An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts

The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 46; H. 2; S. 421 - 437
Hauptverfasser: Jiang, Shouyong, Yang, Shengxiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
AbstractList The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
Author Shengxiang Yang
Shouyong Jiang
Author_xml – sequence: 1
  givenname: Shouyong
  surname: Jiang
  fullname: Jiang, Shouyong
– sequence: 2
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25781972$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1U1JbSB0BIyBIXLrt4nNiOj9ttC5WKyqEceooS7xi8SuLFdlaUp8fpLnvoAeGLx-Pv93jmf0WOBj8gIW-AzQGY_ni_fLiYcwZizktWQAEvyCkHWc04V-LoEEt1Qs5jXLO8qpzS1TE54UJVoBU_JX4x0Jt-E_wWV_TL2CXn2zWa5LZI7zbJ9e53k3MDvdr6bpyiJjzSRffdB5d-9PSiiVmY7y_R-H7jo3uirQ90mc8d_qJfm4DJ0-vghxRfk5e26SKe7_cz8u366n75eXZ79-lmubidmZKLNBO8sLbi-ZN2VaLQKKwCY8BatJpp0ZYrVK0pS6bbxmoJrRJCCQvYcpQKijPyYfdubu3niDHVvYsGu64Z0I-xBlVJEIUo1X-gkmkmC1Vm9P0zdO3HMORGMiWmurrSmXq3p8a2x1W9Ca7PU6v_Tj0DsANM8DEGtAcEWD2ZW0_m1pO59d7crFHPNMalJ2tSaFz3T-XbndIh4qGSYpJJWRV_ACXLsVs
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TEVC_2018_2865590
crossref_primary_10_3390_pr11061827
crossref_primary_10_1016_j_jclepro_2021_128716
crossref_primary_10_1109_TCYB_2019_2922266
crossref_primary_10_1016_j_ejor_2025_08_030
crossref_primary_10_1016_j_eswa_2024_123336
crossref_primary_10_1155_2018_1753071
crossref_primary_10_1016_j_asoc_2018_10_028
crossref_primary_10_1109_TNNLS_2018_2847412
crossref_primary_10_1109_TEVC_2022_3140265
crossref_primary_10_1016_j_asoc_2023_110162
crossref_primary_10_1109_TCYB_2018_2834466
crossref_primary_10_1109_JSTARS_2024_3457821
crossref_primary_10_1109_TEVC_2019_2922419
crossref_primary_10_1109_TEVC_2020_2978158
crossref_primary_10_1109_TGRS_2023_3318003
crossref_primary_10_1109_TCYB_2016_2552079
crossref_primary_10_1109_JSTARS_2020_3036896
crossref_primary_10_1109_JAS_2023_123219
crossref_primary_10_1016_j_asoc_2019_105513
crossref_primary_10_1109_TEVC_2018_2836912
crossref_primary_10_3389_fenrg_2022_928744
crossref_primary_10_1109_TEVC_2016_2608507
crossref_primary_10_1016_j_apenergy_2025_125939
crossref_primary_10_1093_comjnl_bxx077
crossref_primary_10_1016_j_geoen_2024_213550
crossref_primary_10_1016_j_ins_2021_05_080
crossref_primary_10_1088_1742_6596_1570_1_012001
crossref_primary_10_1016_j_physa_2019_123526
crossref_primary_10_1016_j_asoc_2020_106968
crossref_primary_10_1109_TCYB_2020_2981733
crossref_primary_10_1007_s11227_023_05118_1
crossref_primary_10_1016_j_eswa_2021_115654
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1109_TEVC_2019_2899030
crossref_primary_10_1007_s10489_017_0898_z
crossref_primary_10_1109_TCYB_2017_2728725
crossref_primary_10_1016_j_ins_2019_12_011
crossref_primary_10_1109_ACCESS_2021_3065384
crossref_primary_10_1016_j_asoc_2018_05_014
crossref_primary_10_1109_TCYB_2021_3069184
crossref_primary_10_1109_ACCESS_2020_2973670
crossref_primary_10_1007_s00500_019_03842_6
crossref_primary_10_1016_j_neucom_2020_01_114
crossref_primary_10_1016_j_swevo_2018_02_009
crossref_primary_10_3390_bdcc7040174
crossref_primary_10_3390_math12101431
crossref_primary_10_1016_j_swevo_2018_02_001
crossref_primary_10_1109_TCYB_2016_2554622
crossref_primary_10_1016_j_asoc_2018_06_023
crossref_primary_10_1109_TEVC_2017_2707980
crossref_primary_10_1007_s10489_020_01969_w
crossref_primary_10_1111_exsy_13431
crossref_primary_10_1016_j_ast_2021_106825
crossref_primary_10_3390_axioms13090644
crossref_primary_10_1016_j_ins_2020_02_056
crossref_primary_10_1016_j_eswa_2017_09_051
crossref_primary_10_1109_TCYB_2018_2819360
crossref_primary_10_3390_math12111680
crossref_primary_10_1007_s43069_023_00231_6
crossref_primary_10_1016_j_swevo_2017_01_002
crossref_primary_10_1016_j_ins_2021_12_103
crossref_primary_10_3390_su151411290
crossref_primary_10_1109_ACCESS_2021_3079152
crossref_primary_10_1016_j_asoc_2018_08_020
crossref_primary_10_1016_j_eswa_2024_124952
crossref_primary_10_1109_TCYB_2020_3016426
crossref_primary_10_1016_j_swevo_2023_101272
crossref_primary_10_1016_j_ins_2021_06_068
crossref_primary_10_1016_j_asoc_2024_112272
crossref_primary_10_1016_j_jhydrol_2024_130673
crossref_primary_10_1016_j_jksuci_2024_101919
crossref_primary_10_1016_j_tsep_2023_102085
crossref_primary_10_1007_s00521_018_3563_5
crossref_primary_10_1109_TCYB_2023_3312476
crossref_primary_10_1007_s00500_016_2076_3
crossref_primary_10_1016_j_jhydrol_2020_124830
crossref_primary_10_1109_TCYB_2019_2896021
crossref_primary_10_1016_j_swevo_2019_02_010
crossref_primary_10_1016_j_ins_2023_119593
crossref_primary_10_1109_TSMC_2019_2931636
crossref_primary_10_1016_j_neucom_2019_02_002
crossref_primary_10_1109_ACCESS_2022_3188762
crossref_primary_10_1007_s10489_022_03545_w
crossref_primary_10_1016_j_energy_2020_118524
crossref_primary_10_1109_TEVC_2019_2909636
crossref_primary_10_1109_TEVC_2019_2958921
crossref_primary_10_1109_TCYB_2018_2884083
crossref_primary_10_1109_ACCESS_2021_3086559
crossref_primary_10_1016_j_eswa_2016_03_009
crossref_primary_10_1016_j_ins_2020_09_061
crossref_primary_10_1016_j_eswa_2021_116445
crossref_primary_10_1109_TCYB_2015_2510698
crossref_primary_10_1109_TEVC_2020_2983311
crossref_primary_10_1109_TCYB_2016_2585745
crossref_primary_10_1016_j_eswa_2023_122720
crossref_primary_10_1016_j_swevo_2019_05_007
crossref_primary_10_1016_j_asoc_2017_03_041
crossref_primary_10_3390_electronics11162624
crossref_primary_10_1080_0305215X_2023_2283038
crossref_primary_10_1007_s13042_018_00919_w
crossref_primary_10_1007_s00500_016_2196_9
crossref_primary_10_1109_ACCESS_2019_2917899
crossref_primary_10_1007_s00521_019_04608_9
crossref_primary_10_1109_TCYB_2024_3514688
crossref_primary_10_1016_j_jmsy_2020_02_005
crossref_primary_10_1007_s00500_019_04565_4
crossref_primary_10_1007_s00500_020_04732_y
crossref_primary_10_1109_TEVC_2021_3056514
crossref_primary_10_1109_ACCESS_2020_2974324
crossref_primary_10_1109_TCYB_2020_3027962
crossref_primary_10_1016_j_eswa_2025_129642
crossref_primary_10_1016_j_ins_2021_10_007
crossref_primary_10_1007_s00500_017_2761_x
crossref_primary_10_1007_s00521_020_05398_1
crossref_primary_10_1016_j_eswa_2023_122452
crossref_primary_10_1016_j_swevo_2019_100578
crossref_primary_10_1007_s00500_017_2990_z
crossref_primary_10_1109_TCYB_2018_2834363
crossref_primary_10_1109_TCYB_2022_3165557
crossref_primary_10_1007_s10489_018_1319_7
crossref_primary_10_1007_s11036_019_01403_7
crossref_primary_10_1007_s00500_015_1986_9
crossref_primary_10_1109_TCYB_2017_2739185
crossref_primary_10_1016_j_knosys_2018_09_018
crossref_primary_10_1109_TCYB_2019_2899225
crossref_primary_10_1016_j_apm_2017_10_015
crossref_primary_10_1016_j_eswa_2019_112844
crossref_primary_10_1016_j_asoc_2025_112873
crossref_primary_10_1109_TCYB_2018_2871473
crossref_primary_10_1002_nme_6013
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1109_JIOT_2020_3010834
crossref_primary_10_1016_j_cie_2022_108385
crossref_primary_10_1002_cpe_6518
crossref_primary_10_1016_j_asoc_2019_105731
crossref_primary_10_1109_TCYB_2018_2842158
crossref_primary_10_1109_TCYB_2017_2779450
crossref_primary_10_1109_TEVC_2018_2872453
crossref_primary_10_1109_TEVC_2018_2844286
crossref_primary_10_1109_TCYB_2017_2756874
crossref_primary_10_1016_j_knosys_2017_03_021
crossref_primary_10_1016_j_ins_2019_05_083
crossref_primary_10_1007_s12293_021_00330_z
crossref_primary_10_1109_TEVC_2016_2592479
crossref_primary_10_1016_j_ins_2019_08_032
crossref_primary_10_1109_ACCESS_2023_3234226
crossref_primary_10_3233_ICA_170547
crossref_primary_10_1007_s12351_017_0346_1
crossref_primary_10_1016_j_swevo_2020_100670
crossref_primary_10_1007_s00500_016_2323_7
crossref_primary_10_1016_j_ejor_2022_06_007
crossref_primary_10_1109_TCYB_2022_3140394
crossref_primary_10_1016_j_ins_2020_08_070
crossref_primary_10_1016_j_swevo_2018_12_007
crossref_primary_10_1016_j_asoc_2020_106078
crossref_primary_10_1109_JAS_2024_124515
Cites_doi 10.1109/TCYB.2014.2360074
10.1145/1830483.1830577
10.1080/0305215042000274942
10.1109/TCYB.2014.2367526
10.1109/CEC.2010.5586185
10.1109/TEVC.2013.2262178
10.1155/2014/423621
10.1109/CEC.2003.1299427
10.1162/EVCO_a_00109
10.1007/978-3-642-01020-0_35
10.1109/4235.996017
10.1109/TSMCB.2012.2231860
10.1109/TCYB.2014.2360923
10.1109/TEVC.2013.2293776
10.1007/s00158-013-0925-6
10.1109/4235.797969
10.1109/TCYB.2013.2282503
10.1109/CIS.2010.37
10.1109/TEVC.2011.2166159
10.1016/j.cor.2012.01.001
10.1109/CEC.1999.781913
10.1109/TCYB.2013.2295886
10.1142/S021821301450002X
10.1109/5326.704576
10.1016/j.neucom.2014.04.068
10.1109/TEVC.2003.810758
10.1109/TEVC.2007.892759
10.1155/2014/906147
10.1016/j.ins.2014.05.045
10.1109/TEVC.2003.812220
10.1109/TEVC.2008.925798
10.1109/TEVC.2010.2051446
10.1109/TCYB.2014.2317693
10.1007/978-1-4757-5184-0
10.1109/TEVC.2013.2281533
10.1109/TEVC.2013.2281535
10.1109/TEVC.2012.2204403
10.1109/CEC.2009.4982949
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2015.2403131
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

PubMed
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 437
ExternalDocumentID 3921450351
25781972
10_1109_TCYB_2015_2403131
7060668
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council of U.K.
