Asymptotical stability of Runge–Kutta methods for nonlinear impulsive differential equations

In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations Jg. 2020; H. 1; S. 1 - 12
1. Verfasser: Zhang, Gui-Lai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 21.01.2020
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-1847, 1687-1839, 1687-1847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, asymptotical stability of the exact solutions of nonlinear impulsive ordinary differential equations is studied under Lipschitz conditions. Under these conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of Padé approximation. And two simple examples are given to illustrate the conclusions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-019-2473-x