Lebesgue constants for Chebyshev thresholding greedy algorithms
We investigate the efficiency of Chebyshev Thresholding Greedy Algorithm (CTGA) for an n -term approximation with respect to general bases in a Banach space. We show that the convergence property of CTGA is better than TGA for non-quasi-greedy bases. Then we determine the exact rate of the Lebesgue...
Uloženo v:
| Vydáno v: | Journal of inequalities and applications Ročník 2018; číslo 1; s. 1 - 23 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
27.04.2018
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate the efficiency of Chebyshev Thresholding Greedy Algorithm (CTGA) for an
n
-term approximation with respect to general bases in a Banach space. We show that the convergence property of CTGA is better than TGA for non-quasi-greedy bases. Then we determine the exact rate of the Lebesgue constants
L
n
ch
for two examples of such bases: the trigonometric system and the summing basis. We also establish the upper estimates for
L
n
ch
with respect to general bases in terms of quasi-greedy parameter, democracy parameter and A-property parameter. These estimates do not involve an unconditionality parameter, therefore they are better than those of TGA. In particular, for conditional quasi-greedy bases, a faster convergence rate is obtained. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1029-242X 1025-5834 1029-242X |
| DOI: | 10.1186/s13660-018-1694-y |