  grantid: EP/K001310/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c425t-523ff82819fd4e59e5f71cc1ffef9095b4de7bc4409baf961b75575f1eb2e6713
IEDL.DBID RIE
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370962900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 07:03:30 EDT 2025
Sun Sep 28 01:20:39 EDT 2025
Sun Nov 09 06:31:38 EST 2025
Thu Apr 03 06:59:02 EDT 2025
Tue Nov 18 21:35:26 EST 2025
Sat Nov 29 06:48:30 EST 2025
Tue Aug 26 16:43:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multiobjective evolutionary algorithm based on decomposition (MOEA/D)
multiobjective optimization
test problems
Multiobjective evolutionary algorithm (MOEA)
niching
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-523ff82819fd4e59e5f71cc1ffef9095b4de7bc4409baf961b75575f1eb2e6713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7222-4917
OpenAccessLink https://ieeexplore.ieee.org/document/7060668
PMID 25781972
PQID 1756713989
PQPubID 85422
PageCount 17
ParticipantIDs proquest_journals_1756713989
ieee_primary_7060668
proquest_miscellaneous_1786153547
pubmed_primary_25781972
proquest_miscellaneous_1760906374
crossref_citationtrail_10_1109_TCYB_2015_2403131
crossref_primary_10_1109_TCYB_2015_2403131
PublicationCentury 2000
PublicationDate 2016-Feb.
2016-2-00
2016-Feb
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ishibuchi (ref16) 2006
price (ref38) 2005
li (ref23) 0
tan (ref42) 2005; 166
ref17
ref19
li (ref28) 2014; 44
goldberg (ref11) 1987
ref46
ref45
ref48
ref47
ref41
ref44
ref43
deb (ref9) 2001
chiang (ref4) 2011
ref49
ref8
ref7
ref3
ref5
ref40
deb (ref6) 2001
ref35
ref34
ref37
ref36
ref31
ishibuchi (ref18) 2009
ref33
ref32
ref2
ref1
li (ref27) 2013; 43
ref24
ref26
ref25
ref22
ref21
jiang (ref20) 2011; 3 shanghai china
poloni (ref39) 1997
ref29
liu (ref30) 2010
References_xml – ident: ref1
  doi: 10.1109/TCYB.2014.2360074
– ident: ref19
  doi: 10.1145/1830483.1830577
– ident: ref35
  doi: 10.1080/0305215042000274942
– ident: ref21
  doi: 10.1109/TCYB.2014.2367526
– ident: ref45
  doi: 10.1109/CEC.2010.5586185
– ident: ref24
  doi: 10.1109/TEVC.2013.2262178
– ident: ref33
  doi: 10.1155/2014/423621
– year: 2001
  ident: ref6
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref15
  doi: 10.1109/CEC.2003.1299427
– ident: ref40
  doi: 10.1162/EVCO_a_00109
– volume: 3 shanghai china
  start-page: 1260
  year: 2011
  ident: ref20
  article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors
  publication-title: Proc Int Conf Nat Comput
– start-page: 438
  year: 2009
  ident: ref18
  article-title: Adaptation of scalarizing functions in MOEA/D: An adaptive scalarizing function-based multiobjective evolutionary algorithm
  publication-title: Proc 5th Int Conf Evol Multi-Criterion Optim
  doi: 10.1007/978-3-642-01020-0_35
– ident: ref7
  doi: 10.1109/4235.996017
– volume: 43
  start-page: 1845
  year: 2013
  ident: ref27
  article-title: MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and ant colony
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2231860
– ident: ref3
  doi: 10.1109/TCYB.2014.2360923
– ident: ref29
  doi: 10.1109/TEVC.2013.2293776
– ident: ref13
  doi: 10.1007/s00158-013-0925-6
– year: 2005
  ident: ref38
  publication-title: Differential Evolution A Practical Approach to Global Optimization (Natural Computing Series)
– ident: ref48
  doi: 10.1109/4235.797969
– ident: ref25
  doi: 10.1109/TCYB.2013.2282503
– ident: ref12
  doi: 10.1109/CIS.2010.37
– ident: ref47
  doi: 10.1109/TEVC.2011.2166159
– ident: ref43
  doi: 10.1016/j.cor.2012.01.001
– ident: ref22
  doi: 10.1109/CEC.1999.781913
– year: 0
  ident: ref23
  article-title: Inter-relationship based selection for decomposition multiobjective optimization
  publication-title: IEEE Trans Cybern
– start-page: 282
  year: 2010
  ident: ref30
  article-title: T-MOEA/D: MOEA/D with objective transform in multiobjective problems
  publication-title: Proc Int Conf Inf Sci Manage Eng
– start-page: 41
  year: 1987
  ident: ref11
  article-title: Genetic algorithms with sharing for multimodal function optimization
  publication-title: Proc 2nd Int Conf Genet Algorithms
– year: 2001
  ident: ref9
  article-title: Scable test problems for evolutionary multi-objective optimization
– volume: 44
  start-page: 1808
  year: 2014
  ident: ref28
  article-title: Hybridization of decomposition and local search for multiobjective optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2295886
– ident: ref14
  doi: 10.1142/S021821301450002X
– ident: ref17
  doi: 10.1109/5326.704576
– ident: ref34
  doi: 10.1016/j.neucom.2014.04.068
– ident: ref49
  doi: 10.1109/TEVC.2003.810758
– ident: ref44
  doi: 10.1109/TEVC.2007.892759
– ident: ref5
  doi: 10.1155/2014/906147
– start-page: 397
  year: 1997
  ident: ref39
  article-title: Hybrid GA for multiobjective aerodynamic shape optimization
  publication-title: Genetic Algorithms in Engineering and Computer Science
– ident: ref10
  doi: 10.1016/j.ins.2014.05.045
– ident: ref32
  doi: 10.1109/TEVC.2003.812220
– start-page: 493
  year: 2006
  ident: ref16
  article-title: Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms
  publication-title: Proc 9th Int Conf Parallel Probl Solv Nat
– ident: ref26
  doi: 10.1109/TEVC.2008.925798
– ident: ref36
  doi: 10.1109/TEVC.2010.2051446
– ident: ref37
  doi: 10.1109/TCYB.2014.2317693
– volume: 166
  start-page: 313
  year: 2005
  ident: ref42
  publication-title: Multiobjective Evolutionary Algorithms and Applications
– ident: ref2
  doi: 10.1007/978-1-4757-5184-0
– ident: ref31
  doi: 10.1109/TEVC.2013.2281533
– start-page: 1473
  year: 2011
  ident: ref4
  article-title: MOEA/D-AWS: Improving MOEA/D by an adaptive mating selection mechanism
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref8
  doi: 10.1109/TEVC.2013.2281535
– ident: ref41
  doi: 10.1109/TEVC.2012.2204403
– ident: ref46
  doi: 10.1109/CEC.2009.4982949
SSID ssj0000816898
Score 2.5292218
Snippet The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 421
SubjectTerms Algorithms
Decomposition
Disengaging
Evolutionary algorithms
Evolutionary computation
Mathematical models
Mathematical programming
Mopping
Multiobjective evolutionary algorithm (MOEA)
multiobjective evolutionary algorithm based on decomposition (MOEA/D)
multiobjective optimization
niching
Optical fibers
Optimization
Reproduction
Shape
Sociology
Statistics
test problems
Vectors
Title An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts
URI https://ieeexplore.ieee.org/document/7060668
https://www.ncbi.nlm.nih.gov/pubmed/25781972
https://www.proquest.com/docview/1756713989
https://www.proquest.com/docview/1760906374
https://www.proquest.com/docview/1786153547
Volume 46
WOSCitedRecordID wos000370962900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FYdegLY8AqUyEgdApE3Y-HXclq44lR6KtJyijT0uoG2C9lHBv2fG8UZCgkrcItlWRpoZ-xvPeD6AVwWWqrBGUmyiTF7JUZNzl6nclUr7SjpHCyPZhL64MNOpvdyCd8NbGESMxWd4zJ8xl-87t-arshPu9KKU2YZtrXX_Vmu4T4kEEpH69j195IQqdEpiloU9uTr7csp1XPKY-8-VIyaIYWNl0q0_TqRIsfJvtBlPncmD_5P3IdxP6FKMe3PYgy1s92Ev-e9SvE5Npt_swy6jzL5J8wF041b0twvoRXyS2zXf-51QfKI95SY91hTnt8lSZ4tfYjy_7hbfVl9vxCkdhV7Q-AfkEvVUByYIDwveb-b4U1wym24nJtwvYfkIPk_Or84-5omJIXfk0yuOVkMwnHMLvkJpUQZdOleGgMESSGsqj7pxFQWLzSxYVTZaEg4MJcXtqCgOfgw7bdfiUxCELxRq2gmCl5U3M0sWoUfWE_Arg3Yqg2KjjdqlNuXMljGvY7hS2Jp1WbMu66TLDN4OS370PTrumnzAihomJh1lcLhReZ28eFkTtGLhrbEZvByGyf84qTJrsVvzHLJ1wnm6umuOYVwtK53Bk96chv9vrPDZ3-V6DrskfaoTP4Sd1WKNL-CeuyUTWRyRI0zNUXSE31_CAZk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gmsiLCqisotbEBzUsbLl2u308kAtGPHk4E3za3PZDIccuuQ8C_70z3d4mJkriW5O22W5mpv1NZzo_gHeZ43mmC4m-SV6kQvaqlKpMpYbnygppDE4MZBNqOCzOzvTpCux0b2GccyH5zO1SM8TybWMWdFW2R5Ve8ry4B_elEPu8fa3V3agEColAfruPjRRxhYphTJ7pvdHhjwPK5JK7VIGO94gihtSVaLf-OJMCycq_8WY4dwaP_2_FT-BRxJes3yrEOqy4egPWowXP2PtYZvrDBqwRzmzLNG9C069Ze7_gLAuPcpvqot0L2TfcVS7jc012dB11dTy9Zf3Jz2Z6Pv91yQ7wMLQM-z85SlKPmWAMETGjHWfibtgp8ek2bEAVE2ZP4fvgaHR4nEYuhtSgVc_JX_W-oKibt8JJ7aRX3BjuvfMaYVolrFOVEeguVmOvc14piUjQc_TcXY6e8DNYrZvabQFDhJE7hXuBt1LYYqxRJ1RPW4R-3CuTJ5AtpVGaWKic-DImZXBYMl2SLEuSZRllmcDHbspVW6XjrsGbJKhuYJRRAttLkZfRjmclgitavC50Am-7brRACquMa9csaAxqOyI9Je4aUxCylkIl8LxVp-77Sy188fd1vYGHx6OvJ-XJ5-GXl7CGfxKzxrdhdT5duFfwwFyjukxfB3P4DdOBA_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Multiobjective+Optimization+Evolutionary+Algorithm+Based+on+Decomposition+for+Complex+Pareto+Fronts&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Shouyong+Jiang&rft.au=Shengxiang+Yang&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=46&rft.issue=2&rft.spage=421&rft.epage=437&rft_id=info:doi/10.1109%2FTCYB.2015.2403131&rft_id=info%3Apmid%2F25781972&rft.externalDocID=7060668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon