Topological sound
Recently, we witnessed a tremendous effort to conquer the realm of acoustics as a possible playground to test with topologically protected sound wave propagation. In this article, we review the latest efforts to explore with sound waves topological states of quantum matter in two- and three-dimensio...
Gespeichert in:
| Veröffentlicht in: | Communications physics Jg. 1; H. 1 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
21.12.2018
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 2399-3650, 2399-3650 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recently, we witnessed a tremendous effort to conquer the realm of acoustics as a possible playground to test with topologically protected sound wave propagation. In this article, we review the latest efforts to explore with sound waves topological states of quantum matter in two- and three-dimensional systems where we discuss how spin and valley degrees of freedom appear as highly novel ingredients to tailor the flow of sound in the form of one-way edge modes and defect-immune protected acoustic waves. Both from a theoretical stand point and based on contemporary experimental verifications, we summarize the latest advancements of the flourishing research frontier on topological sound.
For both fundamental and applied sciences topological states of matter is an area of intense research and most investigations are dedicated to realizing these materials using electronic and optical methods. Here the authors review recent efforts in a third avenue of research which seeks to emulate topological states using acoustics. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2399-3650 2399-3650 |
| DOI: | 10.1038/s42005-018-0094-4 |