Lebesgue constants for Chebyshev thresholding greedy algorithms

We investigate the efficiency of Chebyshev Thresholding Greedy Algorithm (CTGA) for an n -term approximation with respect to general bases in a Banach space. We show that the convergence property of CTGA is better than TGA for non-quasi-greedy bases. Then we determine the exact rate of the Lebesgue...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2018; číslo 1; s. 1 - 23
Hlavní autoři: Shao, Chunfang, Ye, Peixin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 27.04.2018
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We investigate the efficiency of Chebyshev Thresholding Greedy Algorithm (CTGA) for an n -term approximation with respect to general bases in a Banach space. We show that the convergence property of CTGA is better than TGA for non-quasi-greedy bases. Then we determine the exact rate of the Lebesgue constants L n ch for two examples of such bases: the trigonometric system and the summing basis. We also establish the upper estimates for L n ch with respect to general bases in terms of quasi-greedy parameter, democracy parameter and A-property parameter. These estimates do not involve an unconditionality parameter, therefore they are better than those of TGA. In particular, for conditional quasi-greedy bases, a faster convergence rate is obtained.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-018-1694-y