Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins

Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupl...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied climatology Vol. 145; no. 3-4; pp. 1207 - 1231
Main Authors: Bajirao, Tarate Suryakant, Kumar, Pravendra, Kumar, Manish, Elbeltagi, Ahmed, Kuriqi, Alban
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.08.2021
Springer
Springer Nature B.V
Subjects:
ISSN:0177-798X, 1434-4483
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Q t–1 ) is the most crucial variable for daily runoff prediction.
AbstractList Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Qₜ–₁) is the most crucial variable for daily runoff prediction.
Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Qt–1) is the most crucial variable for daily runoff prediction.
Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Q t–1 ) is the most crucial variable for daily runoff prediction.
Accurate prediction of daily runoff's dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of artificial neural network (ANN), wavelet-coupled artificial neural network (WANN), adaptive neuro-fuzzy inference system (ANFIS), and wavelet-coupled adaptive neuro-fuzzy inference system (WANFIS) models for daily runoff prediction of Koyna River basin, India. Gamma test (GT) was used to select the best input vector to avoid the time-consuming and tedious trial and error input selection methods. Original daily rainfall and runoff time series data were decomposed into different multifrequency sub-signals using three types (Haar, Daubechies, and Coiflet) of mother wavelets. The decomposed sub-signals were fed to ANN and ANFIS as inputs for developing hybrid WANN and WANFIS models, respectively. The quantitative and qualitative performance evaluation criteria were used for assessing the prediction accuracy of developed models. An uncertainty analysis was employed to study the reliability of the developed models. It was observed that hybrid data-driven models (WANN/WANFIS) outperformed simple data-driven models (ANN/ANFIS). Finally, it was found that the Coiflet wavelet-coupled ANFIS model can be successfully applied for daily runoff prediction of the highly dynamic and complex Koyna River basin. The sensitivity analysis was also carried out to detect the most crucial variable for daily runoff prediction. The sensitivity analysis indicated that the previous 1-day runoff (Q.sub.t-1) is the most crucial variable for daily runoff prediction.
Audience Academic
Author Kuriqi, Alban
Bajirao, Tarate Suryakant
Kumar, Manish
Elbeltagi, Ahmed
Kumar, Pravendra
Author_xml – sequence: 1
  givenname: Tarate Suryakant
  surname: Bajirao
  fullname: Bajirao, Tarate Suryakant
  organization: Department of Soil Science and Agriculture Chemistry, School of Agriculture, Lovely Professional University
– sequence: 2
  givenname: Pravendra
  surname: Kumar
  fullname: Kumar, Pravendra
  organization: Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology
– sequence: 3
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  organization: Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology
– sequence: 4
  givenname: Ahmed
  surname: Elbeltagi
  fullname: Elbeltagi, Ahmed
  organization: Agricultural Engineering Department, Faculty of Agriculture, Mansoura University
– sequence: 5
  givenname: Alban
  orcidid: 0000-0001-7464-8377
  surname: Kuriqi
  fullname: Kuriqi, Alban
  email: alban.kuriqi@tecnico.ulisboa.pt
  organization: CERIS, Instituto Superior Técnico, Universidade de Lisboa
BookMark eNp9kU1rFTEUhoNU8Lb6B1wF3OgiNV-TmVmWYm2hoPgB7kImH7cpmeSaZGrvv2-uI0i76CaBw_OcnJP3GBzFFC0Abwk-JRj3H0s7MEeYEoSZGAiiL8CGcMYR5wM7AhtM-h714_DrFTgu5RZjTIXoN6B-TdXG6lWAycGb_ZS9gX_UnQ22Ip2WXbAGGlUVMtnf2YgmVVpFhW3Kvt7MBbqUG-DDHuYlJufgLlvjdfUpQh-hTnPrcQ8PdobN9rG8Bi-dCsW--XefgJ8Xn36cX6LrL5-vzs-ukea0q4gbIlxPiDLEjhMeBLOWaMeNGQdtqCHTpLRyk2OqH7GYtGbGKdM1ZCA9M-wEvF_77nL6vdhS5eyLtiGoaNNSJBVMcEL5wBv67gl6m5Yc23SSdh0fxm7su0adrtRWBSt9dKnmNoJWxs5et0icb_UzIUYhuo6MTfjwSGhMtfd1q5ZS5NX3b4_ZYWV1TqVk66T2VR3-sT3igyRYHrKWa9ayZS3_Zi1pU-kTdZf9rPL-eYmtUmlw3Nr8f-VnrAe5WcAE
CitedBy_id crossref_primary_10_1007_s12517_024_12031_1
crossref_primary_10_1007_s13201_024_02195_2
crossref_primary_10_1016_j_pce_2023_103495
crossref_primary_10_1007_s00704_024_04940_8
crossref_primary_10_1016_j_scitotenv_2025_179093
crossref_primary_10_1007_s00521_022_07372_5
crossref_primary_10_1007_s00477_023_02425_0
crossref_primary_10_1007_s11269_023_03439_7
crossref_primary_10_1016_j_envsoft_2024_105958
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_1007_s11269_022_03292_0
crossref_primary_10_1007_s10668_025_06092_9
crossref_primary_10_1007_s11269_025_04258_8
crossref_primary_10_1088_1742_6596_2532_1_012006
crossref_primary_10_1007_s11356_022_21634_8
crossref_primary_10_1007_s12517_022_09931_5
crossref_primary_10_1016_j_jhydrol_2022_128810
crossref_primary_10_22630_srees_5258
crossref_primary_10_1016_j_apm_2025_116378
crossref_primary_10_1016_j_envres_2024_118403
crossref_primary_10_2166_hydro_2024_010
crossref_primary_10_3390_su151612295
crossref_primary_10_1016_j_chemosphere_2024_141393
crossref_primary_10_1016_j_jhydrol_2025_133328
crossref_primary_10_1007_s11356_021_17064_7
crossref_primary_10_1007_s11600_022_00749_z
crossref_primary_10_1016_j_geogeo_2022_100153
crossref_primary_10_1007_s13201_023_02005_1
crossref_primary_10_2166_nh_2023_069
crossref_primary_10_3390_su17072990
Cites_doi 10.1016/j.jhydrol.2021.126067
10.2166/ws.2016.014
10.1016/j.compag.2008.05.021
10.1016/j.jhydrol.2014.06.023
10.1061/(ASCE)HE.1943-5584.0000892
10.1007/s11356-021-13155-7
10.1007/s11269-017-1711-9
10.1007/s11269-008-9382-1
10.1007/s00477-021-01993-3
10.1016/j.jenvman.2021.112625
10.1007/s11269-009-9439-9
10.1016/j.agwat.2020.106080
10.1080/02626667.2010.508871
10.1007/s11269-018-2000-y
10.1016/j.jhydrol.2014.04.055
10.1016/j.biosystemseng.2006.02.014
10.1007/s11269-013-0502-1
10.1016/j.jhydrol.2018.05.003
10.1016/j.scitotenv.2020.140770
10.1016/j.agwat.2010.12.012
10.1016/j.compag.2020.105368
10.1007/s10661-015-4381-1
10.1016/j.jhydrol.2020.125662:125662
10.1007/s40747-021-00365-2
10.1623/hysj.51.4.588
10.1016/j.jhydrol.2020.125779
10.5194/hess-2020-540
10.1007/s10661-015-4590-7
10.1007/s11269-006-9144-x
10.1007/s11269-020-02756-5
10.1016/j.jhydrol.2016.02.012
10.1029/1998WR900018
10.1016/j.jhydrol.2003.12.010
10.1016/j.jhydrol.2013.03.024
10.3390/su13020542
10.1016/j.jhydrol.2017.03.032
10.3390/su12218766
10.1016/j.jhydrol.2014.11.050
10.3390/w13050727
10.1016/j.jhydrol.2013.11.021
10.1109/ICCIS49240.2020.9257658
10.1016/j.renene.2020.05.161
10.1061/(asce)he.1943-5584.0002087
10.1007/s11600-020-00475-4
10.1016/j.asoc.2021.107081
10.1007/s00477-020-01910-0
10.1007/s00704-015-1392-3
10.1007/s11269-015-1107-7
10.1007/s11269-015-1167-8
10.3390/w13040575
10.1007/s11269-010-9699-4
10.1016/j.cageo.2011.12.015
10.1109/21.256541
10.1007/s11269-009-9514-2
10.1007/s11269-014-0774-0
10.1007/s11269-006-9027-1
10.1016/j.wse.2018.09.008
10.1016/j.scs.2020.102562
10.1007/s40808-015-0042-1
10.1016/j.enconman.2020.113267
10.1016/j.protcy.2016.05.015
10.1007/s11269-009-9414-5
10.1016/j.agwat.2020.106334
10.3390/su12197877
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
3V.
7QH
7TG
7TN
7UA
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
L6V
M2P
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
7S9
L.6
DOI 10.1007/s00704-021-03681-2
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 1231
ExternalDocumentID A669665519
10_1007_s00704_021_03681_2
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8O
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c425t-4d16f711ad1e9b0863ee1cf4dd98cd2d1bbacafbf3a7906bcc3dfad5cf48173d3
IEDL.DBID M2P
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664015200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-798X
IngestDate Thu Oct 02 10:42:03 EDT 2025
Wed Nov 05 01:28:57 EST 2025
Sat Nov 29 10:04:24 EST 2025
Wed Nov 26 09:21:11 EST 2025
Sat Nov 29 05:35:18 EST 2025
Tue Nov 18 22:31:52 EST 2025
Fri Feb 21 02:48:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-4d16f711ad1e9b0863ee1cf4dd98cd2d1bbacafbf3a7906bcc3dfad5cf48173d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7464-8377
PQID 2554895975
PQPubID 48318
PageCount 25
ParticipantIDs proquest_miscellaneous_2636412484
proquest_journals_2554895975
gale_infotracacademiconefile_A669665519
gale_incontextgauss_ISR_A669665519
crossref_citationtrail_10_1007_s00704_021_03681_2
crossref_primary_10_1007_s00704_021_03681_2
springer_journals_10_1007_s00704_021_03681_2
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2021
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References ElbeltagiACrop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta EgyptAgric Water Manag202023510608010.1016/j.agwat.2020.106080
KimMGilleyJEArtificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areasComput Electron Agric200864226827510.1016/j.compag.2008.05.021
OumaYOCheruyotRWacheraANRainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basinComplex Intell Syst202110.1007/s40747-021-00365-2
MelesseAMSuspended sediment load prediction of river systems: an artificial neural network approachAgric Water Manag201198585586610.1016/j.agwat.2010.12.012
SuwalNEnvironmental flows assessment in Nepal: the case of Kaligandaki RiverSustainability20201221876610.3390/su12218766
SharghiEEmotional ANN (EANN) and Wavelet-ANN (WANN) approaches for Markovian and seasonal based modeling of rainfall-runoff processWater Resour Manage201832103441345610.1007/s11269-018-2000-y
El-ShafieAEnhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurementsWater Resour Manage200923112289231510.1007/s11269-008-9382-1
ShoaibMShamseldinAYMelvilleBWComparative study of different wavelet based neural network models for rainfall–runoff modelingJ Hydrol2014515475810.1016/j.jhydrol.2014.04.055
JangJRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541
Han H, Morrison RR (2021) Data-driven approaches for runoff prediction using distributed data. Stoch Environ Res Risk Assess 3. https://doi.org/10.1007/s00477-021-01993-3
KeskinMETaylanDTerziÖAdaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time seriesHydrol Sci J200651458859810.1623/hysj.51.4.588
BajiraoTSKumarPKumarMElbeltagiAKuriqiASuperiority of hybrid soft computing models in daily suspended sediment estimation in Highly Dynamic RiversSustainability20211354210.3390/su13020542
OlyaieEA comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United StatesEnviron Monit Assess2015187418910.1007/s10661-015-4381-1
Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag201731123843386510.1007/s11269-017-1711-9
Zounemat-KermaniMEvaluation of data driven models for river suspended sediment concentration modelingJ Hydrol201653545747210.1016/j.jhydrol.2016.02.012
Adnan RM, Liang Z, Kuriqi A, Kisi O, Malik A, Li B (2020) Streamflow forecasting using heuristic machine learning methods. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), pp 1–6
GüldalVTongalHComparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecastingWater Resour Manag201024110512810.1007/s11269-009-9439-9
RavansalarMRajaeeTEvaluation of wavelet performance via an ANN-based electrical conductivity prediction modelEnviron Monit Assess2015187636610.1007/s10661-015-4590-7
AzamathullaHMHaghiabiAHParsaieAPrediction of side weir discharge coefficient by support vector machine techniqueWater Supply20161641002101610.2166/ws.2016.014
Riahi-MadvarHDehghaniMMemarzadehRGharabaghiBShort to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFISWater Resour Manag2021351149116610.1007/s11269-020-02756-5
QuiltyJAdamowskiJAddressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting frameworkJ Hydrol201856333635310.1016/j.jhydrol.2018.05.003
SeoYDaily water level forecasting using wavelet decomposition and artificial intelligence techniquesJ Hydrol201552022424310.1016/j.jhydrol.2014.11.050
KisiOStreamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clusteringWater Resour Manag201529145109512710.1007/s11269-015-1107-7
BajiraoTSKumarPGeospatial technology for prioritization of Koyna River basin of India based on soil erosion rates using different approachesEnviron Sci Pollut Res202110.1007/s11356-021-13155-7
LohaniAKGoelNKBhatiaKKSImproving real time flood forecasting using fuzzy inference systemJ Hydrol2014509254110.1016/j.jhydrol.2013.11.021
LeeKTHungW-CMengC-CDeterministic insight into ANN model performance for storm runoff simulationWater Resour Manage2008221678210.1007/s11269-006-9144-x
SinghRMWavelet-ANN model for Flood EventsAdv Intell Syst Comput2012131165175
MaheswaranRKhosaRComparative study of different wavelets for hydrologic forecastingComput Geosci20124628429510.1016/j.cageo.2011.12.015
TezelGBuyukyildizMMonthly evaporation forecasting using artificial neural networks and support vector machinesTheoret Appl Climatol20161241698010.1007/s00704-015-1392-3
LiZLingKZhouLZhuMDeep learning framework with time series analysis methods for runoff predictionWater20211311610.3390/w13040575
EbtehajIBonakdariHPerformance evaluation of adaptive neural fuzzy inference system for sediment transport in sewersWater Resour Manage201428134765477910.1007/s11269-014-0774-0
NayakPCA neuro-fuzzy computing technique for modeling hydrological time seriesJ Hydrol20042911526610.1016/j.jhydrol.2003.12.010
ShirsathPBSinghAKA comparative study of daily pan evaporation estimation using ANN, regression and climate based modelsWater Resour Manage20102481571158110.1007/s11269-009-9514-2
ElbeltagiAModeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environmentAgric Water Manag202024110633410.1016/j.agwat.2020.106334
Yuan X, Chen C, Yuan Y, Zhang B (2021) Runoff prediction based on hybrid clustering with WOA intervals mapping model. J Hydrol Eng 26:04021019. https://doi.org/10.1061/(asce)he.1943-5584.0002087
AgarwalASimulation of runoff and sediment yield using artificial neural networksBiosys Eng200694459761310.1016/j.biosystemseng.2006.02.014
YinDAssessment of sustainable yield of karst water in HuaibeiChina Water Resour Manag201125128730010.1007/s11269-010-9699-4
Gauch M, Kratzert F, Klotz D et al (2020) Rainfall–runoff prediction at multiple timescales with a single long short-term memory network. arXiv 2045–2062. https://doi.org/10.5194/hess-2020-540
Budu K (2014) Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. 19 (7):1385-1400
NouraniVKomasiMManoAA multivariate ANN-wavelet approach for rainfall-runoff modelingWater Resour Manag2009232877289410.1007/s11269-009-9414-5
LohaniAKKumarRSinghRDHydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniquesJ Hydrol201223354424443
AnusreeKVargheseKOStreamflow prediction of Karuvannur River basin using ANFIS, ANN and MNLR modelsProcedia Technol20162410110810.1016/j.protcy.2016.05.015
El-ShafieATahaMRNoureldinAA neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high damWater Resour Manage200721353355610.1007/s11269-006-9027-1
Niu WJ, Feng ZK (2021) Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain Cities Soc 64:102562. https://doi.org/10.1016/j.scs.2020.102562
Elbeltagi A, Zhang L, Deng J, Juma A, Wang K (2020e) Modeling monthly crop coefficients of maize based on limited meteorological data: A case study in Nile Delta, Egypt. Comput Electron Agric 173:105368
Saraiva SV, de OliveiraCarvalho F, Santos CAG et al (2021) Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl Soft Comput 102:107081. https://doi.org/10.1016/j.asoc.2021.107081
DumkaBBKumarPModeling rainfall-runoff using Artificial Neural Network (ANNs) and Wavelet based ANNs (WANNs) for Haripura Dam, UttarakhandIndian J Ecol202148271274
Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592:125779. https://doi.org/10.1016/j.jhydrol.2020.125779
JavanKLialestaniMRFHNejadhosseinMA comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershedIran Model Earth Sys Environ2015144110.1007/s40808-015-0042-1
KuriqiAAliRPhamQBMontenegroGJulioGupta VMalikALinhNTTJoshiYAnhDTNamVTDongXSeasonality shift and streamflow flow variability trends in central IndiaActa Geophysica20206851461147510.1007/s11600-020-00475-4
Zhang J, Chen X, Khan A et al (2021) Daily runoff forecasting by deep recursive neural network. J Hydrol 596
MirbagheriSANouraniVRajaeeTAlikhaniANeuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in riversHydrol Sci J20105571175118910.1080/02626667.2010.508871
Elbeltagi A et al (2020b) Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. J Hydrol https://doi.org/10.1016/j.jhydrol.2020.125662:125662
ElbeltagiAThe impact of climate changes on the water footprint of wheat and maize production in the Nile Delta EgyptSci Total Environ202074314077010.1016/j.scitotenv.2020.140770
LegatesDRMcCabeGJJrEvaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validationWater Resour Res19993523324110.1029/1998WR900018
SuwalNOptimisation of cascade reservoir operation considering environmental flows for different environmental management classesRenew Energy202015845346410.1016/j.renene.2020.05.161
GongYA comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake OkeechobeeFlorida Water Resour
3681_CR43
V Nourani (3681_CR44) 2013; 490
K Javan (3681_CR26) 2015; 1
GMMM Anomaa Senaviratne (3681_CR5) 2014; 517
TS Bajirao (3681_CR10) 2021; 13
AK Lohani (3681_CR38) 2012; 23
A Elbeltagi (3681_CR16) 2020; 743
A Kuriqi (3681_CR32) 2020; 68
Z Li (3681_CR36) 2021; 13
SA Mirbagheri (3681_CR41) 2010; 55
HM Azamathulla (3681_CR7) 2016; 16
Y Seo (3681_CR54) 2015; 520
E Sharghi (3681_CR55) 2018; 32
YO Ouma (3681_CR47) 2021
N Suwal (3681_CR60) 2020; 12
JR Jang (3681_CR25) 1993; 23
V Nourani (3681_CR45) 2009; 23
PB Shirsath (3681_CR56) 2010; 24
3681_CR33
3681_CR1
H Kheirfam (3681_CR28) 2018; 11
A Elbeltagi (3681_CR18) 2020; 235
D Yin (3681_CR63) 2011; 25
A Agarwal (3681_CR3) 2006; 94
PC Nayak (3681_CR42) 2004; 291
RM Adnan (3681_CR2) 2021; 35
RM Singh (3681_CR58) 2012; 131
E Olyaie (3681_CR46) 2015; 187
AK Lohani (3681_CR37) 2014; 509
BB Dumka (3681_CR12) 2021; 48
M Zounemat-Kermani (3681_CR67) 2016; 535
M Kumar (3681_CR31) 2020; 12
MJ Alizadeh (3681_CR4) 2017; 548
J Quilty (3681_CR48) 2018; 563
TS Bajirao (3681_CR9) 2021
3681_CR24
M Kim (3681_CR29) 2008; 64
3681_CR66
3681_CR20
3681_CR64
3681_CR21
3681_CR65
A El-Shafie (3681_CR14) 2009; 23
M Rezaie-Balf (3681_CR51) 2017; 31
3681_CR8
A El-Shafie (3681_CR15) 2007; 21
A Yarar (3681_CR62) 2014; 28
N Suwal (3681_CR59) 2020; 158
3681_CR11
M Shoaib (3681_CR57) 2014; 515
ME Keskin (3681_CR27) 2006; 51
AM Melesse (3681_CR40) 2011; 98
3681_CR53
DR Legates (3681_CR35) 1999; 35
V Güldal (3681_CR23) 2010; 24
G Tezel (3681_CR61) 2016; 124
Y Gong (3681_CR22) 2016; 30
I Ebtehaj (3681_CR13) 2014; 28
3681_CR17
M Ravansalar (3681_CR49) 2015; 187
H Riahi-Madvar (3681_CR52) 2021; 35
KT Lee (3681_CR34) 2008; 22
R Maheswaran (3681_CR39) 2012; 46
O Kisi (3681_CR30) 2015; 29
K Anusree (3681_CR6) 2016; 24
A Elbeltagi (3681_CR19) 2020; 241
3681_CR50
References_xml – reference: ShoaibMShamseldinAYMelvilleBWComparative study of different wavelet based neural network models for rainfall–runoff modelingJ Hydrol2014515475810.1016/j.jhydrol.2014.04.055
– reference: Anomaa SenaviratneGMMMUse of fuzzy rainfall–runoff predictions for claypan watersheds with conservation buffers in Northeast MissouriJ Hydrol20145171008101810.1016/j.jhydrol.2014.06.023
– reference: Elbeltagi A et al (2020b) Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. J Hydrol https://doi.org/10.1016/j.jhydrol.2020.125662:125662
– reference: El-ShafieAEnhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurementsWater Resour Manage200923112289231510.1007/s11269-008-9382-1
– reference: AgarwalASimulation of runoff and sediment yield using artificial neural networksBiosys Eng200694459761310.1016/j.biosystemseng.2006.02.014
– reference: GüldalVTongalHComparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecastingWater Resour Manag201024110512810.1007/s11269-009-9439-9
– reference: Zounemat-KermaniMEvaluation of data driven models for river suspended sediment concentration modelingJ Hydrol201653545747210.1016/j.jhydrol.2016.02.012
– reference: AzamathullaHMHaghiabiAHParsaieAPrediction of side weir discharge coefficient by support vector machine techniqueWater Supply20161641002101610.2166/ws.2016.014
– reference: NouraniVKomasiMA geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff processJ Hydrol2013490415510.1016/j.jhydrol.2013.03.024
– reference: EbtehajIBonakdariHPerformance evaluation of adaptive neural fuzzy inference system for sediment transport in sewersWater Resour Manage201428134765477910.1007/s11269-014-0774-0
– reference: NouraniVKomasiMManoAA multivariate ANN-wavelet approach for rainfall-runoff modelingWater Resour Manag2009232877289410.1007/s11269-009-9414-5
– reference: Zhang J, Chen X, Khan A et al (2021) Daily runoff forecasting by deep recursive neural network. J Hydrol 596
– reference: BajiraoTSKumarPGeospatial technology for prioritization of Koyna River basin of India based on soil erosion rates using different approachesEnviron Sci Pollut Res202110.1007/s11356-021-13155-7
– reference: Zerouali B, Al-ansari N, Chettih M et al (2021) An enhanced innovative triangular trend analysis of rainfall based on a spectral approach. Water 13. https://doi.org/10.3390/w13050727
– reference: Gauch M, Kratzert F, Klotz D et al (2020) Rainfall–runoff prediction at multiple timescales with a single long short-term memory network. arXiv 2045–2062. https://doi.org/10.5194/hess-2020-540
– reference: Riahi-MadvarHDehghaniMMemarzadehRGharabaghiBShort to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFISWater Resour Manag2021351149116610.1007/s11269-020-02756-5
– reference: KuriqiAAliRPhamQBMontenegroGJulioGupta VMalikALinhNTTJoshiYAnhDTNamVTDongXSeasonality shift and streamflow flow variability trends in central IndiaActa Geophysica20206851461147510.1007/s11600-020-00475-4
– reference: NayakPCA neuro-fuzzy computing technique for modeling hydrological time seriesJ Hydrol20042911526610.1016/j.jhydrol.2003.12.010
– reference: MelesseAMSuspended sediment load prediction of river systems: an artificial neural network approachAgric Water Manag201198585586610.1016/j.agwat.2010.12.012
– reference: Han H, Morrison RR (2021) Data-driven approaches for runoff prediction using distributed data. Stoch Environ Res Risk Assess 3. https://doi.org/10.1007/s00477-021-01993-3
– reference: Kuriqi A, Pinheiro AN, Sordo-Ward A, Garrote L (2020b) Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Convers Manag 223:113267
– reference: QuiltyJAdamowskiJAddressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting frameworkJ Hydrol201856333635310.1016/j.jhydrol.2018.05.003
– reference: Adnan RM, Liang Z, Kuriqi A, Kisi O, Malik A, Li B (2020) Streamflow forecasting using heuristic machine learning methods. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), pp 1–6
– reference: KheirfamHMokarram-KashtibanSA regional suspended load yield estimation model for ungauged watershedsWater Sci Eng201811432833710.1016/j.wse.2018.09.008
– reference: SinghRMWavelet-ANN model for Flood EventsAdv Intell Syst Comput2012131165175
– reference: LeeKTHungW-CMengC-CDeterministic insight into ANN model performance for storm runoff simulationWater Resour Manage2008221678210.1007/s11269-006-9144-x
– reference: GongYA comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake OkeechobeeFlorida Water Resour Manag201630137539110.1007/s11269-015-1167-8
– reference: MirbagheriSANouraniVRajaeeTAlikhaniANeuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in riversHydrol Sci J20105571175118910.1080/02626667.2010.508871
– reference: KisiOStreamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clusteringWater Resour Manag201529145109512710.1007/s11269-015-1107-7
– reference: Yuan X, Chen C, Yuan Y, Zhang B (2021) Runoff prediction based on hybrid clustering with WOA intervals mapping model. J Hydrol Eng 26:04021019. https://doi.org/10.1061/(asce)he.1943-5584.0002087
– reference: DumkaBBKumarPModeling rainfall-runoff using Artificial Neural Network (ANNs) and Wavelet based ANNs (WANNs) for Haripura Dam, UttarakhandIndian J Ecol202148271274
– reference: SuwalNOptimisation of cascade reservoir operation considering environmental flows for different environmental management classesRenew Energy202015845346410.1016/j.renene.2020.05.161
– reference: SharghiEEmotional ANN (EANN) and Wavelet-ANN (WANN) approaches for Markovian and seasonal based modeling of rainfall-runoff processWater Resour Manage201832103441345610.1007/s11269-018-2000-y
– reference: LegatesDRMcCabeGJJrEvaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validationWater Resour Res19993523324110.1029/1998WR900018
– reference: LiZLingKZhouLZhuMDeep learning framework with time series analysis methods for runoff predictionWater20211311610.3390/w13040575
– reference: KeskinMETaylanDTerziÖAdaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time seriesHydrol Sci J200651458859810.1623/hysj.51.4.588
– reference: YinDAssessment of sustainable yield of karst water in HuaibeiChina Water Resour Manag201125128730010.1007/s11269-010-9699-4
– reference: OlyaieEA comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United StatesEnviron Monit Assess2015187418910.1007/s10661-015-4381-1
– reference: Saraiva SV, de OliveiraCarvalho F, Santos CAG et al (2021) Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl Soft Comput 102:107081. https://doi.org/10.1016/j.asoc.2021.107081
– reference: ShirsathPBSinghAKA comparative study of daily pan evaporation estimation using ANN, regression and climate based modelsWater Resour Manage20102481571158110.1007/s11269-009-9514-2
– reference: JavanKLialestaniMRFHNejadhosseinMA comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershedIran Model Earth Sys Environ2015144110.1007/s40808-015-0042-1
– reference: Niu WJ, Feng ZK (2021) Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain Cities Soc 64:102562. https://doi.org/10.1016/j.scs.2020.102562
– reference: Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592:125779. https://doi.org/10.1016/j.jhydrol.2020.125779
– reference: AdnanRMPetroselliAHeddamSShort term rainfall-runoff modelling using several machine learning methods and a conceptual event-based modelStoch Environ Res Risk Assess20213559761610.1007/s00477-020-01910-0
– reference: Budu K (2014) Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. 19 (7):1385-1400
– reference: KumarMEstimation of Daily stage–discharge relationship by using data-driven techniques of a perennial riverIndia Sustain20201219787710.3390/su12197877
– reference: OumaYOCheruyotRWacheraANRainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basinComplex Intell Syst202110.1007/s40747-021-00365-2
– reference: ElbeltagiACrop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta EgyptAgric Water Manag202023510608010.1016/j.agwat.2020.106080
– reference: El-ShafieATahaMRNoureldinAA neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high damWater Resour Manage200721353355610.1007/s11269-006-9027-1
– reference: SeoYDaily water level forecasting using wavelet decomposition and artificial intelligence techniquesJ Hydrol201552022424310.1016/j.jhydrol.2014.11.050
– reference: TezelGBuyukyildizMMonthly evaporation forecasting using artificial neural networks and support vector machinesTheoret Appl Climatol20161241698010.1007/s00704-015-1392-3
– reference: ElbeltagiAModeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environmentAgric Water Manag202024110633410.1016/j.agwat.2020.106334
– reference: Reis GB, da Silva DD, Fernandes Filho EI et al (2021) Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow. J Environ Manage 290. https://doi.org/10.1016/j.jenvman.2021.112625
– reference: KimMGilleyJEArtificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areasComput Electron Agric200864226827510.1016/j.compag.2008.05.021
– reference: SuwalNEnvironmental flows assessment in Nepal: the case of Kaligandaki RiverSustainability20201221876610.3390/su12218766
– reference: JangJRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541
– reference: YararAA hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow dataWater Resour Manage201428255356510.1007/s11269-013-0502-1
– reference: RavansalarMRajaeeTEvaluation of wavelet performance via an ANN-based electrical conductivity prediction modelEnviron Monit Assess2015187636610.1007/s10661-015-4590-7
– reference: LohaniAKKumarRSinghRDHydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniquesJ Hydrol201223354424443
– reference: AlizadehMJA new approach for simulating and forecasting the rainfall-runoff process within the next two monthsJ Hydrol201754858859710.1016/j.jhydrol.2017.03.032
– reference: MaheswaranRKhosaRComparative study of different wavelets for hydrologic forecastingComput Geosci20124628429510.1016/j.cageo.2011.12.015
– reference: Elbeltagi A, Zhang L, Deng J, Juma A, Wang K (2020e) Modeling monthly crop coefficients of maize based on limited meteorological data: A case study in Nile Delta, Egypt. Comput Electron Agric 173:105368
– reference: LohaniAKGoelNKBhatiaKKSImproving real time flood forecasting using fuzzy inference systemJ Hydrol2014509254110.1016/j.jhydrol.2013.11.021
– reference: BajiraoTSKumarPKumarMElbeltagiAKuriqiASuperiority of hybrid soft computing models in daily suspended sediment estimation in Highly Dynamic RiversSustainability20211354210.3390/su13020542
– reference: AnusreeKVargheseKOStreamflow prediction of Karuvannur River basin using ANFIS, ANN and MNLR modelsProcedia Technol20162410110810.1016/j.protcy.2016.05.015
– reference: ElbeltagiAThe impact of climate changes on the water footprint of wheat and maize production in the Nile Delta EgyptSci Total Environ202074314077010.1016/j.scitotenv.2020.140770
– reference: Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag201731123843386510.1007/s11269-017-1711-9
– ident: 3681_CR66
  doi: 10.1016/j.jhydrol.2021.126067
– volume: 16
  start-page: 1002
  issue: 4
  year: 2016
  ident: 3681_CR7
  publication-title: Water Supply
  doi: 10.2166/ws.2016.014
– volume: 64
  start-page: 268
  issue: 2
  year: 2008
  ident: 3681_CR29
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2008.05.021
– volume: 517
  start-page: 1008
  year: 2014
  ident: 3681_CR5
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.06.023
– ident: 3681_CR11
  doi: 10.1061/(ASCE)HE.1943-5584.0000892
– year: 2021
  ident: 3681_CR9
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-13155-7
– volume: 31
  start-page: 3843
  issue: 12
  year: 2017
  ident: 3681_CR51
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1711-9
– volume: 23
  start-page: 2289
  issue: 11
  year: 2009
  ident: 3681_CR14
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-008-9382-1
– ident: 3681_CR24
  doi: 10.1007/s00477-021-01993-3
– ident: 3681_CR50
  doi: 10.1016/j.jenvman.2021.112625
– volume: 24
  start-page: 105
  issue: 1
  year: 2010
  ident: 3681_CR23
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9439-9
– volume: 235
  start-page: 106080
  year: 2020
  ident: 3681_CR18
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106080
– volume: 55
  start-page: 1175
  issue: 7
  year: 2010
  ident: 3681_CR41
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2010.508871
– volume: 32
  start-page: 3441
  issue: 10
  year: 2018
  ident: 3681_CR55
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-018-2000-y
– volume: 515
  start-page: 47
  year: 2014
  ident: 3681_CR57
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.04.055
– volume: 94
  start-page: 597
  issue: 4
  year: 2006
  ident: 3681_CR3
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2006.02.014
– volume: 131
  start-page: 165
  year: 2012
  ident: 3681_CR58
  publication-title: Adv Intell Syst Comput
– volume: 28
  start-page: 553
  issue: 2
  year: 2014
  ident: 3681_CR62
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-013-0502-1
– volume: 563
  start-page: 336
  year: 2018
  ident: 3681_CR48
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.05.003
– volume: 743
  start-page: 140770
  year: 2020
  ident: 3681_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.140770
– volume: 98
  start-page: 855
  issue: 5
  year: 2011
  ident: 3681_CR40
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2010.12.012
– ident: 3681_CR20
  doi: 10.1016/j.compag.2020.105368
– volume: 187
  start-page: 189
  issue: 4
  year: 2015
  ident: 3681_CR46
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-4381-1
– ident: 3681_CR17
  doi: 10.1016/j.jhydrol.2020.125662:125662
– year: 2021
  ident: 3681_CR47
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-021-00365-2
– volume: 51
  start-page: 588
  issue: 4
  year: 2006
  ident: 3681_CR27
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.4.588
– volume: 23
  start-page: 442
  issue: 35
  year: 2012
  ident: 3681_CR38
  publication-title: J Hydrol
– ident: 3681_CR8
  doi: 10.1016/j.jhydrol.2020.125779
– ident: 3681_CR21
  doi: 10.5194/hess-2020-540
– volume: 187
  start-page: 366
  issue: 6
  year: 2015
  ident: 3681_CR49
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-4590-7
– volume: 22
  start-page: 67
  issue: 1
  year: 2008
  ident: 3681_CR34
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-006-9144-x
– volume: 48
  start-page: 271
  year: 2021
  ident: 3681_CR12
  publication-title: Indian J Ecol
– volume: 35
  start-page: 1149
  year: 2021
  ident: 3681_CR52
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-020-02756-5
– volume: 535
  start-page: 457
  year: 2016
  ident: 3681_CR67
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.02.012
– volume: 35
  start-page: 233
  year: 1999
  ident: 3681_CR35
  publication-title: Water Resour Res
  doi: 10.1029/1998WR900018
– volume: 291
  start-page: 52
  issue: 1
  year: 2004
  ident: 3681_CR42
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2003.12.010
– volume: 490
  start-page: 41
  year: 2013
  ident: 3681_CR44
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.03.024
– volume: 13
  start-page: 542
  year: 2021
  ident: 3681_CR10
  publication-title: Sustainability
  doi: 10.3390/su13020542
– volume: 548
  start-page: 588
  year: 2017
  ident: 3681_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.03.032
– volume: 12
  start-page: 8766
  issue: 21
  year: 2020
  ident: 3681_CR60
  publication-title: Sustainability
  doi: 10.3390/su12218766
– volume: 520
  start-page: 224
  year: 2015
  ident: 3681_CR54
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.11.050
– ident: 3681_CR65
  doi: 10.3390/w13050727
– volume: 509
  start-page: 25
  year: 2014
  ident: 3681_CR37
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.11.021
– ident: 3681_CR1
  doi: 10.1109/ICCIS49240.2020.9257658
– volume: 158
  start-page: 453
  year: 2020
  ident: 3681_CR59
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.161
– ident: 3681_CR64
  doi: 10.1061/(asce)he.1943-5584.0002087
– volume: 68
  start-page: 1461
  issue: 5
  year: 2020
  ident: 3681_CR32
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-020-00475-4
– ident: 3681_CR53
  doi: 10.1016/j.asoc.2021.107081
– volume: 35
  start-page: 597
  year: 2021
  ident: 3681_CR2
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-020-01910-0
– volume: 124
  start-page: 69
  issue: 1
  year: 2016
  ident: 3681_CR61
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-015-1392-3
– volume: 29
  start-page: 5109
  issue: 14
  year: 2015
  ident: 3681_CR30
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1107-7
– volume: 30
  start-page: 375
  issue: 1
  year: 2016
  ident: 3681_CR22
  publication-title: Florida Water Resour Manag
  doi: 10.1007/s11269-015-1167-8
– volume: 13
  start-page: 1
  year: 2021
  ident: 3681_CR36
  publication-title: Water
  doi: 10.3390/w13040575
– volume: 25
  start-page: 287
  issue: 1
  year: 2011
  ident: 3681_CR63
  publication-title: China Water Resour Manag
  doi: 10.1007/s11269-010-9699-4
– volume: 46
  start-page: 284
  year: 2012
  ident: 3681_CR39
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.12.015
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 3681_CR25
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 24
  start-page: 1571
  issue: 8
  year: 2010
  ident: 3681_CR56
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-009-9514-2
– volume: 28
  start-page: 4765
  issue: 13
  year: 2014
  ident: 3681_CR13
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-014-0774-0
– volume: 21
  start-page: 533
  issue: 3
  year: 2007
  ident: 3681_CR15
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-006-9027-1
– volume: 11
  start-page: 328
  issue: 4
  year: 2018
  ident: 3681_CR28
  publication-title: Water Sci Eng
  doi: 10.1016/j.wse.2018.09.008
– ident: 3681_CR43
  doi: 10.1016/j.scs.2020.102562
– volume: 1
  start-page: 41
  issue: 4
  year: 2015
  ident: 3681_CR26
  publication-title: Iran Model Earth Sys Environ
  doi: 10.1007/s40808-015-0042-1
– ident: 3681_CR33
  doi: 10.1016/j.enconman.2020.113267
– volume: 24
  start-page: 101
  year: 2016
  ident: 3681_CR6
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.05.015
– volume: 23
  start-page: 2877
  year: 2009
  ident: 3681_CR45
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9414-5
– volume: 241
  start-page: 106334
  year: 2020
  ident: 3681_CR19
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106334
– volume: 12
  start-page: 7877
  issue: 19
  year: 2020
  ident: 3681_CR31
  publication-title: India Sustain
  doi: 10.3390/su12197877
SSID ssj0002667
Score 2.4370425
Snippet Accurate prediction of daily runoff’s dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of...
Accurate prediction of daily runoff's dynamic nature is necessary for better watershed planning and management. This study analyzes the applicability of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1207
SubjectTerms Adaptive systems
Algorithms
Analysis
Aquatic Pollution
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate science
Climatology
Daily
Daily rainfall
Daily runoff
Data
Decomposition
Earth and Environmental Science
Earth Sciences
Fuzzy logic
hybrids
India
Inference
Model accuracy
Neural networks
Original Paper
Performance evaluation
prediction
Predictions
Rain
Rain and rainfall
Rainfall
Reliability analysis
River basins
Rivers
Runoff
Sensitivity analysis
time series analysis
Uncertainty analysis
Waste Water Technology
Water Management
Water Pollution Control
Watershed management
watersheds
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtUw0EKFAxdaNhFakEEIDmDp-WVxfKwqKpCgqiigd7McL22kkDxl6fL3zPglQWWT4BIlyjiJPeNZMhshL8xCujQpMOApFSyxXrMCD7HROYgP0Al06FryQRwd5auVPB6Twrop2n1ySQZOPSe7YWWahGFIAXDdnDNgvDdTrDaDNvrJ15n_gsjZJEkLwYTMV2OqzO-fcU0c_cyUf_GOBqFzuP1_n7tD7oxKJt3fUMVdcsPV90j0EfTjpg2_0elLelCVoKyGq_ukP256DBuCQY2nZ1eYxkUvNDal6JlphnXlLMVgUmZbZI8MhZ-lujpt2rI_-9ZR0H0BoKyuaDvUjfd03aILCNFOy5qGyHV3SXF0S2F0WXcPyJfDt58P3rGxHwMzsLN7wCTPvOBcW-5kAbZQ7Bw3PrFW5sYuLS8KbbQvfKyFXGSFMTGg3aYAknMR2_gh2aqb2j0iNAFNxCS5lj5dJIWM8SQthODe6kwLHRE-oUWZsVg59syo1FxmOayvgvVVYX3VMiKv5zHrTamOv0I_R2wrrIFRY5DNqR66Tr0_-aT2swyMQFAlZURejUC-gdcbPeYswCSwbNY1yL2JatTIBToF5lqSSzDZ0og8m2_D_kWnjK5dMwBMFmfYATxPIvJmoqQfj_jzBB7_G_guub0MxIixi3tkq28H94TcMud92bVPww76DlnUFzs
  priority: 102
  providerName: Springer Nature
Title Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins
URI https://link.springer.com/article/10.1007/s00704-021-03681-2
https://www.proquest.com/docview/2554895975
https://www.proquest.com/docview/2636412484
Volume 145
WOSCitedRecordID wos000664015200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFNyK0VAYhOIDVdV6OT6hUrUCiq2gX0IpL5NhxGykk2zyA_ntmvNmtCqIXLlaijONEM575bM-DkJd6IosozNHhKRIsNFaxHJtAqwTMB2AC5aqWfBLTabJYyHTccOtGt8q1TnSK2jQa98j3AfqGiQT4G71bnjOsGoWnq2MJjZtkG5ANR5euEz_daGIwPqtwaSGYkMliDJpxoXOY5yZk6KAAOjzhzL9imP5Uz3-dkzrzc3z3fz_8HrkzAk96sJKU--RGUT8g3glg5qZ1W-v0FT2sSgCw7u4h6dOmR1ci6NRYenaBoV30p8JCFT3TzbCsCkPRwZSZFlUmQ4NoqKpOYfT-7HtHAQ8DQVld0HaoG2vpssVjIRQFWtbUebMXvyj2bin0LuvuEflyfPT58AMbazQwDbO9B-7y2ArOleGFzGF9FBQF1zY0Riba-IbnudLK5jZQQk7iXOsARMFEQJJwEZjgMdmqm7p4QmgI6ESHiZI2moS5DPAiyoXg1qhYCeURvmZQpscE5lhHo8o2qZcdUzNgauaYmvkeebPps1yl77iW-gXyPcO8GDU63pyqoeuyj_NZdhDHsDAEeCk98noksg0Mr9UYxwA_gam0rlDuriUiGzVDl12Kg0eebx7DnMaDGlUXzQA0cRBjVfAk9MjbtdxdvuLfP_D0-hF3yG3fSTz6L-6Srb4dimfklv7Rl127R7bfH03T2Z6bQ9iKObRp9A3a2fzrb7fuJjg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQX3ghDgQXxOJQV8XPtA0JVoWrUNKpokXJb1vtoLQU72A4lf4rfyMzGTlUQvfXAJXKUWdtrfzvzbeZFyEs1yEwc5RjwFHMWaStZjh-hkimYD-AE0nUtGfHxOJ1MsoM18qvPhcGwyl4nOkWtK4X_kb8D6hulGdDf-MPsO8OuUehd7VtoLGGxZxansGVr3g8_wvt9FQQ7n462d1nXVYApwGcL9-Mnlvu-1L7JcmD0oTG-spHWWap0oP08l0ra3IaSZ4MkVyqEm9cxiKQ-D3UI571CrgKNCAIXKni40vxg7Jbp2ZwznqWTLknHpephXZ2IYUAE2IzUZ8E5Q_inOfjLL-vM3c6t_-1B3SY3O2JNt5Yr4Q5ZM-Vd4u3DnqCqneuAvqbb0wIIuvt2j7QHVYuhUjCosvRkgalr9FRiI46WqWo-mxpNMYCW6RpNAkODr6mcHsNs25NvDQW-DwLFdEHreVlZS2c1ur0Q6rQoqYvWNz8pjq4pjC7K5j75cikP4QFZL6vSPCQ0AvalolRmNh5EeRbiQZxz7lstE8mlR_weEEJ1BdqxT8hUrEpLOxAJAJFwIBKBRzZXY2bL8iQXSr9AnAms-1FiYNGxnDeNGB5-FltJAhtfoM-ZR950QraCyyvZ5WnAJLBU2DnJjR6BotN8jTiDn0eer34GnYWOKFmaag4ySZhg1_M08sjbHudnp_j3BB5dfMVn5Pru0f5IjIbjvcfkRuBWG8ZqbpD1tp6bJ-Sa-tEWTf3UrVtKvl42_n8DI8mDpg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvBGGAgvicQCr8XPtA0KlDxG1RFGhUm7Leh9tpGAH26Hkr_HrmHHsVAXRWw9cLFuetb32NzsznhfAC9VPTRRmFPAUcTfUVroZbQIlExQfqBPIpmvJAR8Ok_E4Ha3Bry4XhsIquzWxWah1oegf-SaqvmGSovobbdo2LGK0s_d-9t2lDlLkae3aaSwhsm8Wp2i-Ve8GO_itX_r-3u6X7Y9u22HAVYjVGp_Niy33PKk9k2ao3QfGeMqGWqeJ0r72skwqaTMbSJ7240ypACeiIyRJPB7oAK97BdZ5gEZPD9Y_7A5Hhys5gKJvmazNucvTZNym7DSJe1RlJ3QpPAIlSOK5_jmx-Kdw-MtL2wi_vZv_82u7BTdalZttLXnkNqyZ_A44n9BaKMrGqcBese3pBFX35ugu1KOipiAqHFRYdrKgpDZ2KqlFR-2qYj6bGs0otNbVJQkLl1QBzeT0GGdbn3yrGFoCSDCZLlg5zwtr2awkhxgxAZvkrInjNz8ZjS4Zjp7k1T04upSXcB96eZGbB8BC1MtUmMjURv0wSwPaiTLOPatlLLl0wOvAIVRbup06iEzFquh0AyiBgBINoITvwJvVmNmycMmF1M8Jc4IqguQEkmM5ryox-HwotuIYTWJUrFMHXrdEtsDbK9lmcOAkqIjYOcqNDo2iXRMrcQZFB56tTuNqRi4qmZtijjRxEFM_9CR04G2H-bNL_HsCDy--41O4hrAXB4Ph_iO47jeMR0GcG9Cry7l5DFfVj3pSlU9aJmbw9bIZ4DdJlo22
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+hybrid+wavelet-coupled+data-driven-based+algorithms+for+daily+runoff+prediction+in+complex+river+basins&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Bajirao%2C+Tarate+Suryakant&rft.au=Kumar+Pravendra&rft.au=Kumar%2C+Manish&rft.au=Elbeltagi+Ahmed&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=145&rft.issue=3-4&rft.spage=1207&rft.epage=1231&rft_id=info:doi/10.1007%2Fs00704-021-03681-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon