Asymptotical stability of Runge–Kutta methods for nonlinear impulsive differential equations

In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 12
Hlavný autor: Zhang, Gui-Lai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 21.01.2020
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are given to illustrate the conclusions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-019-2473-x