. Aziz-Alaoui (1950_CR6) 2002; 14
Q.L.L. Gu (1950_CR39) 2018; 12
J.L. Ren (1950_CR37) 2017; 90
P.H. Leslie (1950_CR2) 1960; 47
A.N. Kolmogorov (1950_CR4) 1936; 7
L. Edelstein-Keshet (1950_CR1) 1988
R. Peng (1950_CR9) 2007; 20
Y. Xu (1950_CR12) 2017; 7
K.L. Liao (1950_CR35) 2012; 386
C. Banerjee (1950_CR11) 2018; 26
D.Y. Wu (1950_CR22) 2017; 23
K. Alligood (1950_CR24) 1997
H. Degn (1950_CR13) 1987
S.L. Yuan (1950_CR36) 2011; 21
Z.Q. Liang (1950_CR7) 2007; 334
Z.M. He (1950_CR26) 2011; 12
M.A. Aziz-Alaoui (1950_CR3) 2003; 16
C.J. Wei (1950_CR5) 2018; 2018
F.R. Marotto (1950_CR33) 1978; 63
J. Guckenheimer (1950_CR25) 2002
M.A. Han (1950_CR15) 2018; 264
M.M. Li (1950_CR17) 2018; 324
Y.Z. Bai (1950_CR14) 2018; 8
S. Wiggins (1950_CR27) 2003
Z.Y. Hu (1950_CR23) 2011; 12
X. Zhang (1950_CR19) 2010; 347
B.A. Hawkins (1950_CR31) 2004
References_xml – reference: Zhang, H.Y., Ma, S.N., Huang, T.S., Cong, X.B., Gao, Z.C., Zhang, F.F.: Complex dynamics on the routes to chaos in a discrete predator–prey system with Crowley–Martin type functional response. Discrete Dyn. Nat. Soc. 2018 (2018). https://doi.org/10.1155/2018/2386954
– reference: LiaoK.L.ShihC.W.Snapback repellers and homoclinic orbits for multi-dimensional mapsJ. Math. Anal. Appl.20123861387400283489310.1016/j.jmaa.2011.08.011
– reference: Edelstein-KeshetL.Mathematical Models in Biology1988New YorkRandom House0674.92001
– reference: HuZ.Y.TengZ.D.ZhangL.Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional responseNonlinear Anal., Real World Appl.201112423562377280102510.1016/j.nonrwa.2011.02.009
– reference: BanerjeeC.DasP.Impulsive effect on Tri-Trophic food chain model with mixed functional responses under seasonal perturbationsDiffer. Equ. Dyn. Syst.2018261–3157176375998510.1007/s12591-016-0328-4
– reference: BaiY.Z.MuX.Q.Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptibleJ. Appl. Anal. Comput.2018824024123760100
– reference: CaoX.K.WangJ.R.Finite-time stability of a class of oscillating systems with two delaysMath. Methods Appl. Sci.2018411349434954384357110.1002/mma.4943
– reference: ChenZ.YuP.Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functionsJ. Franklin Inst.20052641231124821436701093.37508
– reference: PengR.WangM.X.Global stability of the equilibrium of a diffusive Holling–Tanner prey-predator modelAppl. Math. Lett.2007206664670231441010.1016/j.aml.2006.08.020
– reference: XuY.LiuM.YangY.Analysis of a stochastic two-predators one-prey system with modified Leslie–Gower and Holling-type II schemesJ. Appl. Anal. Comput.2017727137273602448
– reference: WeiC.J.LiuJ.N.ZhangS.W.Analysis of a stochastic eco-epidemiological model with modified Leslie–Gower functional responseAdv. Differ. Equ.20182018379717210.1186/s13662-018-1540-z
– reference: LiM.M.WangJ.R.Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equationsAppl. Math. Comput.20183242542653743671
– reference: YuanS.L.JingZ.J.JiangT.Bifurcation and chaos in the Tinkerbell mapInt. J. Bifurc. Chaos Appl. Sci. Eng.2011211131373156287196610.1142/S0218127411030581
– reference: YangW.S.Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional responseNonlinear Anal., Real World Appl.201314313231330300450310.1016/j.nonrwa.2012.09.020
– reference: ArrowsmithD.K.CartwrightJ.H.E.LansburyA.N.PlaceC.M.The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative systemInt. J. Bifurc. Chaos199334803842124824810.1142/S021812749300074X
– reference: Aziz-AlaouiM.A.Study of a Leslie–Gower-type tritrophic population modelChaos Solitons Fractals200214812751293192452710.1016/S0960-0779(02)00079-6
– reference: ZhangX.ZhangQ.L.Bifurcation analysis and control of a discrete harvested prey-predator system with Beddington–DeAngelis functional responseJ. Franklin Inst.2010347710761096266929010.1016/j.jfranklin.2010.03.016
– reference: LeslieP.H.GowerJ.C.The properties of a stochastic model for the predator–prey type of interaction between two speciesBiometrika1960473–421923412260310.1093/biomet/47.3-4.219
– reference: RomanovskiV.G.HanM.A.HuangW.T.Bifurcation of critical periods of a quintic systemElectron. J. Differ. Equ.20182018378118110.1186/s13662-018-1516-z
– reference: HawkinsB.A.CornellH.V.Theoretical Approaches to Biological Control2004CambridgeCambridge University Press0926.92001
– reference: LuoX.S.ChenG.R.El-MetwallyB.H.Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systemChaos Solitons Fractals200318477578310.1016/S0960-0779(03)00028-6
– reference: GopalsamyK.WengP.Feedback regulation of logistic growthInt. J. Math. Math. Sci.1993161177192120012610.1155/S0161171293000213
– reference: Aziz-AlaouiM.A.Daher OkiyeM.Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemesAppl. Math. Lett.200316710691075201307410.1016/S0893-9659(03)90096-6
– reference: AlligoodK.SauerT.YorkeJ.Chaos: An Introduction to Dynamical System1997New YorkSpringer10.1007/978-3-642-59281-2
– reference: RenJ.L.SiegmundS.Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional responseNonlinear Dyn.20179011941370793610.1007/s11071-017-3643-6
– reference: MarottoF.R.On redefining a snap-back repellerChaos Solitons Fractals20052512528212362610.1016/j.chaos.2004.10.003
– reference: HanM.A.ShengL.J.ZhangX.Bifurcation theory for finitely smooth planar autonomous differential systemsJ. Differ. Equ.2018264535963618374139910.1016/j.jde.2017.11.025
– reference: ElabbasyE.M.AgizaH.N.El-MetwallyH.DlsadanyA.A.Bifurcation analysis, chaos and control in the Burgers mappingInt. J. Nonlinear Sci.20074317118523657861394.37123
– reference: NindjinA.F.TiaK.T.OkouH.TetchiA.Stability of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes and time-delay in two dimensionsAdv. Differ. Equ.20182018380099310.1186/s13662-018-1621-z
– reference: WuD.Y.ZhaoH.Y.Complex dynamics of a discrete predator–prey model with the prey subject to the Allee effectJ. Differ. Equ. Appl.2017231117651806374231310.1080/10236198.2017.1367389
– reference: KolmogorovA.N.Sulla teoria di Volterra della Lotta per I’esistenzaG. Ist. Ital. Attuari193677480(in Italian)
– reference: LiangZ.Q.PanH.W.Qualitative analysis of a ratio-dependent Holling–Tanner modelJ. Math. Anal. Appl.20073342954964233864010.1016/j.jmaa.2006.12.079
– reference: WigginsS.Introduction to Applied Nonlinear Dynamical System and Chaos2003New YorkSpringer1027.37002
– reference: DegnH.HoldenA.V.OlsenL.F.Chaos in Biological Systems1987New YorkSpringer10.1007/978-1-4757-9631-5
– reference: GuckenheimerJ.HolmesP.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields2002New YorkSpringer0515.34001
– reference: MarottoF.R.Snap-back repellers imply chaos in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document}J. Math. Anal. Appl.197863119922350117510.1016/0022-247X(78)90115-4
– reference: GuQ.L.L.TianZ.Q.K.KovacicG.ZhouD.CaiD.The dynamics of balanced spiking neuronal networks under Poisson drive is not chaoticFront. Comput. Neurosci.20181210.3389/fncom.2018.00047
– reference: Baek, H.: Complex dynamics of a discrete-time predator–prey system with Ivlev functional response. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/8635937
– reference: HeZ.M.LaiX.Bifurcation and chaotic behavior of a discrete-time predator–prey systemNonlinear Anal., Real World Appl.2011121403417272902910.1016/j.nonrwa.2010.06.026
– volume: 324
  start-page: 254
  year: 2018
  ident: 1950_CR17
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.11.063
– volume: 20
  start-page: 664
  issue: 6
  year: 2007
  ident: 1950_CR9
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.08.020
– volume: 264
  start-page: 3596
  issue: 5
  year: 2018
  ident: 1950_CR15
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2017.11.025
– volume-title: Chaos: An Introduction to Dynamical System
  year: 1997
  ident: 1950_CR24
  doi: 10.1007/978-3-642-59281-2
– volume: 21
  start-page: 3137
  issue: 11
  year: 2011
  ident: 1950_CR36
  publication-title: Int. J. Bifurc. Chaos Appl. Sci. Eng.
  doi: 10.1142/S0218127411030581
– ident: 1950_CR21
  doi: 10.1155/2018/8635937
– volume: 12
  start-page: 403
  issue: 1
  year: 2011
  ident: 1950_CR26
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2010.06.026
– volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
  year: 2002
  ident: 1950_CR25
– volume: 14
  start-page: 1323
  issue: 3
  year: 2013
  ident: 1950_CR8
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2012.09.020
– volume: 26
  start-page: 157
  issue: 1–3
  year: 2018
  ident: 1950_CR11
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-016-0328-4
– volume: 7
  start-page: 74
  year: 1936
  ident: 1950_CR4
  publication-title: G. Ist. Ital. Attuari
– volume: 7
  start-page: 713
  issue: 2
  year: 2017
  ident: 1950_CR12
  publication-title: J. Appl. Anal. Comput.
– volume: 90
  start-page: 19
  issue: 1
  year: 2017
  ident: 1950_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3643-6
– volume: 47
  start-page: 219
  issue: 3–4
  year: 1960
  ident: 1950_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/47.3-4.219
– volume: 2018
  year: 2018
  ident: 1950_CR5
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1540-z
– volume-title: Mathematical Models in Biology
  year: 1988
  ident: 1950_CR1
– volume-title: Chaos in Biological Systems
  year: 1987
  ident: 1950_CR13
  doi: 10.1007/978-1-4757-9631-5
– volume: 26
  start-page: 1231
  issue: 4
  year: 2005
  ident: 1950_CR28
  publication-title: J. Franklin Inst.
– volume: 16
  start-page: 177
  issue: 1
  year: 1993
  ident: 1950_CR32
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/S0161171293000213
– volume: 2018
  year: 2018
  ident: 1950_CR10
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1621-z
– volume-title: Introduction to Applied Nonlinear Dynamical System and Chaos
  year: 2003
  ident: 1950_CR27
– volume: 41
  start-page: 4943
  issue: 13
  year: 2018
  ident: 1950_CR18
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4943
– volume: 25
  start-page: 25
  issue: 1
  year: 2005
  ident: 1950_CR34
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.10.003
– volume: 8
  start-page: 402
  issue: 2
  year: 2018
  ident: 1950_CR14
  publication-title: J. Appl. Anal. Comput.
– volume: 334
  start-page: 954
  issue: 2
  year: 2007
  ident: 1950_CR7
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.12.079
– volume: 23
  start-page: 1765
  issue: 11
  year: 2017
  ident: 1950_CR22
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236198.2017.1367389
– volume: 63
  start-page: 199
  issue: 1
  year: 1978
  ident: 1950_CR33
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90115-4
– volume: 2018
  year: 2018
  ident: 1950_CR16
  publication-title: Electron. J. Differ. Equ.
  doi: 10.1186/s13662-018-1516-z
– volume: 4
  start-page: 171
  issue: 3
  year: 2007
  ident: 1950_CR29
  publication-title: Int. J. Nonlinear Sci.
– volume: 347
  start-page: 1076
  issue: 7
  year: 2010
  ident: 1950_CR19
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2010.03.016
– volume: 14
  start-page: 1275
  issue: 8
  year: 2002
  ident: 1950_CR6
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(02)00079-6
– volume: 3
  start-page: 803
  issue: 4
  year: 1993
  ident: 1950_CR38
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S021812749300074X
– volume: 12
  year: 2018
  ident: 1950_CR39
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00047
– volume: 16
  start-page: 1069
  issue: 7
  year: 2003
  ident: 1950_CR3
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(03)90096-6
– volume: 18
  start-page: 775
  issue: 4
  year: 2003
  ident: 1950_CR30
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(03)00028-6
– ident: 1950_CR20
  doi: 10.1155/2018/2386954
– volume: 12
  start-page: 2356
  issue: 4
  year: 2011
  ident: 1950_CR23
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2011.02.009
– volume-title: Theoretical Approaches to Biological Control
  year: 2004
  ident: 1950_CR31
– volume: 386
  start-page: 387
  issue: 1
  year: 2012
  ident: 1950_CR35
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.08.011
SSID ssj0029488
Score 2.3642554
Snippet The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the...
Abstract The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Bifurcation control
Bifurcation theory
Chaos control
Chaos theory
Computer simulation
Control systems
Difference and Functional Equations
Discrete time systems
Functional Analysis
Local stability
Marotto’s chaos
Mathematical models
Mathematics
Mathematics and Statistics
Neimark–Sacker bifurcation
Numerical methods
Ordinary Differential Equations
Partial Differential Equations
Predator-prey simulation
Predator–prey model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PSx0xEA9FPNhD0drSp1Zy6Mk2mH8vmRxrqfRQpEIL3sJs_tAH5Sn7noI3v4PfsJ-kyW6e1YLtpbewm8Dwm8nOzGbyG0LeqKkqfsc5FjC7kqAEZAgysyRkdKGTgeeBMv-zPTmBszP35V6rr1oTNtIDj8AdTpWOOisHXVY68QTOyoR5miRqE4fr5bJEPatkqqVarthlO8MUYA4XQhlTSxAcq21PmXnghQay_gcR5h-HooOvOd4kz1qQSN-Pwm2RJ2n-nDy9Rx24TU6PZvmyH_-3vaPhO54vKDaCkTKItNWg09mcIq13b_sSHrPaSp5e9CnWXPvnzW0ZXtORzfkF-Xb88euHT6y1R2ChbLQlAyzZhuw42Ogs11lAQURG0Nhpl5IKMHUGIaJNOhknXMwBVBaYI8-ouXpJ1ubn8_SKUJ6cAJeEsgi6k-hUWRVqZ54oVWdxQvgKLh8ad3htYfHDDzkEGD8i7AvCviLszYQc3C25GIkz_jb5qOrgbmLlvB4eFEvwzRL8vyxhQvZWGvRtIy68FAbqd8bChLxdafX360cl2vkfEu2SDVltjgsm7B5ZW_aX6TVZD1fL2aLfHyz2F_e77oQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Bifurcation, chaos analysis and control in a discrete-time predator–prey system
URI https://link.springer.com/article/10.1186/s13662-019-1950-6
https://www.proquest.com/docview/2168053178
https://doaj.org/article/534d4f398bf34e0e8972eaf5e2a46d15
Volume 2019
WOSCitedRecordID wos000455980500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3qgLZeUDJ8Bq_IgfJ8SiViBgFV5S4WI5ftCV0O6SbJG48R_6D_tLsB3vliLRC5fIiu3IyYztmfHk-wB4RGsa9x2lkDVBRQfFGmQkCchj4pRtia1Chsx_I6ZTeXiomhJw60ta5XpNzAu1W9gUI98jmMukMEI-W35HiTUqna4WCo3LYBsTgpOevxZo43AplnknY0-BkiVQTjWx5Hs9ppynpASFEhEq4uf2pQzff87m_OuYNO8-Bzf-d9w3wfVid8Lng6LcApf8_Da49gca4R3wbjILx90QwnsK7ZFZ9NAUzJJYcLCktcPZHBqYfuftosWNEjs9XHbeJff99NdJLP6EA0D0XfDpYP_ji5eoMC4gG-fuCkkTHRjSVlI4JSoWsDSMEyeZaZnynlpZK26kM8IzzxVWLlhJAzbBVcGwit4DW_PF3O8AWHmFpfKYCiNZS4yisZdNZD-O0FaYEajW31vbAkeeWDG-6eyWSK4HEekoIp1EpPkIPN50WQ5YHBc1niQhbhomGO18Y9F91WVW6poyxwJVsg2U-cpLJYg3ofYkvrfD9QjsroWqy9zu9ZlER-DJWi3Oqv85ovsXP-wBuEqSOlYYYbELtlbdsX8Irtgfq1nfjcH2ZH_avB_nmME4q_k45al-iNem_hLrm1dvm8-_AebSBEw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qBQlY8EYECngBG8Dq-BE_FghRoGqVEIFUpO6Mxw-IBEmYSUHd8Q_8Bx_Fl2DPI6VIdNcFu9GMbdnj4-t7_TgH4AEbsjTvaI2djToFKM5iq2jEgVCvXUldERvK_LGcTNT-vn6zBj_7uzD5WGVvExtD7ecur5FvUiJUBoxUzxZfcFaNyrurvYRGC4tROPyWQrb66e7L1L8PKd1-tfdiB3eqAtglfC6xsslJp2WhpNey4JEoywX1ituS6xCYU0MtrPJWBh6EJtpHp1gkNvoiWl6wVO4ZOMuZkpmrfyTxKsDTvNG5TDWVOHse3S4qUWKzJkyIfAhC4yy8isWxebCRCzjm4_61LdvMdtuX_7f_dAUudX41et4OhKuwFmbX4OIfbIvX4e3WNB5U7RLlE-Q-2nmNbMfJkh486o7to-kMWZSvK1cposDL6eeAFlXweXni1_cf6fEQtQTYN-DdqbTpJqzP5rNwC1ARNFE6ECat4iW1mqVcLosZecpKaQdQ9P1rXEe3nlU_Ppkm7FLCtJAwCRImQ8KIATxaZVm0XCMnJd7KoFklzDThzYt59cF0VscMGfc8Mq3KyHgogtKSBhuHgaZ2ezIcwEYPItPZrtocIWgAj3sYHn3-Z41un1zYfTi_s_d6bMa7k9EduEDzUCgIJnID1pfVQbgL59zX5bSu7jWDCsH700bnb9HgW5U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceBZ1oYAPcAGsjR-J7QNClLKi2mpVJJB6M44fsBLsbpMtqDf-A_-Gn8Mvwc5jS5HorQduUWJbdvzNjMcezwfwiOUs2h2lsDVBRQfFGmwkDdgT6pQtqc1CkzJ_T0wm8uBA7a_Bz_4uTAqr7HVio6jd3KY98iElhUyAEXIYurCI_Z3Ri8UhTgxS6aS1p9NoITL2x9-i-1Y_392Jc_2Y0tHrd6_e4I5hANuI1SWWJi7YaZlJ4ZTIeCDS8II6yU3JlffMylwVRjojPPeFIsoFK1kgJrgsGJ6x2O4FuBitcJ5kbCzwytlTvOG8jL0WOK1CuhNVIothTVhRpIAIhRMJKy5O2cSGOuDUevevI9rG8o2u_8__7AZc69bb6GUrIDdhzc9uwdU_sjDehrfb03BUtVuXz5D9ZOY1Ml2ulvjgUBfOj6YzZFC6xlxFTwMvp188WlTepW2LX99_xMdj1CbG3oD35zKmO7A-m8_8JqDMKyKVJ0wYyUtqFIu1bCI5cpSVwgwg6-da2y4Ne2ID-awbd0wWuoWHjvDQCR66GMCTVZVFm4PkrMLbCUCrgil9ePNiXn3UnTbSOeOOB6ZkGRj3mZdKUG9C7mkctyP5ALZ6QOlOp9X6BE0DeNpD8uTzP3t09-zGHsLlCEq9tzsZ34MrNElFRjARW7C-rI78fbhkvy6ndfWgkS8EH84bnL8B4q1kTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifurcation%2C+chaos+analysis+and+control+in+a+discrete-time+predator%E2%80%93prey+system&rft.jtitle=Advances+in+difference+equations&rft.au=Liu%2C+Weiyi&rft.au=Cai%2C+Donghan&rft.date=2019-01-17&rft.pub=Springer+Nature+B.V&rft.issn=1687-1839&rft.eissn=1687-1847&rft.volume=2019&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs13662-019-1950-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon