An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sh...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cybernetics Jg. 46; H. 2; S. 421 - 437 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems. |
|---|---|
| AbstractList | The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems. The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems. |
| Author | Shengxiang Yang Shouyong Jiang |
| Author_xml | – sequence: 1 givenname: Shouyong surname: Jiang fullname: Jiang, Shouyong – sequence: 2 givenname: Shengxiang orcidid: 0000-0001-7222-4917 surname: Yang fullname: Yang, Shengxiang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25781972$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcFu1DAQhi1U1JbSB0BIyBIXLrt4nNiOj9ttC5WKyqEceooS7xi8SuLFdlaUp8fpLnvoAeGLx-Pv93jmf0WOBj8gIW-AzQGY_ni_fLiYcwZizktWQAEvyCkHWc04V-LoEEt1Qs5jXLO8qpzS1TE54UJVoBU_JX4x0Jt-E_wWV_TL2CXn2zWa5LZI7zbJ9e53k3MDvdr6bpyiJjzSRffdB5d-9PSiiVmY7y_R-H7jo3uirQ90mc8d_qJfm4DJ0-vghxRfk5e26SKe7_cz8u366n75eXZ79-lmubidmZKLNBO8sLbi-ZN2VaLQKKwCY8BatJpp0ZYrVK0pS6bbxmoJrRJCCQvYcpQKijPyYfdubu3niDHVvYsGu64Z0I-xBlVJEIUo1X-gkmkmC1Vm9P0zdO3HMORGMiWmurrSmXq3p8a2x1W9Ca7PU6v_Tj0DsANM8DEGtAcEWD2ZW0_m1pO59d7crFHPNMalJ2tSaFz3T-XbndIh4qGSYpJJWRV_ACXLsVs |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TEVC_2018_2865590 crossref_primary_10_3390_pr11061827 crossref_primary_10_1016_j_jclepro_2021_128716 crossref_primary_10_1109_TCYB_2019_2922266 crossref_primary_10_1016_j_ejor_2025_08_030 crossref_primary_10_1016_j_eswa_2024_123336 crossref_primary_10_1155_2018_1753071 crossref_primary_10_1016_j_asoc_2018_10_028 crossref_primary_10_1109_TNNLS_2018_2847412 crossref_primary_10_1109_TEVC_2022_3140265 crossref_primary_10_1016_j_asoc_2023_110162 crossref_primary_10_1109_TCYB_2018_2834466 crossref_primary_10_1109_JSTARS_2024_3457821 crossref_primary_10_1109_TEVC_2019_2922419 crossref_primary_10_1109_TEVC_2020_2978158 crossref_primary_10_1109_TGRS_2023_3318003 crossref_primary_10_1109_TCYB_2016_2552079 crossref_primary_10_1109_JSTARS_2020_3036896 crossref_primary_10_1109_JAS_2023_123219 crossref_primary_10_1016_j_asoc_2019_105513 crossref_primary_10_1109_TEVC_2018_2836912 crossref_primary_10_3389_fenrg_2022_928744 crossref_primary_10_1109_TEVC_2016_2608507 crossref_primary_10_1016_j_apenergy_2025_125939 crossref_primary_10_1093_comjnl_bxx077 crossref_primary_10_1016_j_geoen_2024_213550 crossref_primary_10_1016_j_ins_2021_05_080 crossref_primary_10_1088_1742_6596_1570_1_012001 crossref_primary_10_1016_j_physa_2019_123526 crossref_primary_10_1016_j_asoc_2020_106968 crossref_primary_10_1109_TCYB_2020_2981733 crossref_primary_10_1007_s11227_023_05118_1 crossref_primary_10_1016_j_eswa_2021_115654 crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1109_TEVC_2019_2899030 crossref_primary_10_1007_s10489_017_0898_z crossref_primary_10_1109_TCYB_2017_2728725 crossref_primary_10_1016_j_ins_2019_12_011 crossref_primary_10_1109_ACCESS_2021_3065384 crossref_primary_10_1016_j_asoc_2018_05_014 crossref_primary_10_1109_TCYB_2021_3069184 crossref_primary_10_1109_ACCESS_2020_2973670 crossref_primary_10_1007_s00500_019_03842_6 crossref_primary_10_1016_j_neucom_2020_01_114 crossref_primary_10_1016_j_swevo_2018_02_009 crossref_primary_10_3390_bdcc7040174 crossref_primary_10_3390_math12101431 crossref_primary_10_1016_j_swevo_2018_02_001 crossref_primary_10_1109_TCYB_2016_2554622 crossref_primary_10_1016_j_asoc_2018_06_023 crossref_primary_10_1109_TEVC_2017_2707980 crossref_primary_10_1007_s10489_020_01969_w crossref_primary_10_1111_exsy_13431 crossref_primary_10_1016_j_ast_2021_106825 crossref_primary_10_3390_axioms13090644 crossref_primary_10_1016_j_ins_2020_02_056 crossref_primary_10_1016_j_eswa_2017_09_051 crossref_primary_10_1109_TCYB_2018_2819360 crossref_primary_10_3390_math12111680 crossref_primary_10_1007_s43069_023_00231_6 crossref_primary_10_1016_j_swevo_2017_01_002 crossref_primary_10_1016_j_ins_2021_12_103 crossref_primary_10_3390_su151411290 crossref_primary_10_1109_ACCESS_2021_3079152 crossref_primary_10_1016_j_asoc_2018_08_020 crossref_primary_10_1016_j_eswa_2024_124952 crossref_primary_10_1109_TCYB_2020_3016426 crossref_primary_10_1016_j_swevo_2023_101272 crossref_primary_10_1016_j_ins_2021_06_068 crossref_primary_10_1016_j_asoc_2024_112272 crossref_primary_10_1016_j_jhydrol_2024_130673 crossref_primary_10_1016_j_jksuci_2024_101919 crossref_primary_10_1016_j_tsep_2023_102085 crossref_primary_10_1007_s00521_018_3563_5 crossref_primary_10_1109_TCYB_2023_3312476 crossref_primary_10_1007_s00500_016_2076_3 crossref_primary_10_1016_j_jhydrol_2020_124830 crossref_primary_10_1109_TCYB_2019_2896021 crossref_primary_10_1016_j_swevo_2019_02_010 crossref_primary_10_1016_j_ins_2023_119593 crossref_primary_10_1109_TSMC_2019_2931636 crossref_primary_10_1016_j_neucom_2019_02_002 crossref_primary_10_1109_ACCESS_2022_3188762 crossref_primary_10_1007_s10489_022_03545_w crossref_primary_10_1016_j_energy_2020_118524 crossref_primary_10_1109_TEVC_2019_2909636 crossref_primary_10_1109_TEVC_2019_2958921 crossref_primary_10_1109_TCYB_2018_2884083 crossref_primary_10_1109_ACCESS_2021_3086559 crossref_primary_10_1016_j_eswa_2016_03_009 crossref_primary_10_1016_j_ins_2020_09_061 crossref_primary_10_1016_j_eswa_2021_116445 crossref_primary_10_1109_TCYB_2015_2510698 crossref_primary_10_1109_TEVC_2020_2983311 crossref_primary_10_1109_TCYB_2016_2585745 crossref_primary_10_1016_j_eswa_2023_122720 crossref_primary_10_1016_j_swevo_2019_05_007 crossref_primary_10_1016_j_asoc_2017_03_041 crossref_primary_10_3390_electronics11162624 crossref_primary_10_1080_0305215X_2023_2283038 crossref_primary_10_1007_s13042_018_00919_w crossref_primary_10_1007_s00500_016_2196_9 crossref_primary_10_1109_ACCESS_2019_2917899 crossref_primary_10_1007_s00521_019_04608_9 crossref_primary_10_1109_TCYB_2024_3514688 crossref_primary_10_1016_j_jmsy_2020_02_005 crossref_primary_10_1007_s00500_019_04565_4 crossref_primary_10_1007_s00500_020_04732_y crossref_primary_10_1109_TEVC_2021_3056514 crossref_primary_10_1109_ACCESS_2020_2974324 crossref_primary_10_1109_TCYB_2020_3027962 crossref_primary_10_1016_j_eswa_2025_129642 crossref_primary_10_1016_j_ins_2021_10_007 crossref_primary_10_1007_s00500_017_2761_x crossref_primary_10_1007_s00521_020_05398_1 crossref_primary_10_1016_j_eswa_2023_122452 crossref_primary_10_1016_j_swevo_2019_100578 crossref_primary_10_1007_s00500_017_2990_z crossref_primary_10_1109_TCYB_2018_2834363 crossref_primary_10_1109_TCYB_2022_3165557 crossref_primary_10_1007_s10489_018_1319_7 crossref_primary_10_1007_s11036_019_01403_7 crossref_primary_10_1007_s00500_015_1986_9 crossref_primary_10_1109_TCYB_2017_2739185 crossref_primary_10_1016_j_knosys_2018_09_018 crossref_primary_10_1109_TCYB_2019_2899225 crossref_primary_10_1016_j_apm_2017_10_015 crossref_primary_10_1016_j_eswa_2019_112844 crossref_primary_10_1016_j_asoc_2025_112873 crossref_primary_10_1109_TCYB_2018_2871473 crossref_primary_10_1002_nme_6013 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1109_JIOT_2020_3010834 crossref_primary_10_1016_j_cie_2022_108385 crossref_primary_10_1002_cpe_6518 crossref_primary_10_1016_j_asoc_2019_105731 crossref_primary_10_1109_TCYB_2018_2842158 crossref_primary_10_1109_TCYB_2017_2779450 crossref_primary_10_1109_TEVC_2018_2872453 crossref_primary_10_1109_TEVC_2018_2844286 crossref_primary_10_1109_TCYB_2017_2756874 crossref_primary_10_1016_j_knosys_2017_03_021 crossref_primary_10_1016_j_ins_2019_05_083 crossref_primary_10_1007_s12293_021_00330_z crossref_primary_10_1109_TEVC_2016_2592479 crossref_primary_10_1016_j_ins_2019_08_032 crossref_primary_10_1109_ACCESS_2023_3234226 crossref_primary_10_3233_ICA_170547 crossref_primary_10_1007_s12351_017_0346_1 crossref_primary_10_1016_j_swevo_2020_100670 crossref_primary_10_1007_s00500_016_2323_7 crossref_primary_10_1016_j_ejor_2022_06_007 crossref_primary_10_1109_TCYB_2022_3140394 crossref_primary_10_1016_j_ins_2020_08_070 crossref_primary_10_1016_j_swevo_2018_12_007 crossref_primary_10_1016_j_asoc_2020_106078 crossref_primary_10_1109_JAS_2024_124515 |
| Cites_doi | 10.1109/TCYB.2014.2360074 10.1145/1830483.1830577 10.1080/0305215042000274942 10.1109/TCYB.2014.2367526 10.1109/CEC.2010.5586185 10.1109/TEVC.2013.2262178 10.1155/2014/423621 10.1109/CEC.2003.1299427 10.1162/EVCO_a_00109 10.1007/978-3-642-01020-0_35 10.1109/4235.996017 10.1109/TSMCB.2012.2231860 10.1109/TCYB.2014.2360923 10.1109/TEVC.2013.2293776 10.1007/s00158-013-0925-6 10.1109/4235.797969 10.1109/TCYB.2013.2282503 10.1109/CIS.2010.37 10.1109/TEVC.2011.2166159 10.1016/j.cor.2012.01.001 10.1109/CEC.1999.781913 10.1109/TCYB.2013.2295886 10.1142/S021821301450002X 10.1109/5326.704576 10.1016/j.neucom.2014.04.068 10.1109/TEVC.2003.810758 10.1109/TEVC.2007.892759 10.1155/2014/906147 10.1016/j.ins.2014.05.045 10.1109/TEVC.2003.812220 10.1109/TEVC.2008.925798 10.1109/TEVC.2010.2051446 10.1109/TCYB.2014.2317693 10.1007/978-1-4757-5184-0 10.1109/TEVC.2013.2281533 10.1109/TEVC.2013.2281535 10.1109/TEVC.2012.2204403 10.1109/CEC.2009.4982949 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2015.2403131 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 437 |
| ExternalDocumentID | 3921450351 25781972 10_1109_TCYB_2015_2403131 7060668 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council of U.K. grantid: EP/K001310/1 funderid: 10.13039/501100000266 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c425t-523ff82819fd4e59e5f71cc1ffef9095b4de7bc4409baf961b75575f1eb2e6713 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370962900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 07:03:30 EDT 2025 Sun Sep 28 01:20:39 EDT 2025 Sun Nov 09 06:31:38 EST 2025 Thu Apr 03 06:59:02 EDT 2025 Tue Nov 18 21:35:26 EST 2025 Sat Nov 29 06:48:30 EST 2025 Tue Aug 26 16:43:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | multiobjective evolutionary algorithm based on decomposition (MOEA/D) multiobjective optimization test problems Multiobjective evolutionary algorithm (MOEA) niching |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-523ff82819fd4e59e5f71cc1ffef9095b4de7bc4409baf961b75575f1eb2e6713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7222-4917 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7060668 |
| PMID | 25781972 |
| PQID | 1756713989 |
| PQPubID | 85422 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_1756713989 ieee_primary_7060668 proquest_miscellaneous_1786153547 pubmed_primary_25781972 proquest_miscellaneous_1760906374 crossref_citationtrail_10_1109_TCYB_2015_2403131 crossref_primary_10_1109_TCYB_2015_2403131 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Feb. 2016-2-00 2016-Feb 20160201 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-Feb. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 ishibuchi (ref16) 2006 price (ref38) 2005 li (ref23) 0 tan (ref42) 2005; 166 ref17 ref19 li (ref28) 2014; 44 goldberg (ref11) 1987 ref46 ref45 ref48 ref47 ref41 ref44 ref43 deb (ref9) 2001 chiang (ref4) 2011 ref49 ref8 ref7 ref3 ref5 ref40 deb (ref6) 2001 ref35 ref34 ref37 ref36 ref31 ishibuchi (ref18) 2009 ref33 ref32 ref2 ref1 li (ref27) 2013; 43 ref24 ref26 ref25 ref22 ref21 jiang (ref20) 2011; 3 shanghai china poloni (ref39) 1997 ref29 liu (ref30) 2010 |
| References_xml | – ident: ref1 doi: 10.1109/TCYB.2014.2360074 – ident: ref19 doi: 10.1145/1830483.1830577 – ident: ref35 doi: 10.1080/0305215042000274942 – ident: ref21 doi: 10.1109/TCYB.2014.2367526 – ident: ref45 doi: 10.1109/CEC.2010.5586185 – ident: ref24 doi: 10.1109/TEVC.2013.2262178 – ident: ref33 doi: 10.1155/2014/423621 – year: 2001 ident: ref6 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref15 doi: 10.1109/CEC.2003.1299427 – ident: ref40 doi: 10.1162/EVCO_a_00109 – volume: 3 shanghai china start-page: 1260 year: 2011 ident: ref20 article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors publication-title: Proc Int Conf Nat Comput – start-page: 438 year: 2009 ident: ref18 article-title: Adaptation of scalarizing functions in MOEA/D: An adaptive scalarizing function-based multiobjective evolutionary algorithm publication-title: Proc 5th Int Conf Evol Multi-Criterion Optim doi: 10.1007/978-3-642-01020-0_35 – ident: ref7 doi: 10.1109/4235.996017 – volume: 43 start-page: 1845 year: 2013 ident: ref27 article-title: MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and ant colony publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2231860 – ident: ref3 doi: 10.1109/TCYB.2014.2360923 – ident: ref29 doi: 10.1109/TEVC.2013.2293776 – ident: ref13 doi: 10.1007/s00158-013-0925-6 – year: 2005 ident: ref38 publication-title: Differential Evolution A Practical Approach to Global Optimization (Natural Computing Series) – ident: ref48 doi: 10.1109/4235.797969 – ident: ref25 doi: 10.1109/TCYB.2013.2282503 – ident: ref12 doi: 10.1109/CIS.2010.37 – ident: ref47 doi: 10.1109/TEVC.2011.2166159 – ident: ref43 doi: 10.1016/j.cor.2012.01.001 – ident: ref22 doi: 10.1109/CEC.1999.781913 – year: 0 ident: ref23 article-title: Inter-relationship based selection for decomposition multiobjective optimization publication-title: IEEE Trans Cybern – start-page: 282 year: 2010 ident: ref30 article-title: T-MOEA/D: MOEA/D with objective transform in multiobjective problems publication-title: Proc Int Conf Inf Sci Manage Eng – start-page: 41 year: 1987 ident: ref11 article-title: Genetic algorithms with sharing for multimodal function optimization publication-title: Proc 2nd Int Conf Genet Algorithms – year: 2001 ident: ref9 article-title: Scable test problems for evolutionary multi-objective optimization – volume: 44 start-page: 1808 year: 2014 ident: ref28 article-title: Hybridization of decomposition and local search for multiobjective optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2295886 – ident: ref14 doi: 10.1142/S021821301450002X – ident: ref17 doi: 10.1109/5326.704576 – ident: ref34 doi: 10.1016/j.neucom.2014.04.068 – ident: ref49 doi: 10.1109/TEVC.2003.810758 – ident: ref44 doi: 10.1109/TEVC.2007.892759 – ident: ref5 doi: 10.1155/2014/906147 – start-page: 397 year: 1997 ident: ref39 article-title: Hybrid GA for multiobjective aerodynamic shape optimization publication-title: Genetic Algorithms in Engineering and Computer Science – ident: ref10 doi: 10.1016/j.ins.2014.05.045 – ident: ref32 doi: 10.1109/TEVC.2003.812220 – start-page: 493 year: 2006 ident: ref16 article-title: Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms publication-title: Proc 9th Int Conf Parallel Probl Solv Nat – ident: ref26 doi: 10.1109/TEVC.2008.925798 – ident: ref36 doi: 10.1109/TEVC.2010.2051446 – ident: ref37 doi: 10.1109/TCYB.2014.2317693 – volume: 166 start-page: 313 year: 2005 ident: ref42 publication-title: Multiobjective Evolutionary Algorithms and Applications – ident: ref2 doi: 10.1007/978-1-4757-5184-0 – ident: ref31 doi: 10.1109/TEVC.2013.2281533 – start-page: 1473 year: 2011 ident: ref4 article-title: MOEA/D-AWS: Improving MOEA/D by an adaptive mating selection mechanism publication-title: Proc IEEE Congr Evol Comput – ident: ref8 doi: 10.1109/TEVC.2013.2281535 – ident: ref41 doi: 10.1109/TEVC.2012.2204403 – ident: ref46 doi: 10.1109/CEC.2009.4982949 |
| SSID | ssj0000816898 |
| Score | 2.5292218 |
| Snippet | The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 421 |
| SubjectTerms | Algorithms Decomposition Disengaging Evolutionary algorithms Evolutionary computation Mathematical models Mathematical programming Mopping Multiobjective evolutionary algorithm (MOEA) multiobjective evolutionary algorithm based on decomposition (MOEA/D) multiobjective optimization niching Optical fibers Optimization Reproduction Shape Sociology Statistics test problems Vectors |
| Title | An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts |
| URI | https://ieeexplore.ieee.org/document/7060668 https://www.ncbi.nlm.nih.gov/pubmed/25781972 https://www.proquest.com/docview/1756713989 https://www.proquest.com/docview/1760906374 https://www.proquest.com/docview/1786153547 |
| Volume | 46 |
| WOSCitedRecordID | wos000370962900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FYdegLY8AqUyEgdApE3Y-HXclq44lR6KtJyijT0uoG2C9lHBv2fG8UZCgkrcItlWRpoZ-xvPeD6AVwWWqrBGUmyiTF7JUZNzl6nclUr7SjpHCyPZhL64MNOpvdyCd8NbGESMxWd4zJ8xl-87t-arshPu9KKU2YZtrXX_Vmu4T4kEEpH69j195IQqdEpiloU9uTr7csp1XPKY-8-VIyaIYWNl0q0_TqRIsfJvtBlPncmD_5P3IdxP6FKMe3PYgy1s92Ev-e9SvE5Npt_swy6jzL5J8wF041b0twvoRXyS2zXf-51QfKI95SY91hTnt8lSZ4tfYjy_7hbfVl9vxCkdhV7Q-AfkEvVUByYIDwveb-b4U1wym24nJtwvYfkIPk_Or84-5omJIXfk0yuOVkMwnHMLvkJpUQZdOleGgMESSGsqj7pxFQWLzSxYVTZaEg4MJcXtqCgOfgw7bdfiUxCELxRq2gmCl5U3M0sWoUfWE_Arg3Yqg2KjjdqlNuXMljGvY7hS2Jp1WbMu66TLDN4OS370PTrumnzAihomJh1lcLhReZ28eFkTtGLhrbEZvByGyf84qTJrsVvzHLJ1wnm6umuOYVwtK53Bk96chv9vrPDZ3-V6DrskfaoTP4Sd1WKNL-CeuyUTWRyRI0zNUXSE31_CAZk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gmsiLCqisotbEBzUsbLl2u308kAtGPHk4E3za3PZDIccuuQ8C_70z3d4mJkriW5O22W5mpv1NZzo_gHeZ43mmC4m-SV6kQvaqlKpMpYbnygppDE4MZBNqOCzOzvTpCux0b2GccyH5zO1SM8TybWMWdFW2R5Ve8ry4B_elEPu8fa3V3agEColAfruPjRRxhYphTJ7pvdHhjwPK5JK7VIGO94gihtSVaLf-OJMCycq_8WY4dwaP_2_FT-BRxJes3yrEOqy4egPWowXP2PtYZvrDBqwRzmzLNG9C069Ze7_gLAuPcpvqot0L2TfcVS7jc012dB11dTy9Zf3Jz2Z6Pv91yQ7wMLQM-z85SlKPmWAMETGjHWfibtgp8ek2bEAVE2ZP4fvgaHR4nEYuhtSgVc_JX_W-oKibt8JJ7aRX3BjuvfMaYVolrFOVEeguVmOvc14piUjQc_TcXY6e8DNYrZvabQFDhJE7hXuBt1LYYqxRJ1RPW4R-3CuTJ5AtpVGaWKic-DImZXBYMl2SLEuSZRllmcDHbspVW6XjrsGbJKhuYJRRAttLkZfRjmclgitavC50Am-7brRACquMa9csaAxqOyI9Je4aUxCylkIl8LxVp-77Sy188fd1vYGHx6OvJ-XJ5-GXl7CGfxKzxrdhdT5duFfwwFyjukxfB3P4DdOBA_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Multiobjective+Optimization+Evolutionary+Algorithm+Based+on+Decomposition+for+Complex+Pareto+Fronts&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Shouyong+Jiang&rft.au=Shengxiang+Yang&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=46&rft.issue=2&rft.spage=421&rft.epage=437&rft_id=info:doi/10.1109%2FTCYB.2015.2403131&rft_id=info%3Apmid%2F25781972&rft.externalDocID=7060668 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |