Bifurcation, chaos analysis and control in a discrete-time predator–prey system
The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed...
Uložené v:
| Vydané v: | Advances in difference equations Ročník 2019; číslo 1; s. 1 - 22 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
17.01.2019
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior. |
|---|---|
| AbstractList | The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior. Abstract The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior. |
| ArticleNumber | 11 |
| Author | Liu, Weiyi Cai, Donghan |
| Author_xml | – sequence: 1 givenname: Weiyi surname: Liu fullname: Liu, Weiyi email: weiyiliu@whu.edu.cn organization: School of Mathematics and Statistics, Wuhan University – sequence: 2 givenname: Donghan surname: Cai fullname: Cai, Donghan organization: School of Mathematics and Statistics, Wuhan University |
| BookMark | eNp9UctqHDEQFMGG-PUBvg346okljUYjHWMTxwZDCNhn0Su1HC2zo7WkPewt_-A_9JdE6zFxCCSnLpquqqbqkOxNcUJCThn9xJiSF5l1UvKWMt0y3dNWfiAHTKqhZUoMe3_gj-Qw5yWlXAulDsj3y-A3yUIJcTpv7A-IuYEJxm0OO-AaG6eS4tiEqYHGhWwTFmxLWGGzTuigxPTy87nCbZO3ueDqmOx7GDOevM0j8nD95f7qpr379vX26vNdawXvS6ugF4ovqBqcHqjwTIGQ3CkBC6ERO6t6LUE5GFCg1Ew7b1XnGXhHPQjaHZHbWddFWJp1CitIWxMhmNdFTI8GUgl2RNN3wgnfabXwnUCKSg8cwffIq6djfdU6m7XWKT5tMBezjJtUY8iG1-Ro37FB1Ss2X9kUc07of7syanYtmLkFU1swuxaMrJzhL44N5TXtkiCM_2XymZmry_SI6f2nf5N-AW14nsM |
| CitedBy_id | crossref_primary_10_1007_s11071_025_11063_w crossref_primary_10_1016_j_cam_2022_114666 crossref_primary_10_1155_2023_8873611 crossref_primary_10_1186_s13662_021_03523_5 crossref_primary_10_1007_s12591_023_00669_4 crossref_primary_10_1007_s12190_025_02491_3 crossref_primary_10_1186_s42787_019_0055_4 crossref_primary_10_3390_d13010023 crossref_primary_10_1007_s11766_024_3821_5 crossref_primary_10_1155_2021_6209908 crossref_primary_10_1155_2024_5782500 crossref_primary_10_1007_s12346_024_01124_7 crossref_primary_10_1016_j_cnsns_2020_105313 crossref_primary_10_1155_2023_4555469 crossref_primary_10_1155_2022_6931354 crossref_primary_10_1007_s12190_024_02119_y crossref_primary_10_12677_DSC_2022_113013 crossref_primary_10_1155_2023_7518261 crossref_primary_10_1007_s40995_023_01472_0 crossref_primary_10_1007_s12190_020_01491_9 |
| Cites_doi | 10.1016/j.amc.2017.11.063 10.1016/j.aml.2006.08.020 10.1016/j.jde.2017.11.025 10.1007/978-3-642-59281-2 10.1142/S0218127411030581 10.1155/2018/8635937 10.1016/j.nonrwa.2010.06.026 10.1016/j.nonrwa.2012.09.020 10.1007/s12591-016-0328-4 10.1007/s11071-017-3643-6 10.1093/biomet/47.3-4.219 10.1186/s13662-018-1540-z 10.1007/978-1-4757-9631-5 10.1155/S0161171293000213 10.1186/s13662-018-1621-z 10.1002/mma.4943 10.1016/j.chaos.2004.10.003 10.1016/j.jmaa.2006.12.079 10.1080/10236198.2017.1367389 10.1016/0022-247X(78)90115-4 10.1186/s13662-018-1516-z 10.1016/j.jfranklin.2010.03.016 10.1016/S0960-0779(02)00079-6 10.1142/S021812749300074X 10.3389/fncom.2018.00047 10.1016/S0893-9659(03)90096-6 10.1016/S0960-0779(03)00028-6 10.1155/2018/2386954 10.1016/j.nonrwa.2011.02.009 10.1016/j.jmaa.2011.08.011 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.1186/s13662-019-1950-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1687-1847 |
| EndPage | 22 |
| ExternalDocumentID | oai_doaj_org_article_534d4f398bf34e0e8972eaf5e2a46d15 10_1186_s13662_019_1950_6 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71271158 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS EJD ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c425t-8a5482b087d9704f18a462d84ab49ee3c8596a8da7e4e6919dfc83f1afd0fa403 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455980500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1847 1687-1839 |
| IngestDate | Fri Oct 03 12:51:55 EDT 2025 Tue Sep 30 18:43:50 EDT 2025 Sat Nov 29 05:35:22 EST 2025 Tue Nov 18 22:35:06 EST 2025 Fri Feb 21 02:36:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Neimark–Sacker bifurcation 34H10 34H20 37N25 39A28 Marotto’s chaos 34H15 Predator–prey model Chaos control Local stability Bifurcation control 37M20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-8a5482b087d9704f18a462d84ab49ee3c8596a8da7e4e6919dfc83f1afd0fa403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2168053178?pq-origsite=%requestingapplication% |
| PQID | 2168053178 |
| PQPubID | 237355 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_534d4f398bf34e0e8972eaf5e2a46d15 proquest_journals_2168053178 crossref_primary_10_1186_s13662_019_1950_6 crossref_citationtrail_10_1186_s13662_019_1950_6 springer_journals_10_1186_s13662_019_1950_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-17 |
| PublicationDateYYYYMMDD | 2019-01-17 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | Advances in difference equations |
| PublicationTitleAbbrev | Adv Differ Equ |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | MarottoF.R.Snap-back repellers imply chaos in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document}J. Math. Anal. Appl.197863119922350117510.1016/0022-247X(78)90115-4 BanerjeeC.DasP.Impulsive effect on Tri-Trophic food chain model with mixed functional responses under seasonal perturbationsDiffer. Equ. Dyn. Syst.2018261–3157176375998510.1007/s12591-016-0328-4 LiaoK.L.ShihC.W.Snapback repellers and homoclinic orbits for multi-dimensional mapsJ. Math. Anal. Appl.20123861387400283489310.1016/j.jmaa.2011.08.011 LiM.M.WangJ.R.Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equationsAppl. Math. Comput.20183242542653743671 ArrowsmithD.K.CartwrightJ.H.E.LansburyA.N.PlaceC.M.The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative systemInt. J. Bifurc. Chaos199334803842124824810.1142/S021812749300074X LiangZ.Q.PanH.W.Qualitative analysis of a ratio-dependent Holling–Tanner modelJ. Math. Anal. Appl.20073342954964233864010.1016/j.jmaa.2006.12.079 YuanS.L.JingZ.J.JiangT.Bifurcation and chaos in the Tinkerbell mapInt. J. Bifurc. Chaos Appl. Sci. Eng.2011211131373156287196610.1142/S0218127411030581 YangW.S.Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional responseNonlinear Anal., Real World Appl.201314313231330300450310.1016/j.nonrwa.2012.09.020 HanM.A.ShengL.J.ZhangX.Bifurcation theory for finitely smooth planar autonomous differential systemsJ. Differ. Equ.2018264535963618374139910.1016/j.jde.2017.11.025 MarottoF.R.On redefining a snap-back repellerChaos Solitons Fractals20052512528212362610.1016/j.chaos.2004.10.003 Aziz-AlaouiM.A.Daher OkiyeM.Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemesAppl. Math. Lett.200316710691075201307410.1016/S0893-9659(03)90096-6 Aziz-AlaouiM.A.Study of a Leslie–Gower-type tritrophic population modelChaos Solitons Fractals200214812751293192452710.1016/S0960-0779(02)00079-6 XuY.LiuM.YangY.Analysis of a stochastic two-predators one-prey system with modified Leslie–Gower and Holling-type II schemesJ. Appl. Anal. Comput.2017727137273602448 ElabbasyE.M.AgizaH.N.El-MetwallyH.DlsadanyA.A.Bifurcation analysis, chaos and control in the Burgers mappingInt. J. Nonlinear Sci.20074317118523657861394.37123 Edelstein-KeshetL.Mathematical Models in Biology1988New YorkRandom House0674.92001 PengR.WangM.X.Global stability of the equilibrium of a diffusive Holling–Tanner prey-predator modelAppl. Math. Lett.2007206664670231441010.1016/j.aml.2006.08.020 Zhang, H.Y., Ma, S.N., Huang, T.S., Cong, X.B., Gao, Z.C., Zhang, F.F.: Complex dynamics on the routes to chaos in a discrete predator–prey system with Crowley–Martin type functional response. Discrete Dyn. Nat. Soc. 2018 (2018). https://doi.org/10.1155/2018/2386954 Baek, H.: Complex dynamics of a discrete-time predator–prey system with Ivlev functional response. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/8635937 NindjinA.F.TiaK.T.OkouH.TetchiA.Stability of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes and time-delay in two dimensionsAdv. Differ. Equ.20182018380099310.1186/s13662-018-1621-z ZhangX.ZhangQ.L.Bifurcation analysis and control of a discrete harvested prey-predator system with Beddington–DeAngelis functional responseJ. Franklin Inst.2010347710761096266929010.1016/j.jfranklin.2010.03.016 GopalsamyK.WengP.Feedback regulation of logistic growthInt. J. Math. Math. Sci.1993161177192120012610.1155/S0161171293000213 RomanovskiV.G.HanM.A.HuangW.T.Bifurcation of critical periods of a quintic systemElectron. J. Differ. Equ.20182018378118110.1186/s13662-018-1516-z GuQ.L.L.TianZ.Q.K.KovacicG.ZhouD.CaiD.The dynamics of balanced spiking neuronal networks under Poisson drive is not chaoticFront. Comput. Neurosci.20181210.3389/fncom.2018.00047 ChenZ.YuP.Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functionsJ. Franklin Inst.20052641231124821436701093.37508 BaiY.Z.MuX.Q.Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptibleJ. Appl. Anal. Comput.2018824024123760100 GuckenheimerJ.HolmesP.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields2002New YorkSpringer0515.34001 HuZ.Y.TengZ.D.ZhangL.Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional responseNonlinear Anal., Real World Appl.201112423562377280102510.1016/j.nonrwa.2011.02.009 WigginsS.Introduction to Applied Nonlinear Dynamical System and Chaos2003New YorkSpringer1027.37002 LuoX.S.ChenG.R.El-MetwallyB.H.Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systemChaos Solitons Fractals200318477578310.1016/S0960-0779(03)00028-6 DegnH.HoldenA.V.OlsenL.F.Chaos in Biological Systems1987New YorkSpringer10.1007/978-1-4757-9631-5 CaoX.K.WangJ.R.Finite-time stability of a class of oscillating systems with two delaysMath. Methods Appl. Sci.2018411349434954384357110.1002/mma.4943 LeslieP.H.GowerJ.C.The properties of a stochastic model for the predator–prey type of interaction between two speciesBiometrika1960473–421923412260310.1093/biomet/47.3-4.219 KolmogorovA.N.Sulla teoria di Volterra della Lotta per I’esistenzaG. Ist. Ital. Attuari193677480(in Italian) WuD.Y.ZhaoH.Y.Complex dynamics of a discrete predator–prey model with the prey subject to the Allee effectJ. Differ. Equ. Appl.2017231117651806374231310.1080/10236198.2017.1367389 WeiC.J.LiuJ.N.ZhangS.W.Analysis of a stochastic eco-epidemiological model with modified Leslie–Gower functional responseAdv. Differ. Equ.20182018379717210.1186/s13662-018-1540-z HeZ.M.LaiX.Bifurcation and chaotic behavior of a discrete-time predator–prey systemNonlinear Anal., Real World Appl.2011121403417272902910.1016/j.nonrwa.2010.06.026 AlligoodK.SauerT.YorkeJ.Chaos: An Introduction to Dynamical System1997New YorkSpringer10.1007/978-3-642-59281-2 HawkinsB.A.CornellH.V.Theoretical Approaches to Biological Control2004CambridgeCambridge University Press0926.92001 RenJ.L.SiegmundS.Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional responseNonlinear Dyn.20179011941370793610.1007/s11071-017-3643-6 A.F. Nindjin (1950_CR10) 2018; 2018 1950_CR20 K. Gopalsamy (1950_CR32) 1993; 16 W.S. Yang (1950_CR8) 2013; 14 1950_CR21 D.K. Arrowsmith (1950_CR38) 1993; 3 E.M. Elabbasy (1950_CR29) 2007; 4 V.G. Romanovski (1950_CR16) 2018; 2018 Z. Chen (1950_CR28) 2005; 26 X.S. Luo (1950_CR30) 2003; 18 F.R. Marotto (1950_CR34) 2005; 25 X.K. Cao (1950_CR18) 2018; 41 M.A. Aziz-Alaoui (1950_CR6) 2002; 14 Q.L.L. Gu (1950_CR39) 2018; 12 J.L. Ren (1950_CR37) 2017; 90 P.H. Leslie (1950_CR2) 1960; 47 A.N. Kolmogorov (1950_CR4) 1936; 7 L. Edelstein-Keshet (1950_CR1) 1988 R. Peng (1950_CR9) 2007; 20 Y. Xu (1950_CR12) 2017; 7 K.L. Liao (1950_CR35) 2012; 386 C. Banerjee (1950_CR11) 2018; 26 D.Y. Wu (1950_CR22) 2017; 23 K. Alligood (1950_CR24) 1997 H. Degn (1950_CR13) 1987 S.L. Yuan (1950_CR36) 2011; 21 Z.Q. Liang (1950_CR7) 2007; 334 Z.M. He (1950_CR26) 2011; 12 M.A. Aziz-Alaoui (1950_CR3) 2003; 16 C.J. Wei (1950_CR5) 2018; 2018 F.R. Marotto (1950_CR33) 1978; 63 J. Guckenheimer (1950_CR25) 2002 M.A. Han (1950_CR15) 2018; 264 M.M. Li (1950_CR17) 2018; 324 Y.Z. Bai (1950_CR14) 2018; 8 S. Wiggins (1950_CR27) 2003 Z.Y. Hu (1950_CR23) 2011; 12 X. Zhang (1950_CR19) 2010; 347 B.A. Hawkins (1950_CR31) 2004 |
| References_xml | – reference: Zhang, H.Y., Ma, S.N., Huang, T.S., Cong, X.B., Gao, Z.C., Zhang, F.F.: Complex dynamics on the routes to chaos in a discrete predator–prey system with Crowley–Martin type functional response. Discrete Dyn. Nat. Soc. 2018 (2018). https://doi.org/10.1155/2018/2386954 – reference: LiaoK.L.ShihC.W.Snapback repellers and homoclinic orbits for multi-dimensional mapsJ. Math. Anal. Appl.20123861387400283489310.1016/j.jmaa.2011.08.011 – reference: Edelstein-KeshetL.Mathematical Models in Biology1988New YorkRandom House0674.92001 – reference: HuZ.Y.TengZ.D.ZhangL.Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional responseNonlinear Anal., Real World Appl.201112423562377280102510.1016/j.nonrwa.2011.02.009 – reference: BanerjeeC.DasP.Impulsive effect on Tri-Trophic food chain model with mixed functional responses under seasonal perturbationsDiffer. Equ. Dyn. Syst.2018261–3157176375998510.1007/s12591-016-0328-4 – reference: BaiY.Z.MuX.Q.Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptibleJ. Appl. Anal. Comput.2018824024123760100 – reference: CaoX.K.WangJ.R.Finite-time stability of a class of oscillating systems with two delaysMath. Methods Appl. Sci.2018411349434954384357110.1002/mma.4943 – reference: ChenZ.YuP.Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functionsJ. Franklin Inst.20052641231124821436701093.37508 – reference: PengR.WangM.X.Global stability of the equilibrium of a diffusive Holling–Tanner prey-predator modelAppl. Math. Lett.2007206664670231441010.1016/j.aml.2006.08.020 – reference: XuY.LiuM.YangY.Analysis of a stochastic two-predators one-prey system with modified Leslie–Gower and Holling-type II schemesJ. Appl. Anal. Comput.2017727137273602448 – reference: WeiC.J.LiuJ.N.ZhangS.W.Analysis of a stochastic eco-epidemiological model with modified Leslie–Gower functional responseAdv. Differ. Equ.20182018379717210.1186/s13662-018-1540-z – reference: LiM.M.WangJ.R.Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equationsAppl. Math. Comput.20183242542653743671 – reference: YuanS.L.JingZ.J.JiangT.Bifurcation and chaos in the Tinkerbell mapInt. J. Bifurc. Chaos Appl. Sci. Eng.2011211131373156287196610.1142/S0218127411030581 – reference: YangW.S.Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional responseNonlinear Anal., Real World Appl.201314313231330300450310.1016/j.nonrwa.2012.09.020 – reference: ArrowsmithD.K.CartwrightJ.H.E.LansburyA.N.PlaceC.M.The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative systemInt. J. Bifurc. Chaos199334803842124824810.1142/S021812749300074X – reference: Aziz-AlaouiM.A.Study of a Leslie–Gower-type tritrophic population modelChaos Solitons Fractals200214812751293192452710.1016/S0960-0779(02)00079-6 – reference: ZhangX.ZhangQ.L.Bifurcation analysis and control of a discrete harvested prey-predator system with Beddington–DeAngelis functional responseJ. Franklin Inst.2010347710761096266929010.1016/j.jfranklin.2010.03.016 – reference: LeslieP.H.GowerJ.C.The properties of a stochastic model for the predator–prey type of interaction between two speciesBiometrika1960473–421923412260310.1093/biomet/47.3-4.219 – reference: RomanovskiV.G.HanM.A.HuangW.T.Bifurcation of critical periods of a quintic systemElectron. J. Differ. Equ.20182018378118110.1186/s13662-018-1516-z – reference: HawkinsB.A.CornellH.V.Theoretical Approaches to Biological Control2004CambridgeCambridge University Press0926.92001 – reference: LuoX.S.ChenG.R.El-MetwallyB.H.Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systemChaos Solitons Fractals200318477578310.1016/S0960-0779(03)00028-6 – reference: GopalsamyK.WengP.Feedback regulation of logistic growthInt. J. Math. Math. Sci.1993161177192120012610.1155/S0161171293000213 – reference: Aziz-AlaouiM.A.Daher OkiyeM.Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemesAppl. Math. Lett.200316710691075201307410.1016/S0893-9659(03)90096-6 – reference: AlligoodK.SauerT.YorkeJ.Chaos: An Introduction to Dynamical System1997New YorkSpringer10.1007/978-3-642-59281-2 – reference: RenJ.L.SiegmundS.Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional responseNonlinear Dyn.20179011941370793610.1007/s11071-017-3643-6 – reference: MarottoF.R.On redefining a snap-back repellerChaos Solitons Fractals20052512528212362610.1016/j.chaos.2004.10.003 – reference: HanM.A.ShengL.J.ZhangX.Bifurcation theory for finitely smooth planar autonomous differential systemsJ. Differ. Equ.2018264535963618374139910.1016/j.jde.2017.11.025 – reference: ElabbasyE.M.AgizaH.N.El-MetwallyH.DlsadanyA.A.Bifurcation analysis, chaos and control in the Burgers mappingInt. J. Nonlinear Sci.20074317118523657861394.37123 – reference: NindjinA.F.TiaK.T.OkouH.TetchiA.Stability of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes and time-delay in two dimensionsAdv. Differ. Equ.20182018380099310.1186/s13662-018-1621-z – reference: WuD.Y.ZhaoH.Y.Complex dynamics of a discrete predator–prey model with the prey subject to the Allee effectJ. Differ. Equ. Appl.2017231117651806374231310.1080/10236198.2017.1367389 – reference: KolmogorovA.N.Sulla teoria di Volterra della Lotta per I’esistenzaG. Ist. Ital. Attuari193677480(in Italian) – reference: LiangZ.Q.PanH.W.Qualitative analysis of a ratio-dependent Holling–Tanner modelJ. Math. Anal. Appl.20073342954964233864010.1016/j.jmaa.2006.12.079 – reference: WigginsS.Introduction to Applied Nonlinear Dynamical System and Chaos2003New YorkSpringer1027.37002 – reference: DegnH.HoldenA.V.OlsenL.F.Chaos in Biological Systems1987New YorkSpringer10.1007/978-1-4757-9631-5 – reference: GuckenheimerJ.HolmesP.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields2002New YorkSpringer0515.34001 – reference: MarottoF.R.Snap-back repellers imply chaos in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document}J. Math. Anal. Appl.197863119922350117510.1016/0022-247X(78)90115-4 – reference: GuQ.L.L.TianZ.Q.K.KovacicG.ZhouD.CaiD.The dynamics of balanced spiking neuronal networks under Poisson drive is not chaoticFront. Comput. Neurosci.20181210.3389/fncom.2018.00047 – reference: Baek, H.: Complex dynamics of a discrete-time predator–prey system with Ivlev functional response. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/8635937 – reference: HeZ.M.LaiX.Bifurcation and chaotic behavior of a discrete-time predator–prey systemNonlinear Anal., Real World Appl.2011121403417272902910.1016/j.nonrwa.2010.06.026 – volume: 324 start-page: 254 year: 2018 ident: 1950_CR17 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2017.11.063 – volume: 20 start-page: 664 issue: 6 year: 2007 ident: 1950_CR9 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.08.020 – volume: 264 start-page: 3596 issue: 5 year: 2018 ident: 1950_CR15 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2017.11.025 – volume-title: Chaos: An Introduction to Dynamical System year: 1997 ident: 1950_CR24 doi: 10.1007/978-3-642-59281-2 – volume: 21 start-page: 3137 issue: 11 year: 2011 ident: 1950_CR36 publication-title: Int. J. Bifurc. Chaos Appl. Sci. Eng. doi: 10.1142/S0218127411030581 – ident: 1950_CR21 doi: 10.1155/2018/8635937 – volume: 12 start-page: 403 issue: 1 year: 2011 ident: 1950_CR26 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2010.06.026 – volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields year: 2002 ident: 1950_CR25 – volume: 14 start-page: 1323 issue: 3 year: 2013 ident: 1950_CR8 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2012.09.020 – volume: 26 start-page: 157 issue: 1–3 year: 2018 ident: 1950_CR11 publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-016-0328-4 – volume: 7 start-page: 74 year: 1936 ident: 1950_CR4 publication-title: G. Ist. Ital. Attuari – volume: 7 start-page: 713 issue: 2 year: 2017 ident: 1950_CR12 publication-title: J. Appl. Anal. Comput. – volume: 90 start-page: 19 issue: 1 year: 2017 ident: 1950_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3643-6 – volume: 47 start-page: 219 issue: 3–4 year: 1960 ident: 1950_CR2 publication-title: Biometrika doi: 10.1093/biomet/47.3-4.219 – volume: 2018 year: 2018 ident: 1950_CR5 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1540-z – volume-title: Mathematical Models in Biology year: 1988 ident: 1950_CR1 – volume-title: Chaos in Biological Systems year: 1987 ident: 1950_CR13 doi: 10.1007/978-1-4757-9631-5 – volume: 26 start-page: 1231 issue: 4 year: 2005 ident: 1950_CR28 publication-title: J. Franklin Inst. – volume: 16 start-page: 177 issue: 1 year: 1993 ident: 1950_CR32 publication-title: Int. J. Math. Math. Sci. doi: 10.1155/S0161171293000213 – volume: 2018 year: 2018 ident: 1950_CR10 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1621-z – volume-title: Introduction to Applied Nonlinear Dynamical System and Chaos year: 2003 ident: 1950_CR27 – volume: 41 start-page: 4943 issue: 13 year: 2018 ident: 1950_CR18 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4943 – volume: 25 start-page: 25 issue: 1 year: 2005 ident: 1950_CR34 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.10.003 – volume: 8 start-page: 402 issue: 2 year: 2018 ident: 1950_CR14 publication-title: J. Appl. Anal. Comput. – volume: 334 start-page: 954 issue: 2 year: 2007 ident: 1950_CR7 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.12.079 – volume: 23 start-page: 1765 issue: 11 year: 2017 ident: 1950_CR22 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236198.2017.1367389 – volume: 63 start-page: 199 issue: 1 year: 1978 ident: 1950_CR33 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(78)90115-4 – volume: 2018 year: 2018 ident: 1950_CR16 publication-title: Electron. J. Differ. Equ. doi: 10.1186/s13662-018-1516-z – volume: 4 start-page: 171 issue: 3 year: 2007 ident: 1950_CR29 publication-title: Int. J. Nonlinear Sci. – volume: 347 start-page: 1076 issue: 7 year: 2010 ident: 1950_CR19 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2010.03.016 – volume: 14 start-page: 1275 issue: 8 year: 2002 ident: 1950_CR6 publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(02)00079-6 – volume: 3 start-page: 803 issue: 4 year: 1993 ident: 1950_CR38 publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S021812749300074X – volume: 12 year: 2018 ident: 1950_CR39 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2018.00047 – volume: 16 start-page: 1069 issue: 7 year: 2003 ident: 1950_CR3 publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(03)90096-6 – volume: 18 start-page: 775 issue: 4 year: 2003 ident: 1950_CR30 publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(03)00028-6 – ident: 1950_CR20 doi: 10.1155/2018/2386954 – volume: 12 start-page: 2356 issue: 4 year: 2011 ident: 1950_CR23 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2011.02.009 – volume-title: Theoretical Approaches to Biological Control year: 2004 ident: 1950_CR31 – volume: 386 start-page: 387 issue: 1 year: 2012 ident: 1950_CR35 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.08.011 |
| SSID | ssj0029488 |
| Score | 2.3642554 |
| Snippet | The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the... Abstract The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Bifurcation control Bifurcation theory Chaos control Chaos theory Computer simulation Control systems Difference and Functional Equations Discrete time systems Functional Analysis Local stability Marotto’s chaos Mathematical models Mathematics Mathematics and Statistics Neimark–Sacker bifurcation Numerical methods Ordinary Differential Equations Partial Differential Equations Predator-prey simulation Predator–prey model |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEA0iHvQgrjhu5OBJDWabLEdHFA8yKCh4C-ksOCCj9IyCN__BP_RLTLozbqBevIXuNIRaUvU6lVcA7OScgQSLkWNUIu6oRpVwDgnMur5KIVTapmvJmez31fW1Pv_U6ivXhLX0wK3gDrqMex6ZVlVkPOCgtKTBxm6glgvfXC-nKeuZgKkCtXSyy3KGSZQ4GBEmRC5B0Ci3PUXiSxRqyPq_ZJjfDkWbWHOyAOZLkggP28UtgqkwXAJzn6gDl8FFbxAf6vZ_2z50N_ZuBG0hGEkDD0sNOhwMoYX57m2d0mOUW8nD-zr4jLVfn1_S8Am2bM4r4Ork-PLoFJX2CMglRxsjZRPaoBVW0muJeSQqSYR6xW3FdQjMqa4WVnkrAw9CE-2jUywSGz2OlmO2CqaHd8OwBiD1gVhvq5QPuUxYZkPyfCp9An8M8wp3AJ6Iy7jCHZ5bWNyaBkMoYVoJmyRhkyVsRAfsvn9y3xJn_Da5l3XwPjFzXjcPkiWYYgnmL0vogM2JBk1xxJGhRKi8z0jVAXsTrX68_nFF6_-xog0wS7PNYYKI3ATT4_ohbIEZ9zgejOrtxmLfAOB77bw priority: 102 providerName: Directory of Open Access Journals |
| Title | Bifurcation, chaos analysis and control in a discrete-time predator–prey system |
| URI | https://link.springer.com/article/10.1186/s13662-019-1950-6 https://www.proquest.com/docview/2168053178 https://doaj.org/article/534d4f398bf34e0e8972eaf5e2a46d15 |
| Volume | 2019 |
| WOSCitedRecordID | wos000455980500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1687-1847 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0029488 issn: 1687-1847 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKS-UDJ8Bav-LHCVG0KxBQlZe0cLEc24FKqC1JF4kb_4F_yC_Bk7hdFom9cIms2I6czNieGU--D6H7YDOw5CkJgmsiA7ekViEQRUUV67yFat-zlrzU06k5OrKzEnDrSlrlZk3sF-q4DBAj3-dMGVAYbR6vvhJgjYLT1UKhcR7tMs4Z6PkLTbYOl5U972TuqQlYAuVUkxm13zGhFCQlWAJEqESd2pd6-P5TNudfx6T97nN45X_HfRVdLnYnfjIoyjV0Li2uo0t_oBHeQK8n8-a4HUJ4j3D47Jcd9gWzJBciLmnteL7AHsPvvG22uAmw0-NVmyK4779-_MzF73gAiL6J3h8evHv6jBTGBRLy3F0T47MDw2tqdLSayoYZLxWPRvpa2pREMJVV3kSvk0zKMhubYETDfBNp4yUVt9DOYrlItxHmMTEffZ1NrAAYaD7lxYTrmP1JQWVNR4huvrcLBY4cWDG-uN4tMcoNInJZRA5E5NQIPdh2WQ1YHGc1noAQtw0BRru_sWw_uTIrXSVklI2wpm6ETDQZq3nyTZV4fu_IqhHa2wjVlbnduROJjtDDjVqcVP9zRHfOfthddJGDOlJGmN5DO-v2ON1DF8K39bxrx2h3cjCdvRn3MYNxr-ZjyFN9m6-z6mOunz1_NfvwG57SA4Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxEC2FgAQc2BEDAXyAC2DF23g5IESAKFGGEYgg5ea4bTeMBDND9wSUG__Af_BRfAl2LxOCRG45cLO63Zbdfi5Xlcv1AB5knYFGR7DnTGHhmcGF9B5LwoehSFuocg1ryUiNx3pvz7xZgZ_9XZgcVtnLxEZQh5nPPvJ1RqXOgFH62fwLzqxR-XS1p9BoYbETD78lk61-uv0yze9DxjZf7b7Ywh2rAPYJnwusXVLSWUG0CkYRUVLthGRBC1cIEyP3emik08GpKKI01ITSa15SVwZSOkF4avcMnBVZ-jehgu-WBp4RDc9l6qnCWfPoTlGplus15VLmIAiDM_Eqlsf2wYYu4JiO-9exbLPbbV7-3_7TFbjU6dXoebsQrsJKnF6Di39kW7wObzcm5UHVuiifIP_RzWrkupwsqRBQF7aPJlPkUL6uXCWLAi8mnyOaVzFk98Sv7z9S8RC1CbBvwPtTGdNNWJ3OpvEWIBYidcEVSYX0Ocebi0lYMhWSvcyJKMgASD-_1nfp1jPrxyfbmF1a2hYSNkHCZkhYOYBHy0_mba6RkypvZNAsK-Y04c2DWfXBdlLHDrkIouRGFyUXkURtFIuuHEaWxh3ocABrPYhsJ7tqe4SgATzuYXj0-p89un1yY_fh_Nbu65EdbY937sAFlpcCoZiqNVhdVAfxLpzzXxeTurrXLCoE-6eNzt8xx1sP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxELVCQCgc2BEDAXyAC2CNt_ZyQIgQRkSJRoMEUsTFuL2QkWBm6J6AcuMf-Bs-hy_B7mVCkMgtB25Wt9uy28_lqnK5HgAPs85AgsXIMSoRd1SjUjiHBGaFL9MWKm3DWrInx2O1v68na-Bnfxcmh1X2MrER1H7uso98SIlQGTBSDWMXFjHZHj1ffEGZQSqftPZ0Gi1EdsPRt2S-1c92ttNcP6J09Orty9eoYxhALmF1iZRNCjstsZJeS8wjUZYL6hW3JdchMKcKLazyVgYehCbaR6dYJDZ6HC3HLLV7DpyXycbMht-keL8y9jRvOC9TryXKWkh3okqUGNaECZEDIjTKJKxInNgTG-qAE_ruX0e0zc43uvI__7Or4HKnb8MX7QK5BtbC7Dq49EcWxhvgzdY0Hlat6_IpdAd2XkPb5WpJBQ-7cH44nUEL8zXmKlkaaDn9HOCiCj67LX59_5GKR7BNjH0TvDuTMd0C67P5LNwGkPpArLdlUi1dzv1mQxKiVPpkRzPMSzwAuJ9r47o07JkN5JNpzDElTAsPk-BhMjyMGIDHq08WbQ6S0ypvZQCtKub04c2DefXRdNLIFIx7HplWZWQ84KC0pMHGItA0bk-KAdjsAWU6mVabYzQNwJMeksev_9mjO6c39gBcTKA0ezvj3btgg-ZVgQkichOsL6vDcA9ccF-X07q636wvCD6cNTh_A7WVY_I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifurcation%2C+chaos+analysis+and+control+in+a+discrete-time+predator%E2%80%93prey+system&rft.jtitle=Advances+in+difference+equations&rft.au=Liu%2C+Weiyi&rft.au=Cai%2C+Donghan&rft.date=2019-01-17&rft.pub=Springer+Nature+B.V&rft.issn=1687-1839&rft.eissn=1687-1847&rft.volume=2019&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs13662-019-1950-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |