Bifurcation, chaos analysis and control in a discrete-time predator–prey system
The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed...
Gespeichert in:
| Veröffentlicht in: | Advances in difference equations Jg. 2019; H. 1; S. 1 - 22 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
17.01.2019
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The dynamical behavior of a discrete-time predator–prey model with modified Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal form method as well as bifurcation and chaos theory. The existence and stability of fixed points for the model are discussed. It is showed that under certain conditions, the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in the sense of Marotto is also verified by both analytical and numerical methods. Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist objectively in this system, two control strategies are designed, respectively. Numerical simulations are presented not only to validate analytical results but also to show the complicated dynamical behavior. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-019-1950-6 |