Asymptotical stability of Runge–Kutta methods for nonlinear impulsive differential equations

In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations Vol. 2020; no. 1; pp. 1 - 12
Main Author: Zhang, Gui-Lai
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 21.01.2020
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-1847, 1687-1839, 1687-1847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are given to illustrate the conclusions.
AbstractList In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are given to illustrate the conclusions.
Abstract In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are given to illustrate the conclusions.
ArticleNumber 42
Author Zhang, Gui-Lai
Author_xml – sequence: 1
  givenname: Gui-Lai
  orcidid: 0000-0001-6918-4993
  surname: Zhang
  fullname: Zhang, Gui-Lai
  email: guilaizhang@126.com
  organization: School of Mathematics and Statistics, Northeastern University at Qinhuangdao
BookMark eNp9kd9qFTEQxoO0YFv7AL1b8Ho1_zbJXpbin2JBKHrbMLuZ1Bz2bE6TrPTc-Q6-oU9i2hUrgl5lCPP7vpn5jsnBHGck5IzRV4wZ9TozoRRvKetbLrVo75-RI6aMbpmR-uCP-jk5znlDKe-lMUfk5jzvt7sSSxhhanKBIUyh7Jvom-tlvsUf375_WEqBZovlS3S58TE11XsKM0Jqwna3TDl8xcYF7zHhXELVwbsFSohzfkEOPUwZT3-9J-Tz2zefLt63Vx_fXV6cX7Wj5F1plRg8layjHhGNp0wK06NG7bVwXef4iIDA-nEACgN33cCBOYe98R5U58QJuVx1XYSN3aWwhbS3EYJ9_Ijp1kKqO05o1djr0QClnUI5OGWgR8dMR13HjeC8ar1ctXYp3i2Yi93EJc11fMuFFLLXSsvaxdauMcWcE_rfrozah0jsGomtkdiHSOx9ZfRfzBjK46FKgjD9l-QrmatLjSU9zfRv6CfkcKaO
CitedBy_id crossref_primary_10_1016_j_mbs_2025_109535
crossref_primary_10_3390_math12193002
crossref_primary_10_1155_2021_9035419
Cites_doi 10.1016/j.apnum.2013.12.009
10.1155/2010/592036
10.1016/j.camwa.2005.02.002
10.1155/2012/176375
10.1016/j.mcm.2007.09.010
10.1002/0470868279
10.1142/0906
10.1186/1687-1847-2012-88
10.1016/j.apnum.2010.12.005
10.1080/00207160.2010.504829
10.1142/2892
10.1007/s10255-014-0434-4
10.1007/BF01932026
10.1016/j.cnsns.2019.104899
10.1016/j.aml.2011.04.042
10.1155/2012/652928
10.1142/2413
10.1080/00207160601073680
ContentType Journal Article
Copyright The Author(s) 2020
Advances in Difference Equations is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: Advances in Difference Equations is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-019-2473-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 12
ExternalDocumentID oai_doaj_org_article_6c97c8a0056e4bd68a9ed1850d528322
10_1186_s13662_019_2473_x
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 11701074
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c425t-63bf04150feee8f014389e7e7f73d55d2ceaea19cba0ab2d5b2a1dde98ffa65d3
IEDL.DBID BENPR
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513696600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Fri Oct 03 12:50:59 EDT 2025
Tue Sep 30 18:36:52 EDT 2025
Sat Nov 29 01:43:45 EST 2025
Tue Nov 18 21:40:41 EST 2025
Fri Feb 21 02:36:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Impulsive differential equation
Runge–Kutta method
Lipschitz condition
Asymptotical stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-63bf04150feee8f014389e7e7f73d55d2ceaea19cba0ab2d5b2a1dde98ffa65d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6918-4993
OpenAccessLink https://www.proquest.com/docview/2343497674?pq-origsite=%requestingapplication%
PQID 2343497674
PQPubID 237355
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_6c97c8a0056e4bd68a9ed1850d528322
proquest_journals_2343497674
crossref_primary_10_1186_s13662_019_2473_x
crossref_citationtrail_10_1186_s13662_019_2473_x
springer_journals_10_1186_s13662_019_2473_x
PublicationCentury 2000
PublicationDate 2020-01-21
PublicationDateYYYYMMDD 2020-01-21
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-21
  day: 21
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References ButcherJ.C.Numerical Methods for Ordinary Differential Equations2003ChichesterWiley10.1002/0470868279
LiuX.SongM.H.LiuM.Z.Linear multistep methods for impulsive differential equationsDiscrete Dyn. Nat. Soc.20122012292339510.1155/2012/6529281248.65076
ZhangZ.H.LiangH.Collocation methods for impulsive differential equationsAppl. Math. Comput.201422833634831519201364.65155
DingX.H.WuK.N.LiuM.Z.Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equationsInt. J. Comput. Math.200683753763228511610.1080/00207160601073680
WannerG.HairerE.NørsettS.P.Order stars and stability theoremsBIT Numer. Math.19781847548952075610.1007/BF01932026
WangQ.QiuS.Oscillation of numerical solution in the Runge–Kutta methods for equation x′(t)=ax(t)+a0x([t])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x'(t) = ax(t) + a_{0} x([t])$\end{document}Acta Math. Appl. Sin. Engl. Ser.201430943950328598510.1007/s10255-014-0434-4
LiuX.ZengY.M.Linear multistep methods for impulsive delay differential equationsAppl. Numer. Math.20183215535633732397
WenL.P.YuY.S.The analytic and numerical stability of stiff impulsive differential equations in Banach spaceAppl. Math. Lett.20112417511757280301910.1016/j.aml.2011.04.042
ButcherJ.C.The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods1987New YorkWiley0616.65072
DekkerK.VerwerJ.G.Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations1984AmsterdamNorth-Holland0571.65057
RanX.J.LiuM.Z.ZhuQ.Y.Numerical methods for impulsive differential equationMath. Comput. Model.2008484655243132210.1016/j.mcm.2007.09.010
HairerE.NørsettS.P.WannerG.Solving Ordinary Differential Equations II, Stiff and Differential Algebraic Problems1993New YorkSpringer0789.65048
DingX.H.WuK.N.LiuM.Z.The Euler scheme and its convergence for impulsive delay differential equationsAppl. Math. Comput.20102161566157026299581202.65088
BainovD.D.SimeonovP.S.Systems with Impulsive Effect: Stability, Theory and Applications1989ChichesterEllis Horwood
LiangH.SongM.H.LiuM.Z.Stability of the analytic and numerical solutions for impulsive differential equationsAppl. Numer. Math.20116111031113284213310.1016/j.apnum.2010.12.005
WuK.Z.DingX.H.Impulsive stabilization of delay difference equations and its application in Nicholson’s blowflies modelsAdv. Differ. Equ.20122012294873210.1186/1687-1847-2012-881302.39028
BainovD.D.SimeonovP.S.Impulsive Differential Equations: Asymptotic Properties of the Solutions1995SingaporeWorld Scientific10.1142/2413
YangZ.W.LiuM.Z.SongM.H.Stability of Runge–Kutta methods in the numerical solution of equation u′(t)=au(t)+a0u([t])+a1u([t−1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'(t) = au(t) + a_{0} u([t])+a_{1} u([t-1])$\end{document}Appl. Math. Comput.2005162375021072581063.65070
Mil’manV.D.MyshkisA.D.On the stability of motion in the presence of impulsesSib. Math. J.196012332371260281358.34022
SamoilenkoA.M.PerestyukN.A.ChapovskyY.Impulsive Differential Equations1995SingaporeWorld Scientific10.1142/2892
LakshmikanthamV.BainovD.D.SimeonovP.S.Theory of Impulsive Differential Equations1989SingaporeWorld Scientific10.1142/0906
WuK.Z.DingX.H.WangL.M.Stability and stabilization of impulsive stochastic delay difference equationsDiscrete Dyn. Nat. Soc.20102010260032810.1155/2010/5920361189.93140
SongM.H.YangZ.W.LiuM.Z.Stability of θ-methods for advanced differential equations with piecewise continuous argumentsComput. Math. Appl.20054912951301214948110.1016/j.camwa.2005.02.002
WuK.N.NaM.Y.WangL.M.DingX.H.WuB.Y.Finite-time stability of impulsive reaction–diffusion systems with and without time delayAppl. Math. Comput.2019363398202007149669
LiuM.Z.LiangH.YangZ.W.Stability of Runge–Kutta methods in the numerical solution of linear impulsive differential equationsAppl. Math. Comput.200719234635723856001193.65121
LiuX.ZhangG.L.LiuM.Z.Analytic and numerical exponential asymptotic stability of nonlinear impulsive differential equationsAppl. Numer. Math.2014814049321217410.1016/j.apnum.2013.12.009
WuK.N.LiuX.Z.YangB.Q.LimC.C.Mean square finite-time synchronization of impulsive stochastic delay reaction–diffusion systemsCommun. Nonlinear Sci. Numer. Simul.201979397958310.1016/j.cnsns.2019.104899
WuK.Z.DingX.H.Stability and stabilization of impulsive stochastic delay differential equationsMathematical Problems in Engineering 2012201210.1155/2012/176375
LiangH.LiuM.Z.Extinction and permanence of the numerical solution of a two-prey one-predator system with impulsive effectInt. J. Comput. Math.20148813051325278356610.1080/00207160.2010.504829
V.D. Mil’man (2473_CR16) 1960; 1
X. Liu (2473_CR14) 2018; 321
X. Liu (2473_CR15) 2014; 81
M.H. Song (2473_CR19) 2005; 49
Z.W. Yang (2473_CR28) 2005; 162
M.Z. Liu (2473_CR12) 2007; 192
J.C. Butcher (2473_CR3) 1987
K.N. Wu (2473_CR23) 2019; 79
D.D. Bainov (2473_CR1) 1989
H. Liang (2473_CR11) 2011; 61
L.P. Wen (2473_CR22) 2011; 24
V. Lakshmikantham (2473_CR9) 1989
K.Z. Wu (2473_CR26) 2012
K.N. Wu (2473_CR24) 2019; 363
Z.H. Zhang (2473_CR29) 2014; 228
D.D. Bainov (2473_CR2) 1995
J.C. Butcher (2473_CR4) 2003
E. Hairer (2473_CR8) 1993
A.M. Samoilenko (2473_CR18) 1995
X. Liu (2473_CR13) 2012; 2012
X.H. Ding (2473_CR6) 2006; 83
H. Liang (2473_CR10) 2014; 88
K. Dekker (2473_CR5) 1984
G. Wanner (2473_CR21) 1978; 18
K.Z. Wu (2473_CR25) 2012; 2012
X.H. Ding (2473_CR7) 2010; 216
X.J. Ran (2473_CR17) 2008; 48
Q. Wang (2473_CR20) 2014; 30
K.Z. Wu (2473_CR27) 2010; 2010
References_xml – reference: HairerE.NørsettS.P.WannerG.Solving Ordinary Differential Equations II, Stiff and Differential Algebraic Problems1993New YorkSpringer0789.65048
– reference: LiuX.SongM.H.LiuM.Z.Linear multistep methods for impulsive differential equationsDiscrete Dyn. Nat. Soc.20122012292339510.1155/2012/6529281248.65076
– reference: DingX.H.WuK.N.LiuM.Z.The Euler scheme and its convergence for impulsive delay differential equationsAppl. Math. Comput.20102161566157026299581202.65088
– reference: DingX.H.WuK.N.LiuM.Z.Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equationsInt. J. Comput. Math.200683753763228511610.1080/00207160601073680
– reference: ZhangZ.H.LiangH.Collocation methods for impulsive differential equationsAppl. Math. Comput.201422833634831519201364.65155
– reference: WannerG.HairerE.NørsettS.P.Order stars and stability theoremsBIT Numer. Math.19781847548952075610.1007/BF01932026
– reference: RanX.J.LiuM.Z.ZhuQ.Y.Numerical methods for impulsive differential equationMath. Comput. Model.2008484655243132210.1016/j.mcm.2007.09.010
– reference: LiuX.ZhangG.L.LiuM.Z.Analytic and numerical exponential asymptotic stability of nonlinear impulsive differential equationsAppl. Numer. Math.2014814049321217410.1016/j.apnum.2013.12.009
– reference: SamoilenkoA.M.PerestyukN.A.ChapovskyY.Impulsive Differential Equations1995SingaporeWorld Scientific10.1142/2892
– reference: WuK.N.NaM.Y.WangL.M.DingX.H.WuB.Y.Finite-time stability of impulsive reaction–diffusion systems with and without time delayAppl. Math. Comput.2019363398202007149669
– reference: WuK.Z.DingX.H.WangL.M.Stability and stabilization of impulsive stochastic delay difference equationsDiscrete Dyn. Nat. Soc.20102010260032810.1155/2010/5920361189.93140
– reference: LiangH.LiuM.Z.Extinction and permanence of the numerical solution of a two-prey one-predator system with impulsive effectInt. J. Comput. Math.20148813051325278356610.1080/00207160.2010.504829
– reference: LiuM.Z.LiangH.YangZ.W.Stability of Runge–Kutta methods in the numerical solution of linear impulsive differential equationsAppl. Math. Comput.200719234635723856001193.65121
– reference: WuK.Z.DingX.H.Impulsive stabilization of delay difference equations and its application in Nicholson’s blowflies modelsAdv. Differ. Equ.20122012294873210.1186/1687-1847-2012-881302.39028
– reference: WuK.Z.DingX.H.Stability and stabilization of impulsive stochastic delay differential equationsMathematical Problems in Engineering 2012201210.1155/2012/176375
– reference: DekkerK.VerwerJ.G.Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations1984AmsterdamNorth-Holland0571.65057
– reference: LiangH.SongM.H.LiuM.Z.Stability of the analytic and numerical solutions for impulsive differential equationsAppl. Numer. Math.20116111031113284213310.1016/j.apnum.2010.12.005
– reference: LakshmikanthamV.BainovD.D.SimeonovP.S.Theory of Impulsive Differential Equations1989SingaporeWorld Scientific10.1142/0906
– reference: Mil’manV.D.MyshkisA.D.On the stability of motion in the presence of impulsesSib. Math. J.196012332371260281358.34022
– reference: LiuX.ZengY.M.Linear multistep methods for impulsive delay differential equationsAppl. Numer. Math.20183215535633732397
– reference: WenL.P.YuY.S.The analytic and numerical stability of stiff impulsive differential equations in Banach spaceAppl. Math. Lett.20112417511757280301910.1016/j.aml.2011.04.042
– reference: BainovD.D.SimeonovP.S.Systems with Impulsive Effect: Stability, Theory and Applications1989ChichesterEllis Horwood
– reference: SongM.H.YangZ.W.LiuM.Z.Stability of θ-methods for advanced differential equations with piecewise continuous argumentsComput. Math. Appl.20054912951301214948110.1016/j.camwa.2005.02.002
– reference: ButcherJ.C.The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods1987New YorkWiley0616.65072
– reference: BainovD.D.SimeonovP.S.Impulsive Differential Equations: Asymptotic Properties of the Solutions1995SingaporeWorld Scientific10.1142/2413
– reference: WangQ.QiuS.Oscillation of numerical solution in the Runge–Kutta methods for equation x′(t)=ax(t)+a0x([t])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x'(t) = ax(t) + a_{0} x([t])$\end{document}Acta Math. Appl. Sin. Engl. Ser.201430943950328598510.1007/s10255-014-0434-4
– reference: YangZ.W.LiuM.Z.SongM.H.Stability of Runge–Kutta methods in the numerical solution of equation u′(t)=au(t)+a0u([t])+a1u([t−1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'(t) = au(t) + a_{0} u([t])+a_{1} u([t-1])$\end{document}Appl. Math. Comput.2005162375021072581063.65070
– reference: ButcherJ.C.Numerical Methods for Ordinary Differential Equations2003ChichesterWiley10.1002/0470868279
– reference: WuK.N.LiuX.Z.YangB.Q.LimC.C.Mean square finite-time synchronization of impulsive stochastic delay reaction–diffusion systemsCommun. Nonlinear Sci. Numer. Simul.201979397958310.1016/j.cnsns.2019.104899
– volume: 228
  start-page: 336
  year: 2014
  ident: 2473_CR29
  publication-title: Appl. Math. Comput.
– volume: 192
  start-page: 346
  year: 2007
  ident: 2473_CR12
  publication-title: Appl. Math. Comput.
– volume-title: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods
  year: 1987
  ident: 2473_CR3
– volume: 162
  start-page: 37
  year: 2005
  ident: 2473_CR28
  publication-title: Appl. Math. Comput.
– volume: 321
  start-page: 553
  year: 2018
  ident: 2473_CR14
  publication-title: Appl. Numer. Math.
– volume: 81
  start-page: 40
  year: 2014
  ident: 2473_CR15
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2013.12.009
– volume: 2010
  year: 2010
  ident: 2473_CR27
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2010/592036
– volume: 49
  start-page: 1295
  year: 2005
  ident: 2473_CR19
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.02.002
– volume-title: Mathematical Problems in Engineering 2012
  year: 2012
  ident: 2473_CR26
  doi: 10.1155/2012/176375
– volume: 48
  start-page: 46
  year: 2008
  ident: 2473_CR17
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2007.09.010
– volume-title: Numerical Methods for Ordinary Differential Equations
  year: 2003
  ident: 2473_CR4
  doi: 10.1002/0470868279
– volume-title: Theory of Impulsive Differential Equations
  year: 1989
  ident: 2473_CR9
  doi: 10.1142/0906
– volume-title: Systems with Impulsive Effect: Stability, Theory and Applications
  year: 1989
  ident: 2473_CR1
– volume-title: Solving Ordinary Differential Equations II, Stiff and Differential Algebraic Problems
  year: 1993
  ident: 2473_CR8
– volume: 2012
  year: 2012
  ident: 2473_CR25
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2012-88
– volume: 61
  start-page: 1103
  year: 2011
  ident: 2473_CR11
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.12.005
– volume: 88
  start-page: 1305
  year: 2014
  ident: 2473_CR10
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2010.504829
– volume-title: Impulsive Differential Equations
  year: 1995
  ident: 2473_CR18
  doi: 10.1142/2892
– volume: 363
  year: 2019
  ident: 2473_CR24
  publication-title: Appl. Math. Comput.
– volume-title: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations
  year: 1984
  ident: 2473_CR5
– volume: 30
  start-page: 943
  year: 2014
  ident: 2473_CR20
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
  doi: 10.1007/s10255-014-0434-4
– volume: 18
  start-page: 475
  year: 1978
  ident: 2473_CR21
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01932026
– volume: 216
  start-page: 1566
  year: 2010
  ident: 2473_CR7
  publication-title: Appl. Math. Comput.
– volume: 79
  year: 2019
  ident: 2473_CR23
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.104899
– volume: 24
  start-page: 1751
  year: 2011
  ident: 2473_CR22
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.04.042
– volume: 2012
  year: 2012
  ident: 2473_CR13
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2012/652928
– volume-title: Impulsive Differential Equations: Asymptotic Properties of the Solutions
  year: 1995
  ident: 2473_CR2
  doi: 10.1142/2413
– volume: 1
  start-page: 233
  year: 1960
  ident: 2473_CR16
  publication-title: Sib. Math. J.
– volume: 83
  start-page: 753
  year: 2006
  ident: 2473_CR6
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160601073680
SSID ssj0029488
Score 2.198136
Snippet In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions....
Abstract In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Asymptotic methods
Asymptotic properties
Asymptotical stability
Difference and Functional Equations
Differential equations
Exact solutions
Functional Analysis
Impulsive differential equation
Lipschitz condition
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Ordinary Differential Equations
Pade approximation
Partial Differential Equations
Runge-Kutta method
Stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS-UwEMCDiAf3sKxf7HNVcvCkFJu0SZrjUxRBEREVT4bJR0F4-p6vffK87f-w_6F_iUna-gXqZW-lTWGYzCQzzfQ3CG0KrVMLlCVaZizJQef-ykBCpJbS-niDRjr_5bE4OSmuruTpm1ZfoSaswQM3itvhRgpTQEBWulxbXoB01m8yqQ1YEhpX31TILplqUy3p7bI9wyQF36lIxnkoQQinCSJLpu92oQjrfxdhfjgUjXvNwS_0sw0Scb8RbgHNuLtF9OMNOnAJXferx9tRPYyforEP8WKR6yMelvjM-697-vvvaFLXgJsW0RX2wSm-a7gYMMY3t6PJIFSu465Divf0AXb3Dfm7WkYXB_vne4dJ2yshMd7r6oRnugx_26elc64o09jV3AknSpFZxiw1DhwQaTSkoKllmgLxS5ssyhI4s9kKmvVCuN8IgyuBEa9pTmyujYU8Dxh6ZpkIvDjoobTTnTItSDz0sxiomFAUXDXqVl7dKqhbTXto6-WVUUPR-GrwbpiQl4EBgB1veLNQrVmo78yih9a66VStV1aKZnmWy4Av6qHtbopfH38q0er_kOgPmqchV09JQskamq3HE7eO5sxDfVONN6L5PgMWu_V3
  priority: 102
  providerName: Directory of Open Access Journals
Title Asymptotical stability of Runge–Kutta methods for nonlinear impulsive differential equations
URI https://link.springer.com/article/10.1186/s13662-019-2473-x
https://www.proquest.com/docview/2343497674
https://doaj.org/article/6c97c8a0056e4bd68a9ed1850d528322
Volume 2020
WOSCitedRecordID wos000513696600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3hULZeUDJ5DV2Imd-IRa1ApUWEXlocIBy6-gStvudpNF7Y3_wD_kl-BxnC1FohcuVhQ70Sjz8Hhm8g1Cz0pjMqcZJ0bmnBTaFOHKakKlkdIFf4NFdP5Pb8vJpDo8lHUKuLWprHKwidFQu5mFGPkWy4u8kAA983J-SqBrFGRXUwuN62gdkMqCnK_v7E7qg9WRSxax8yQVQZXAF0h5TVqJrZbmQkBZAmQYypycXdqZIoD_Ja_zr0Rp3H_27vwv5XfR7eR54u1eVO6ha_7kPrr1Bx7hA_R1uz0_nnezGN_GwW-MlbPneNbgg2AU_K8fP_eXXadx33e6xcHjxSc92IZe4KPj-XIK5fB4aLsSzMcU-9MeTrx9iD7u7X549ZqkBgzEBlXuiMhNA7_wZ433vmqy2Crdl75sytxx7pj12msqrdGZNsxxwzQN9lJWTaMFd_kGWgtE-EcIa99oTp2oBHWFsU4XBWDbc8dLAKHTI5QNH1_ZhE4OTTKmKp5SKqF6fqnALwX8Umcj9Hz1yLyH5rhq8Q5wdLUQULXjjdnim0pKqoSVpa00wKP6wgRitfQuODSZAwgcxkZoc-CwSqreqgv2jtCLQUYupv9J0eOrX_YE3WRwtM8oYXQTrXWLpX-Kbtjv3VG7GCc5H8cQQhj3SzKGstX3Yaz5lzBfv3lXf_4NZOgM7A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTKgvKqOtCCF7ABRY2d2IkXCLXQqtUMo6oqqCuMX6kqTTvTSQY6O_6B_-Cj-BJsJ5lSJLrrgl2UOJYTH19f-16fA_AiUyo2ktBI8YRGqVSpu9Iywlxxbpy_QQI7_6d-NhjkR0d8fwF-tmdhfFplaxODoTYj7ffIN0iSJin31DNvx-eRV43y0dVWQqOGRc_OvrklW_lm773r35eE7GwfvtuNGlWBSDt8VhFLVOHPpceFtTYv4qD_bTObFVliKDVEW2kl5lrJWCpiqCISOyPA86KQjJrE1XsLFl1rGO3A4tb2YP9gvsTjaVC6xMwNXe97NHFUnLONEieM-TQIH9HIkujiykwYBAOueLl_BWbDfLez_L_9qftwr_Gs0WY9FB7Agj17CHf_4Ft8BJ83y9npuBqF_Xvk_OKQGTxDowIdOKNnf33_0ZtWlUS1rnaJnEePzmoyETlBJ6fj6dCn-6NWVsaZxyGy5zVdevkYPt7IB65AxzXCrgKStpAUG5YzbFKljUxTz91PDc08yZ7sQtx2ttAN-7oXARmKsArLmajxIRw-hMeHuOjCq_kr45p65LrCWx5B84KeNTzcGE2ORWOEBNM807n09K82Va6xklvjHLbYeIofQrqw1iJKNKasFJdw6sLrFpOXj__ZoifXV_Yc7uwefuiL_t6g9xSWiN_GiHFE8Bp0qsnUrsNt_bU6KSfPmjGG4MtNg_U30XVoig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQgWvBEDBbyADSia2LGdeIFQoYyophqNEKCKBa5fQZWmnekkA50d_8Df8Dl8Cb5OMqVIdNcFuyhxLCc-vr72vT4HoSe5ManTlCdGZjxh2rBwZXVCpJHSBX-DRnb-jzv5aFTs7srxGvrZnYWBtMrOJkZD7aYW9sj7NGMZk0A90y_btIjx1uDl7CgBBSmItHZyGg1Ehn75LSzfqhfbW6Gvn1I6ePP-9dukVRhIbMBqnYjMlHBGPS2990WZRi1wn_u8zDPHuaPWa6-JtEan2lDHDdUkGARZlKUW3GWh3gvoYs5EAelkY_5ptdiTLGpeEhEGMXghbUSVFKJfkUwISIiA2EaeJcen5sQoHXDK3_0rRBtnvsH1__mf3UDXWn8bbzYD5CZa84e30NU_WBhvo8-b1fJgVk_jrj4O3nLMF17iaYnfBVPof33_MVzUtcaN2naFg5-PDxuKET3H-wezxQQOAeBObCYYzQn2Rw2JenUHfTiXD7yL1kMj_D2EtS81J04UgjhmrNOMAaM_dzwH6j3dQ2nX8cq2nOwgDTJRcW1WCNVgRQWsKMCKOu6hZ6tXZg0hyVmFXwGaVgWBSzzemM6_qNY0KWFlbgsNpLCemdBYLb0LblzqgPiH0h7a6NClWgNXqRNo9dDzDp8nj__ZovtnV_YYXQ4IVTvbo-EDdIXC3kZKEko20Ho9X_iH6JL9Wu9X80dxsGG0d95I_Q3vtHAf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotical+stability+of+Runge%E2%80%93Kutta+methods+for+nonlinear+impulsive+differential+equations&rft.jtitle=Advances+in+difference+equations&rft.au=Zhang%2C+Gui-Lai&rft.date=2020-01-21&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-019-2473-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_019_2473_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon