Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins
Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupl...
Saved in:
| Published in: | Theoretical and applied climatology Vol. 145; no. 3-4; pp. 1207 - 1231 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Vienna
Springer Vienna
01.08.2021
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0177-798X, 1434-4483 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Q
t–1
) is the most crucial variable for daily runoff prediction. |
|---|---|
| AbstractList | Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Qₜ–₁) is the most crucial variable for daily runoff prediction. Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Qt–1) is the most crucial variable for daily runoff prediction. Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Q t–1 ) is the most crucial variable for daily runoff prediction. Accurate prediction of daily runoff's dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Q.sub.t-1) is the most crucial variable for daily runoff prediction. |
| Audience | Academic |
| Author | Kuriqi, Alban Bajirao, Tarate Suryakant Kumar, Manish Elbeltagi, Ahmed Kumar, Pravendra |
| Author_xml | – sequence: 1 givenname: Tarate Suryakant surname: Bajirao fullname: Bajirao, Tarate Suryakant organization: Department of Soil Science and Agriculture Chemistry, School of Agriculture, Lovely Professional University – sequence: 2 givenname: Pravendra surname: Kumar fullname: Kumar, Pravendra organization: Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology – sequence: 3 givenname: Manish surname: Kumar fullname: Kumar, Manish organization: Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology – sequence: 4 givenname: Ahmed surname: Elbeltagi fullname: Elbeltagi, Ahmed organization: Agricultural Engineering Department, Faculty of Agriculture, Mansoura University – sequence: 5 givenname: Alban orcidid: 0000-0001-7464-8377 surname: Kuriqi fullname: Kuriqi, Alban email: alban.kuriqi@tecnico.ulisboa.pt organization: CERIS, Instituto Superior Técnico, Universidade de Lisboa |
| BookMark | eNp9kU1rFTEUhoNU8Lb6B1wF3OgiNV-TmVmWYm2hoPgB7kImH7cpmeSaZGrvv2-uI0i76CaBw_OcnJP3GBzFFC0Abwk-JRj3H0s7MEeYEoSZGAiiL8CGcMYR5wM7AhtM-h714_DrFTgu5RZjTIXoN6B-TdXG6lWAycGb_ZS9gX_UnQ22Ip2WXbAGGlUVMtnf2YgmVVpFhW3Kvt7MBbqUG-DDHuYlJufgLlvjdfUpQh-hTnPrcQ8PdobN9rG8Bi-dCsW--XefgJ8Xn36cX6LrL5-vzs-ukea0q4gbIlxPiDLEjhMeBLOWaMeNGQdtqCHTpLRyk2OqH7GYtGbGKdM1ZCA9M-wEvF_77nL6vdhS5eyLtiGoaNNSJBVMcEL5wBv67gl6m5Yc23SSdh0fxm7su0adrtRWBSt9dKnmNoJWxs5et0icb_UzIUYhuo6MTfjwSGhMtfd1q5ZS5NX3b4_ZYWV1TqVk66T2VR3-sT3igyRYHrKWa9ayZS3_Zi1pU-kTdZf9rPL-eYmtUmlw3Nr8f-VnrAe5WcAE |
| CitedBy_id | crossref_primary_10_1007_s12517_024_12031_1 crossref_primary_10_1007_s13201_024_02195_2 crossref_primary_10_1016_j_pce_2023_103495 crossref_primary_10_1007_s00704_024_04940_8 crossref_primary_10_1016_j_scitotenv_2025_179093 crossref_primary_10_1007_s00521_022_07372_5 crossref_primary_10_1007_s00477_023_02425_0 crossref_primary_10_1007_s11269_023_03439_7 crossref_primary_10_1016_j_envsoft_2024_105958 crossref_primary_10_1016_j_jhydrol_2025_132883 crossref_primary_10_1007_s11269_022_03292_0 crossref_primary_10_1007_s10668_025_06092_9 crossref_primary_10_1007_s11269_025_04258_8 crossref_primary_10_1088_1742_6596_2532_1_012006 crossref_primary_10_1007_s11356_022_21634_8 crossref_primary_10_1007_s12517_022_09931_5 crossref_primary_10_1016_j_jhydrol_2022_128810 crossref_primary_10_22630_srees_5258 crossref_primary_10_1016_j_apm_2025_116378 crossref_primary_10_1016_j_envres_2024_118403 crossref_primary_10_2166_hydro_2024_010 crossref_primary_10_3390_su151612295 crossref_primary_10_1016_j_chemosphere_2024_141393 crossref_primary_10_1016_j_jhydrol_2025_133328 crossref_primary_10_1007_s11356_021_17064_7 crossref_primary_10_1007_s11600_022_00749_z crossref_primary_10_1016_j_geogeo_2022_100153 crossref_primary_10_1007_s13201_023_02005_1 crossref_primary_10_2166_nh_2023_069 crossref_primary_10_3390_su17072990 |
| Cites_doi | 10.1016/j.jhydrol.2021.126067 10.2166/ws.2016.014 10.1016/j.compag.2008.05.021 10.1016/j.jhydrol.2014.06.023 10.1061/(ASCE)HE.1943-5584.0000892 10.1007/s11356-021-13155-7 10.1007/s11269-017-1711-9 10.1007/s11269-008-9382-1 10.1007/s00477-021-01993-3 10.1016/j.jenvman.2021.112625 10.1007/s11269-009-9439-9 10.1016/j.agwat.2020.106080 10.1080/02626667.2010.508871 10.1007/s11269-018-2000-y 10.1016/j.jhydrol.2014.04.055 10.1016/j.biosystemseng.2006.02.014 10.1007/s11269-013-0502-1 10.1016/j.jhydrol.2018.05.003 10.1016/j.scitotenv.2020.140770 10.1016/j.agwat.2010.12.012 10.1016/j.compag.2020.105368 10.1007/s10661-015-4381-1 10.1016/j.jhydrol.2020.125662:125662 10.1007/s40747-021-00365-2 10.1623/hysj.51.4.588 10.1016/j.jhydrol.2020.125779 10.5194/hess-2020-540 10.1007/s10661-015-4590-7 10.1007/s11269-006-9144-x 10.1007/s11269-020-02756-5 10.1016/j.jhydrol.2016.02.012 10.1029/1998WR900018 10.1016/j.jhydrol.2003.12.010 10.1016/j.jhydrol.2013.03.024 10.3390/su13020542 10.1016/j.jhydrol.2017.03.032 10.3390/su12218766 10.1016/j.jhydrol.2014.11.050 10.3390/w13050727 10.1016/j.jhydrol.2013.11.021 10.1109/ICCIS49240.2020.9257658 10.1016/j.renene.2020.05.161 10.1061/(asce)he.1943-5584.0002087 10.1007/s11600-020-00475-4 10.1016/j.asoc.2021.107081 10.1007/s00477-020-01910-0 10.1007/s00704-015-1392-3 10.1007/s11269-015-1107-7 10.1007/s11269-015-1167-8 10.3390/w13040575 10.1007/s11269-010-9699-4 10.1016/j.cageo.2011.12.015 10.1109/21.256541 10.1007/s11269-009-9514-2 10.1007/s11269-014-0774-0 10.1007/s11269-006-9027-1 10.1016/j.wse.2018.09.008 10.1016/j.scs.2020.102562 10.1007/s40808-015-0042-1 10.1016/j.enconman.2020.113267 10.1016/j.protcy.2016.05.015 10.1007/s11269-009-9414-5 10.1016/j.agwat.2020.106334 10.3390/su12197877 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
| DBID | AAYXX CITATION ISR 3V. 7QH 7TG 7TN 7UA 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G L6V M2P M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 7S9 L.6 |
| DOI | 10.1007/s00704-021-03681-2 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| EndPage | 1231 |
| ExternalDocumentID | A669665519 10_1007_s00704_021_03681_2 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z5O Z7R Z7U Z7Y Z7Z Z83 Z86 Z88 Z8M Z8O Z8S Z8T Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c425t-4d16f711ad1e9b0863ee1cf4dd98cd2d1bbacafbf3a7906bcc3dfad5cf48173d3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664015200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-798X |
| IngestDate | Thu Oct 02 10:42:03 EDT 2025 Wed Nov 05 01:28:57 EST 2025 Sat Nov 29 10:04:24 EST 2025 Wed Nov 26 09:21:11 EST 2025 Sat Nov 29 05:35:18 EST 2025 Tue Nov 18 22:31:52 EST 2025 Fri Feb 21 02:48:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-4d16f711ad1e9b0863ee1cf4dd98cd2d1bbacafbf3a7906bcc3dfad5cf48173d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7464-8377 |
| PQID | 2554895975 |
| PQPubID | 48318 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_2636412484 proquest_journals_2554895975 gale_infotracacademiconefile_A669665519 gale_incontextgauss_ISR_A669665519 crossref_citationtrail_10_1007_s00704_021_03681_2 crossref_primary_10_1007_s00704_021_03681_2 springer_journals_10_1007_s00704_021_03681_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210800 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2021 |
| Publisher | Springer Vienna Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer – name: Springer Nature B.V |
| References | ElbeltagiACrop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta EgyptAgric Water Manag202023510608010.1016/j.agwat.2020.106080 KimMGilleyJEArtificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areasComput Electron Agric200864226827510.1016/j.compag.2008.05.021 OumaYOCheruyotRWacheraANRainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basinComplex Intell Syst202110.1007/s40747-021-00365-2 MelesseAMSuspended sediment load prediction of river systems: an artificial neural network approachAgric Water Manag201198585586610.1016/j.agwat.2010.12.012 SuwalNEnvironmental flows assessment in Nepal: the case of Kaligandaki RiverSustainability20201221876610.3390/su12218766 SharghiEEmotional ANN (EANN) and Wavelet-ANN (WANN) approaches for Markovian and seasonal based modeling of rainfall-runoff processWater Resour Manage201832103441345610.1007/s11269-018-2000-y El-ShafieAEnhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurementsWater Resour Manage200923112289231510.1007/s11269-008-9382-1 ShoaibMShamseldinAYMelvilleBWComparative study of different wavelet based neural network models for rainfall–runoff modelingJ Hydrol2014515475810.1016/j.jhydrol.2014.04.055 JangJRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541 Han H, Morrison RR (2021) Data-driven approaches for runoff prediction using distributed data. Stoch Environ Res Risk Assess 3. https://doi.org/10.1007/s00477-021-01993-3 KeskinMETaylanDTerziÖAdaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time seriesHydrol Sci J200651458859810.1623/hysj.51.4.588 BajiraoTSKumarPKumarMElbeltagiAKuriqiASuperiority of hybrid soft computing models in daily suspended sediment estimation in Highly Dynamic RiversSustainability20211354210.3390/su13020542 OlyaieEA comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United StatesEnviron Monit Assess2015187418910.1007/s10661-015-4381-1 Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag201731123843386510.1007/s11269-017-1711-9 Zounemat-KermaniMEvaluation of data driven models for river suspended sediment concentration modelingJ Hydrol201653545747210.1016/j.jhydrol.2016.02.012 Adnan RM, Liang Z, Kuriqi A, Kisi O, Malik A, Li B (2020) Streamflow forecasting using heuristic machine learning methods. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), pp 1–6 GüldalVTongalHComparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecastingWater Resour Manag201024110512810.1007/s11269-009-9439-9 RavansalarMRajaeeTEvaluation of wavelet performance via an ANN-based electrical conductivity prediction modelEnviron Monit Assess2015187636610.1007/s10661-015-4590-7 AzamathullaHMHaghiabiAHParsaieAPrediction of side weir discharge coefficient by support vector machine techniqueWater Supply20161641002101610.2166/ws.2016.014 Riahi-MadvarHDehghaniMMemarzadehRGharabaghiBShort to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFISWater Resour Manag2021351149116610.1007/s11269-020-02756-5 QuiltyJAdamowskiJAddressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting frameworkJ Hydrol201856333635310.1016/j.jhydrol.2018.05.003 SeoYDaily water level forecasting using wavelet decomposition and artificial intelligence techniquesJ Hydrol201552022424310.1016/j.jhydrol.2014.11.050 KisiOStreamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clusteringWater Resour Manag201529145109512710.1007/s11269-015-1107-7 BajiraoTSKumarPGeospatial technology for prioritization of Koyna River basin of India based on soil erosion rates using different approachesEnviron Sci Pollut Res202110.1007/s11356-021-13155-7 LohaniAKGoelNKBhatiaKKSImproving real time flood forecasting using fuzzy inference systemJ Hydrol2014509254110.1016/j.jhydrol.2013.11.021 LeeKTHungW-CMengC-CDeterministic insight into ANN model performance for storm runoff simulationWater Resour Manage2008221678210.1007/s11269-006-9144-x SinghRMWavelet-ANN model for Flood EventsAdv Intell Syst Comput2012131165175 MaheswaranRKhosaRComparative study of different wavelets for hydrologic forecastingComput Geosci20124628429510.1016/j.cageo.2011.12.015 TezelGBuyukyildizMMonthly evaporation forecasting using artificial neural networks and support vector machinesTheoret Appl Climatol20161241698010.1007/s00704-015-1392-3 LiZLingKZhouLZhuMDeep learning framework with time series analysis methods for runoff predictionWater20211311610.3390/w13040575 EbtehajIBonakdariHPerformance evaluation of adaptive neural fuzzy inference system for sediment transport in sewersWater Resour Manage201428134765477910.1007/s11269-014-0774-0 NayakPCA neuro-fuzzy computing technique for modeling hydrological time seriesJ Hydrol20042911526610.1016/j.jhydrol.2003.12.010 ShirsathPBSinghAKA comparative study of daily pan evaporation estimation using ANN, regression and climate based modelsWater Resour Manage20102481571158110.1007/s11269-009-9514-2 ElbeltagiAModeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environmentAgric Water Manag202024110633410.1016/j.agwat.2020.106334 Yuan X, Chen C, Yuan Y, Zhang B (2021) Runoff prediction based on hybrid clustering with WOA intervals mapping model. J Hydrol Eng 26:04021019. https://doi.org/10.1061/(asce)he.1943-5584.0002087 AgarwalASimulation of runoff and sediment yield using artificial neural networksBiosys Eng200694459761310.1016/j.biosystemseng.2006.02.014 YinDAssessment of sustainable yield of karst water in HuaibeiChina Water Resour Manag201125128730010.1007/s11269-010-9699-4 Gauch M, Kratzert F, Klotz D et al (2020) Rainfall–runoff prediction at multiple timescales with a single long short-term memory network. arXiv 2045–2062. https://doi.org/10.5194/hess-2020-540 Budu K (2014) Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. 19 (7):1385-1400 NouraniVKomasiMManoAA multivariate ANN-wavelet approach for rainfall-runoff modelingWater Resour Manag2009232877289410.1007/s11269-009-9414-5 LohaniAKKumarRSinghRDHydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniquesJ Hydrol201223354424443 AnusreeKVargheseKOStreamflow prediction of Karuvannur River basin using ANFIS, ANN and MNLR modelsProcedia Technol20162410110810.1016/j.protcy.2016.05.015 El-ShafieATahaMRNoureldinAA neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high damWater Resour Manage200721353355610.1007/s11269-006-9027-1 Niu WJ, Feng ZK (2021) Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain Cities Soc 64:102562. https://doi.org/10.1016/j.scs.2020.102562 Elbeltagi A, Zhang L, Deng J, Juma A, Wang K (2020e) Modeling monthly crop coefficients of maize based on limited meteorological data: A case study in Nile Delta, Egypt. Comput Electron Agric 173:105368 Saraiva SV, de OliveiraCarvalho F, Santos CAG et al (2021) Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl Soft Comput 102:107081. https://doi.org/10.1016/j.asoc.2021.107081 DumkaBBKumarPModeling rainfall-runoff using Artificial Neural Network (ANNs) and Wavelet based ANNs (WANNs) for Haripura Dam, UttarakhandIndian J Ecol202148271274 Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592:125779. https://doi.org/10.1016/j.jhydrol.2020.125779 JavanKLialestaniMRFHNejadhosseinMA comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershedIran Model Earth Sys Environ2015144110.1007/s40808-015-0042-1 KuriqiAAliRPhamQBMontenegroGJulioGupta VMalikALinhNTTJoshiYAnhDTNamVTDongXSeasonality shift and streamflow flow variability trends in central IndiaActa Geophysica20206851461147510.1007/s11600-020-00475-4 Zhang J, Chen X, Khan A et al (2021) Daily runoff forecasting by deep recursive neural network. J Hydrol 596 MirbagheriSANouraniVRajaeeTAlikhaniANeuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in riversHydrol Sci J20105571175118910.1080/02626667.2010.508871 Elbeltagi A et al (2020b) Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. J Hydrol https://doi.org/10.1016/j.jhydrol.2020.125662:125662 ElbeltagiAThe impact of climate changes on the water footprint of wheat and maize production in the Nile Delta EgyptSci Total Environ202074314077010.1016/j.scitotenv.2020.140770 LegatesDRMcCabeGJJrEvaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validationWater Resour Res19993523324110.1029/1998WR900018 SuwalNOptimisation of cascade reservoir operation considering environmental flows for different environmental management classesRenew Energy202015845346410.1016/j.renene.2020.05.161 GongYA comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake OkeechobeeFlorida Water Resour 3681_CR43 V Nourani (3681_CR44) 2013; 490 K Javan (3681_CR26) 2015; 1 GMMM Anomaa Senaviratne (3681_CR5) 2014; 517 TS Bajirao (3681_CR10) 2021; 13 AK Lohani (3681_CR38) 2012; 23 A Elbeltagi (3681_CR16) 2020; 743 A Kuriqi (3681_CR32) 2020; 68 Z Li (3681_CR36) 2021; 13 SA Mirbagheri (3681_CR41) 2010; 55 HM Azamathulla (3681_CR7) 2016; 16 Y Seo (3681_CR54) 2015; 520 E Sharghi (3681_CR55) 2018; 32 YO Ouma (3681_CR47) 2021 N Suwal (3681_CR60) 2020; 12 JR Jang (3681_CR25) 1993; 23 V Nourani (3681_CR45) 2009; 23 PB Shirsath (3681_CR56) 2010; 24 3681_CR33 3681_CR1 H Kheirfam (3681_CR28) 2018; 11 A Elbeltagi (3681_CR18) 2020; 235 D Yin (3681_CR63) 2011; 25 A Agarwal (3681_CR3) 2006; 94 PC Nayak (3681_CR42) 2004; 291 RM Adnan (3681_CR2) 2021; 35 RM Singh (3681_CR58) 2012; 131 E Olyaie (3681_CR46) 2015; 187 AK Lohani (3681_CR37) 2014; 509 BB Dumka (3681_CR12) 2021; 48 M Zounemat-Kermani (3681_CR67) 2016; 535 M Kumar (3681_CR31) 2020; 12 MJ Alizadeh (3681_CR4) 2017; 548 J Quilty (3681_CR48) 2018; 563 TS Bajirao (3681_CR9) 2021 3681_CR24 M Kim (3681_CR29) 2008; 64 3681_CR66 3681_CR20 3681_CR64 3681_CR21 3681_CR65 A El-Shafie (3681_CR14) 2009; 23 M Rezaie-Balf (3681_CR51) 2017; 31 3681_CR8 A El-Shafie (3681_CR15) 2007; 21 A Yarar (3681_CR62) 2014; 28 N Suwal (3681_CR59) 2020; 158 3681_CR11 M Shoaib (3681_CR57) 2014; 515 ME Keskin (3681_CR27) 2006; 51 AM Melesse (3681_CR40) 2011; 98 3681_CR53 DR Legates (3681_CR35) 1999; 35 V Güldal (3681_CR23) 2010; 24 G Tezel (3681_CR61) 2016; 124 Y Gong (3681_CR22) 2016; 30 I Ebtehaj (3681_CR13) 2014; 28 3681_CR17 M Ravansalar (3681_CR49) 2015; 187 H Riahi-Madvar (3681_CR52) 2021; 35 KT Lee (3681_CR34) 2008; 22 R Maheswaran (3681_CR39) 2012; 46 O Kisi (3681_CR30) 2015; 29 K Anusree (3681_CR6) 2016; 24 A Elbeltagi (3681_CR19) 2020; 241 3681_CR50 |
| References_xml | – reference: ShoaibMShamseldinAYMelvilleBWComparative study of different wavelet based neural network models for rainfall–runoff modelingJ Hydrol2014515475810.1016/j.jhydrol.2014.04.055 – reference: Anomaa SenaviratneGMMMUse of fuzzy rainfall–runoff predictions for claypan watersheds with conservation buffers in Northeast MissouriJ Hydrol20145171008101810.1016/j.jhydrol.2014.06.023 – reference: Elbeltagi A et al (2020b) Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. J Hydrol https://doi.org/10.1016/j.jhydrol.2020.125662:125662 – reference: El-ShafieAEnhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurementsWater Resour Manage200923112289231510.1007/s11269-008-9382-1 – reference: AgarwalASimulation of runoff and sediment yield using artificial neural networksBiosys Eng200694459761310.1016/j.biosystemseng.2006.02.014 – reference: GüldalVTongalHComparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecastingWater Resour Manag201024110512810.1007/s11269-009-9439-9 – reference: Zounemat-KermaniMEvaluation of data driven models for river suspended sediment concentration modelingJ Hydrol201653545747210.1016/j.jhydrol.2016.02.012 – reference: AzamathullaHMHaghiabiAHParsaieAPrediction of side weir discharge coefficient by support vector machine techniqueWater Supply20161641002101610.2166/ws.2016.014 – reference: NouraniVKomasiMA geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff processJ Hydrol2013490415510.1016/j.jhydrol.2013.03.024 – reference: EbtehajIBonakdariHPerformance evaluation of adaptive neural fuzzy inference system for sediment transport in sewersWater Resour Manage201428134765477910.1007/s11269-014-0774-0 – reference: NouraniVKomasiMManoAA multivariate ANN-wavelet approach for rainfall-runoff modelingWater Resour Manag2009232877289410.1007/s11269-009-9414-5 – reference: Zhang J, Chen X, Khan A et al (2021) Daily runoff forecasting by deep recursive neural network. J Hydrol 596 – reference: BajiraoTSKumarPGeospatial technology for prioritization of Koyna River basin of India based on soil erosion rates using different approachesEnviron Sci Pollut Res202110.1007/s11356-021-13155-7 – reference: Zerouali B, Al-ansari N, Chettih M et al (2021) An enhanced innovative triangular trend analysis of rainfall based on a spectral approach. Water 13. https://doi.org/10.3390/w13050727 – reference: Gauch M, Kratzert F, Klotz D et al (2020) Rainfall–runoff prediction at multiple timescales with a single long short-term memory network. arXiv 2045–2062. https://doi.org/10.5194/hess-2020-540 – reference: Riahi-MadvarHDehghaniMMemarzadehRGharabaghiBShort to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFISWater Resour Manag2021351149116610.1007/s11269-020-02756-5 – reference: KuriqiAAliRPhamQBMontenegroGJulioGupta VMalikALinhNTTJoshiYAnhDTNamVTDongXSeasonality shift and streamflow flow variability trends in central IndiaActa Geophysica20206851461147510.1007/s11600-020-00475-4 – reference: NayakPCA neuro-fuzzy computing technique for modeling hydrological time seriesJ Hydrol20042911526610.1016/j.jhydrol.2003.12.010 – reference: MelesseAMSuspended sediment load prediction of river systems: an artificial neural network approachAgric Water Manag201198585586610.1016/j.agwat.2010.12.012 – reference: Han H, Morrison RR (2021) Data-driven approaches for runoff prediction using distributed data. Stoch Environ Res Risk Assess 3. https://doi.org/10.1007/s00477-021-01993-3 – reference: Kuriqi A, Pinheiro AN, Sordo-Ward A, Garrote L (2020b) Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Convers Manag 223:113267 – reference: QuiltyJAdamowskiJAddressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting frameworkJ Hydrol201856333635310.1016/j.jhydrol.2018.05.003 – reference: Adnan RM, Liang Z, Kuriqi A, Kisi O, Malik A, Li B (2020) Streamflow forecasting using heuristic machine learning methods. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), pp 1–6 – reference: KheirfamHMokarram-KashtibanSA regional suspended load yield estimation model for ungauged watershedsWater Sci Eng201811432833710.1016/j.wse.2018.09.008 – reference: SinghRMWavelet-ANN model for Flood EventsAdv Intell Syst Comput2012131165175 – reference: LeeKTHungW-CMengC-CDeterministic insight into ANN model performance for storm runoff simulationWater Resour Manage2008221678210.1007/s11269-006-9144-x – reference: GongYA comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake OkeechobeeFlorida Water Resour Manag201630137539110.1007/s11269-015-1167-8 – reference: MirbagheriSANouraniVRajaeeTAlikhaniANeuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in riversHydrol Sci J20105571175118910.1080/02626667.2010.508871 – reference: KisiOStreamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clusteringWater Resour Manag201529145109512710.1007/s11269-015-1107-7 – reference: Yuan X, Chen C, Yuan Y, Zhang B (2021) Runoff prediction based on hybrid clustering with WOA intervals mapping model. J Hydrol Eng 26:04021019. https://doi.org/10.1061/(asce)he.1943-5584.0002087 – reference: DumkaBBKumarPModeling rainfall-runoff using Artificial Neural Network (ANNs) and Wavelet based ANNs (WANNs) for Haripura Dam, UttarakhandIndian J Ecol202148271274 – reference: SuwalNOptimisation of cascade reservoir operation considering environmental flows for different environmental management classesRenew Energy202015845346410.1016/j.renene.2020.05.161 – reference: SharghiEEmotional ANN (EANN) and Wavelet-ANN (WANN) approaches for Markovian and seasonal based modeling of rainfall-runoff processWater Resour Manage201832103441345610.1007/s11269-018-2000-y – reference: LegatesDRMcCabeGJJrEvaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validationWater Resour Res19993523324110.1029/1998WR900018 – reference: LiZLingKZhouLZhuMDeep learning framework with time series analysis methods for runoff predictionWater20211311610.3390/w13040575 – reference: KeskinMETaylanDTerziÖAdaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time seriesHydrol Sci J200651458859810.1623/hysj.51.4.588 – reference: YinDAssessment of sustainable yield of karst water in HuaibeiChina Water Resour Manag201125128730010.1007/s11269-010-9699-4 – reference: OlyaieEA comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United StatesEnviron Monit Assess2015187418910.1007/s10661-015-4381-1 – reference: Saraiva SV, de OliveiraCarvalho F, Santos CAG et al (2021) Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl Soft Comput 102:107081. https://doi.org/10.1016/j.asoc.2021.107081 – reference: ShirsathPBSinghAKA comparative study of daily pan evaporation estimation using ANN, regression and climate based modelsWater Resour Manage20102481571158110.1007/s11269-009-9514-2 – reference: JavanKLialestaniMRFHNejadhosseinMA comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershedIran Model Earth Sys Environ2015144110.1007/s40808-015-0042-1 – reference: Niu WJ, Feng ZK (2021) Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain Cities Soc 64:102562. https://doi.org/10.1016/j.scs.2020.102562 – reference: Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592:125779. https://doi.org/10.1016/j.jhydrol.2020.125779 – reference: AdnanRMPetroselliAHeddamSShort term rainfall-runoff modelling using several machine learning methods and a conceptual event-based modelStoch Environ Res Risk Assess20213559761610.1007/s00477-020-01910-0 – reference: Budu K (2014) Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. 19 (7):1385-1400 – reference: KumarMEstimation of Daily stage–discharge relationship by using data-driven techniques of a perennial riverIndia Sustain20201219787710.3390/su12197877 – reference: OumaYOCheruyotRWacheraANRainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basinComplex Intell Syst202110.1007/s40747-021-00365-2 – reference: ElbeltagiACrop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta EgyptAgric Water Manag202023510608010.1016/j.agwat.2020.106080 – reference: El-ShafieATahaMRNoureldinAA neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high damWater Resour Manage200721353355610.1007/s11269-006-9027-1 – reference: SeoYDaily water level forecasting using wavelet decomposition and artificial intelligence techniquesJ Hydrol201552022424310.1016/j.jhydrol.2014.11.050 – reference: TezelGBuyukyildizMMonthly evaporation forecasting using artificial neural networks and support vector machinesTheoret Appl Climatol20161241698010.1007/s00704-015-1392-3 – reference: ElbeltagiAModeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environmentAgric Water Manag202024110633410.1016/j.agwat.2020.106334 – reference: Reis GB, da Silva DD, Fernandes Filho EI et al (2021) Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow. J Environ Manage 290. https://doi.org/10.1016/j.jenvman.2021.112625 – reference: KimMGilleyJEArtificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areasComput Electron Agric200864226827510.1016/j.compag.2008.05.021 – reference: SuwalNEnvironmental flows assessment in Nepal: the case of Kaligandaki RiverSustainability20201221876610.3390/su12218766 – reference: JangJRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541 – reference: YararAA hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow dataWater Resour Manage201428255356510.1007/s11269-013-0502-1 – reference: RavansalarMRajaeeTEvaluation of wavelet performance via an ANN-based electrical conductivity prediction modelEnviron Monit Assess2015187636610.1007/s10661-015-4590-7 – reference: LohaniAKKumarRSinghRDHydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniquesJ Hydrol201223354424443 – reference: AlizadehMJA new approach for simulating and forecasting the rainfall-runoff process within the next two monthsJ Hydrol201754858859710.1016/j.jhydrol.2017.03.032 – reference: MaheswaranRKhosaRComparative study of different wavelets for hydrologic forecastingComput Geosci20124628429510.1016/j.cageo.2011.12.015 – reference: Elbeltagi A, Zhang L, Deng J, Juma A, Wang K (2020e) Modeling monthly crop coefficients of maize based on limited meteorological data: A case study in Nile Delta, Egypt. Comput Electron Agric 173:105368 – reference: LohaniAKGoelNKBhatiaKKSImproving real time flood forecasting using fuzzy inference systemJ Hydrol2014509254110.1016/j.jhydrol.2013.11.021 – reference: BajiraoTSKumarPKumarMElbeltagiAKuriqiASuperiority of hybrid soft computing models in daily suspended sediment estimation in Highly Dynamic RiversSustainability20211354210.3390/su13020542 – reference: AnusreeKVargheseKOStreamflow prediction of Karuvannur River basin using ANFIS, ANN and MNLR modelsProcedia Technol20162410110810.1016/j.protcy.2016.05.015 – reference: ElbeltagiAThe impact of climate changes on the water footprint of wheat and maize production in the Nile Delta EgyptSci Total Environ202074314077010.1016/j.scitotenv.2020.140770 – reference: Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag201731123843386510.1007/s11269-017-1711-9 – ident: 3681_CR66 doi: 10.1016/j.jhydrol.2021.126067 – volume: 16 start-page: 1002 issue: 4 year: 2016 ident: 3681_CR7 publication-title: Water Supply doi: 10.2166/ws.2016.014 – volume: 64 start-page: 268 issue: 2 year: 2008 ident: 3681_CR29 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2008.05.021 – volume: 517 start-page: 1008 year: 2014 ident: 3681_CR5 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.06.023 – ident: 3681_CR11 doi: 10.1061/(ASCE)HE.1943-5584.0000892 – year: 2021 ident: 3681_CR9 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-13155-7 – volume: 31 start-page: 3843 issue: 12 year: 2017 ident: 3681_CR51 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1711-9 – volume: 23 start-page: 2289 issue: 11 year: 2009 ident: 3681_CR14 publication-title: Water Resour Manage doi: 10.1007/s11269-008-9382-1 – ident: 3681_CR24 doi: 10.1007/s00477-021-01993-3 – ident: 3681_CR50 doi: 10.1016/j.jenvman.2021.112625 – volume: 24 start-page: 105 issue: 1 year: 2010 ident: 3681_CR23 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9439-9 – volume: 235 start-page: 106080 year: 2020 ident: 3681_CR18 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106080 – volume: 55 start-page: 1175 issue: 7 year: 2010 ident: 3681_CR41 publication-title: Hydrol Sci J doi: 10.1080/02626667.2010.508871 – volume: 32 start-page: 3441 issue: 10 year: 2018 ident: 3681_CR55 publication-title: Water Resour Manage doi: 10.1007/s11269-018-2000-y – volume: 515 start-page: 47 year: 2014 ident: 3681_CR57 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.04.055 – volume: 94 start-page: 597 issue: 4 year: 2006 ident: 3681_CR3 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2006.02.014 – volume: 131 start-page: 165 year: 2012 ident: 3681_CR58 publication-title: Adv Intell Syst Comput – volume: 28 start-page: 553 issue: 2 year: 2014 ident: 3681_CR62 publication-title: Water Resour Manage doi: 10.1007/s11269-013-0502-1 – volume: 563 start-page: 336 year: 2018 ident: 3681_CR48 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.05.003 – volume: 743 start-page: 140770 year: 2020 ident: 3681_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.140770 – volume: 98 start-page: 855 issue: 5 year: 2011 ident: 3681_CR40 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2010.12.012 – ident: 3681_CR20 doi: 10.1016/j.compag.2020.105368 – volume: 187 start-page: 189 issue: 4 year: 2015 ident: 3681_CR46 publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4381-1 – ident: 3681_CR17 doi: 10.1016/j.jhydrol.2020.125662:125662 – year: 2021 ident: 3681_CR47 publication-title: Complex Intell Syst doi: 10.1007/s40747-021-00365-2 – volume: 51 start-page: 588 issue: 4 year: 2006 ident: 3681_CR27 publication-title: Hydrol Sci J doi: 10.1623/hysj.51.4.588 – volume: 23 start-page: 442 issue: 35 year: 2012 ident: 3681_CR38 publication-title: J Hydrol – ident: 3681_CR8 doi: 10.1016/j.jhydrol.2020.125779 – ident: 3681_CR21 doi: 10.5194/hess-2020-540 – volume: 187 start-page: 366 issue: 6 year: 2015 ident: 3681_CR49 publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4590-7 – volume: 22 start-page: 67 issue: 1 year: 2008 ident: 3681_CR34 publication-title: Water Resour Manage doi: 10.1007/s11269-006-9144-x – volume: 48 start-page: 271 year: 2021 ident: 3681_CR12 publication-title: Indian J Ecol – volume: 35 start-page: 1149 year: 2021 ident: 3681_CR52 publication-title: Water Resour Manag doi: 10.1007/s11269-020-02756-5 – volume: 535 start-page: 457 year: 2016 ident: 3681_CR67 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.02.012 – volume: 35 start-page: 233 year: 1999 ident: 3681_CR35 publication-title: Water Resour Res doi: 10.1029/1998WR900018 – volume: 291 start-page: 52 issue: 1 year: 2004 ident: 3681_CR42 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2003.12.010 – volume: 490 start-page: 41 year: 2013 ident: 3681_CR44 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.03.024 – volume: 13 start-page: 542 year: 2021 ident: 3681_CR10 publication-title: Sustainability doi: 10.3390/su13020542 – volume: 548 start-page: 588 year: 2017 ident: 3681_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.03.032 – volume: 12 start-page: 8766 issue: 21 year: 2020 ident: 3681_CR60 publication-title: Sustainability doi: 10.3390/su12218766 – volume: 520 start-page: 224 year: 2015 ident: 3681_CR54 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.11.050 – ident: 3681_CR65 doi: 10.3390/w13050727 – volume: 509 start-page: 25 year: 2014 ident: 3681_CR37 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.11.021 – ident: 3681_CR1 doi: 10.1109/ICCIS49240.2020.9257658 – volume: 158 start-page: 453 year: 2020 ident: 3681_CR59 publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.161 – ident: 3681_CR64 doi: 10.1061/(asce)he.1943-5584.0002087 – volume: 68 start-page: 1461 issue: 5 year: 2020 ident: 3681_CR32 publication-title: Acta Geophysica doi: 10.1007/s11600-020-00475-4 – ident: 3681_CR53 doi: 10.1016/j.asoc.2021.107081 – volume: 35 start-page: 597 year: 2021 ident: 3681_CR2 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-020-01910-0 – volume: 124 start-page: 69 issue: 1 year: 2016 ident: 3681_CR61 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-015-1392-3 – volume: 29 start-page: 5109 issue: 14 year: 2015 ident: 3681_CR30 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1107-7 – volume: 30 start-page: 375 issue: 1 year: 2016 ident: 3681_CR22 publication-title: Florida Water Resour Manag doi: 10.1007/s11269-015-1167-8 – volume: 13 start-page: 1 year: 2021 ident: 3681_CR36 publication-title: Water doi: 10.3390/w13040575 – volume: 25 start-page: 287 issue: 1 year: 2011 ident: 3681_CR63 publication-title: China Water Resour Manag doi: 10.1007/s11269-010-9699-4 – volume: 46 start-page: 284 year: 2012 ident: 3681_CR39 publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.12.015 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 3681_CR25 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – volume: 24 start-page: 1571 issue: 8 year: 2010 ident: 3681_CR56 publication-title: Water Resour Manage doi: 10.1007/s11269-009-9514-2 – volume: 28 start-page: 4765 issue: 13 year: 2014 ident: 3681_CR13 publication-title: Water Resour Manage doi: 10.1007/s11269-014-0774-0 – volume: 21 start-page: 533 issue: 3 year: 2007 ident: 3681_CR15 publication-title: Water Resour Manage doi: 10.1007/s11269-006-9027-1 – volume: 11 start-page: 328 issue: 4 year: 2018 ident: 3681_CR28 publication-title: Water Sci Eng doi: 10.1016/j.wse.2018.09.008 – ident: 3681_CR43 doi: 10.1016/j.scs.2020.102562 – volume: 1 start-page: 41 issue: 4 year: 2015 ident: 3681_CR26 publication-title: Iran Model Earth Sys Environ doi: 10.1007/s40808-015-0042-1 – ident: 3681_CR33 doi: 10.1016/j.enconman.2020.113267 – volume: 24 start-page: 101 year: 2016 ident: 3681_CR6 publication-title: Procedia Technol doi: 10.1016/j.protcy.2016.05.015 – volume: 23 start-page: 2877 year: 2009 ident: 3681_CR45 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9414-5 – volume: 241 start-page: 106334 year: 2020 ident: 3681_CR19 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106334 – volume: 12 start-page: 7877 issue: 19 year: 2020 ident: 3681_CR31 publication-title: India Sustain doi: 10.3390/su12197877 |
| SSID | ssj0002667 |
| Score | 2.4370425 |
| Snippet | Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of... Accurate prediction of daily runoff's dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1207 |
| SubjectTerms | Adaptive systems Algorithms Analysis Aquatic Pollution Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate science Climatology Daily Daily rainfall Daily runoff Data Decomposition Earth and Environmental Science Earth Sciences Fuzzy logic hybrids India Inference Model accuracy Neural networks Original Paper Performance evaluation prediction Predictions Rain Rain and rainfall Rainfall Reliability analysis River basins Rivers Runoff Sensitivity analysis time series analysis Uncertainty analysis Waste Water Technology Water Management Water Pollution Control Watershed management watersheds |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtUw0EKFAxdaNhFakEEIDmDp-WVxfKwqKpCgqiigd7McL22kkDxl6fL3zPglQWWT4BIlyjiJPeNZMhshL8xCujQpMOApFSyxXrMCD7HROYgP0Al06FryQRwd5auVPB6Twrop2n1ySQZOPSe7YWWahGFIAXDdnDNgvDdTrDaDNvrJ15n_gsjZJEkLwYTMV2OqzO-fcU0c_cyUf_GOBqFzuP1_n7tD7oxKJt3fUMVdcsPV90j0EfTjpg2_0elLelCVoKyGq_ukP256DBuCQY2nZ1eYxkUvNDal6JlphnXlLMVgUmZbZI8MhZ-lujpt2rI_-9ZR0H0BoKyuaDvUjfd03aILCNFOy5qGyHV3SXF0S2F0WXcPyJfDt58P3rGxHwMzsLN7wCTPvOBcW-5kAbZQ7Bw3PrFW5sYuLS8KbbQvfKyFXGSFMTGg3aYAknMR2_gh2aqb2j0iNAFNxCS5lj5dJIWM8SQthODe6kwLHRE-oUWZsVg59syo1FxmOayvgvVVYX3VMiKv5zHrTamOv0I_R2wrrIFRY5DNqR66Tr0_-aT2swyMQFAlZURejUC-gdcbPeYswCSwbNY1yL2JatTIBToF5lqSSzDZ0og8m2_D_kWnjK5dMwBMFmfYATxPIvJmoqQfj_jzBB7_G_guub0MxIixi3tkq28H94TcMud92bVPww76DlnUFzs priority: 102 providerName: Springer Nature |
| Title | Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins |
| URI | https://link.springer.com/article/10.1007/s00704-021-03681-2 https://www.proquest.com/docview/2554895975 https://www.proquest.com/docview/2636412484 |
| Volume | 145 |
| WOSCitedRecordID | wos000664015200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFNyK0VAYhOIDVdV6OT6hUrUCiq2gX0IpL5NhxGykk2zyA_ntmvNmtCqIXLlaijONEM575bM-DkJd6IosozNHhKRIsNFaxHJtAqwTMB2AC5aqWfBLTabJYyHTccOtGt8q1TnSK2jQa98j3AfqGiQT4G71bnjOsGoWnq2MJjZtkG5ANR5euEz_daGIwPqtwaSGYkMliDJpxoXOY5yZk6KAAOjzhzL9imP5Uz3-dkzrzc3z3fz_8HrkzAk96sJKU--RGUT8g3glg5qZ1W-v0FT2sSgCw7u4h6dOmR1ci6NRYenaBoV30p8JCFT3TzbCsCkPRwZSZFlUmQ4NoqKpOYfT-7HtHAQ8DQVld0HaoG2vpssVjIRQFWtbUebMXvyj2bin0LuvuEflyfPT58AMbazQwDbO9B-7y2ArOleGFzGF9FBQF1zY0Riba-IbnudLK5jZQQk7iXOsARMFEQJJwEZjgMdmqm7p4QmgI6ESHiZI2moS5DPAiyoXg1qhYCeURvmZQpscE5lhHo8o2qZcdUzNgauaYmvkeebPps1yl77iW-gXyPcO8GDU63pyqoeuyj_NZdhDHsDAEeCk98noksg0Mr9UYxwA_gam0rlDuriUiGzVDl12Kg0eebx7DnMaDGlUXzQA0cRBjVfAk9MjbtdxdvuLfP_D0-hF3yG3fSTz6L-6Srb4dimfklv7Rl127R7bfH03T2Z6bQ9iKObRp9A3a2fzrb7fuJjg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQX3ghDgQXxOJQV8XPtA0JVoWrUNKpokXJb1vtoLQU72A4lf4rfyMzGTlUQvfXAJXKUWdtrfzvzbeZFyEs1yEwc5RjwFHMWaStZjh-hkimYD-AE0nUtGfHxOJ1MsoM18qvPhcGwyl4nOkWtK4X_kb8D6hulGdDf-MPsO8OuUehd7VtoLGGxZxansGVr3g8_wvt9FQQ7n462d1nXVYApwGcL9-Mnlvu-1L7JcmD0oTG-spHWWap0oP08l0ra3IaSZ4MkVyqEm9cxiKQ-D3UI571CrgKNCAIXKni40vxg7Jbp2ZwznqWTLknHpephXZ2IYUAE2IzUZ8E5Q_inOfjLL-vM3c6t_-1B3SY3O2JNt5Yr4Q5ZM-Vd4u3DnqCqneuAvqbb0wIIuvt2j7QHVYuhUjCosvRkgalr9FRiI46WqWo-mxpNMYCW6RpNAkODr6mcHsNs25NvDQW-DwLFdEHreVlZS2c1ur0Q6rQoqYvWNz8pjq4pjC7K5j75cikP4QFZL6vSPCQ0AvalolRmNh5EeRbiQZxz7lstE8mlR_weEEJ1BdqxT8hUrEpLOxAJAJFwIBKBRzZXY2bL8iQXSr9AnAms-1FiYNGxnDeNGB5-FltJAhtfoM-ZR950QraCyyvZ5WnAJLBU2DnJjR6BotN8jTiDn0eer34GnYWOKFmaag4ySZhg1_M08sjbHudnp_j3BB5dfMVn5Pru0f5IjIbjvcfkRuBWG8ZqbpD1tp6bJ-Sa-tEWTf3UrVtKvl42_n8DI8mDpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvBGGAgvicQCr8XPtA0KlDxG1RFGhUm7Leh9tpGAH26Hkr_HrmHHsVAXRWw9cLFuetb32NzsznhfAC9VPTRRmFPAUcTfUVroZbQIlExQfqBPIpmvJAR8Ok_E4Ha3Bry4XhsIquzWxWah1oegf-SaqvmGSovobbdo2LGK0s_d-9t2lDlLkae3aaSwhsm8Wp2i-Ve8GO_itX_r-3u6X7Y9u22HAVYjVGp_Niy33PKk9k2ao3QfGeMqGWqeJ0r72skwqaTMbSJ7240ypACeiIyRJPB7oAK97BdZ5gEZPD9Y_7A5Hhys5gKJvmazNucvTZNym7DSJe1RlJ3QpPAIlSOK5_jmx-Kdw-MtL2wi_vZv_82u7BTdalZttLXnkNqyZ_A44n9BaKMrGqcBese3pBFX35ugu1KOipiAqHFRYdrKgpDZ2KqlFR-2qYj6bGs0otNbVJQkLl1QBzeT0GGdbn3yrGFoCSDCZLlg5zwtr2awkhxgxAZvkrInjNz8ZjS4Zjp7k1T04upSXcB96eZGbB8BC1MtUmMjURv0wSwPaiTLOPatlLLl0wOvAIVRbup06iEzFquh0AyiBgBINoITvwJvVmNmycMmF1M8Jc4IqguQEkmM5ryox-HwotuIYTWJUrFMHXrdEtsDbK9lmcOAkqIjYOcqNDo2iXRMrcQZFB56tTuNqRi4qmZtijjRxEFM_9CR04G2H-bNL_HsCDy--41O4hrAXB4Ph_iO47jeMR0GcG9Cry7l5DFfVj3pSlU9aJmbw9bIZ4DdJlo22 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+hybrid+wavelet-coupled+data-driven-based+algorithms+for+daily+runoff+prediction+in+complex+river+basins&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Bajirao%2C+Tarate+Suryakant&rft.au=Kumar+Pravendra&rft.au=Kumar%2C+Manish&rft.au=Elbeltagi+Ahmed&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=145&rft.issue=3-4&rft.spage=1207&rft.epage=1231&rft_id=info:doi/10.1007%2Fs00704-021-03681-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |