Revisiting the spectral analysis for high-order spectral discontinuous methods
The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 337; s. 379 - 402 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge
Elsevier Inc
15.05.2017
Elsevier Science Ltd Elsevier |
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we wish to revisit such analysis, focusing attention on two key points. The first point concerns the effects of time integration on the spectral analysis. It is shown with standard high-order Finite Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required number of points per wavelength. The situation depends on the choice of the coupled schemes (one for time integration, one for space derivative and one for the filter) and here, the compact scheme with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion-relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly, such a coupled space–time approach is applied to the new class of high-order spectral discontinuous approaches, focusing especially on the Spectral Difference method. A new way to address the specific spectral behaviour of the scheme is introduced first for wavenumbers in [0,π], following the Matrix Power method. For wavenumbers above π, an aliasing phenomenon always occurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing depends on the polynomial degree and on the number of time steps. A new way to define dissipation and dispersion is introduced and applied to wavenumbers larger than π. Since the new criteria recover the previous results for wavenumbers below π, the new proposed approach is an extension of all the previous ones dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral Difference method is as accurate as (or even more accurate) than the considered Finite Difference schemes. |
|---|---|
| AbstractList | The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we wish to revisit such analysis, focusing attention on two key points. The first point concerns the effects of time integration on the spectral analysis. It is shown with standard high-order Finite Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required number of points per wavelength. The situation depends on the choice of the coupled schemes (one for time integration, one for space derivative and one for the filter) and here, the compact scheme with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly, such a coupled space time approach is applied to the new class of high-order spectral discontinuous approaches, focusing especially on the Spectral Difference method. A new way to address the specific spectral behaviour of the scheme is introduced first for wavenumbers in [0,pi], following the Matrix Power method. For wavenumbers above pi, an aliasing phenomenon always occurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing depends on the polynomial degree and on the number of time steps. A new way to define dissipation and dispersion is introduced and applied to wavenumbers larger than it. Since the new criteria recover the previous results for wavenumbers below it, the new proposed approach is an extension of all the previous ones dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral Difference method is as accurate as (or even more accurate) than the considered Finite Difference schemes. The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we wish to revisit such analysis, focusing attention on two key points. The first point concerns the effects of time integration on the spectral analysis. It is shown with standard high-order Finite Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required number of points per wavelength. The situation depends on the choice of the coupled schemes (one for time integration, one for space derivative and one for the filter) and here, the compact scheme with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion-relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly, such a coupled space–time approach is applied to the new class of high-order spectral discontinuous approaches, focusing especially on the Spectral Difference method. A new way to address the specific spectral behaviour of the scheme is introduced first for wavenumbers in [0,π], following the Matrix Power method. For wavenumbers above π, an aliasing phenomenon always occurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing depends on the polynomial degree and on the number of time steps. A new way to define dissipation and dispersion is introduced and applied to wavenumbers larger than π. Since the new criteria recover the previous results for wavenumbers below π, the new proposed approach is an extension of all the previous ones dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral Difference method is as accurate as (or even more accurate) than the considered Finite Difference schemes. |
| Author | Vasseur, Xavier Vanharen, Julien Sagaut, Pierre Boussuge, Jean-François Puigt, Guillaume |
| Author_xml | – sequence: 1 givenname: Julien orcidid: 0000-0002-0408-2467 surname: Vanharen fullname: Vanharen, Julien email: julien.vanharen@cerfacs.fr organization: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France – sequence: 2 givenname: Guillaume surname: Puigt fullname: Puigt, Guillaume email: guillaume.puigt@cerfacs.fr organization: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France – sequence: 3 givenname: Xavier surname: Vasseur fullname: Vasseur, Xavier email: xavier.vasseur@isae.fr organization: ISAE-SUPAERO, 10 avenue Edouard Belin, BP 54032, 31055 Toulouse Cedex 4, France – sequence: 4 givenname: Jean-François surname: Boussuge fullname: Boussuge, Jean-François email: jean-francois.boussuge@cerfacs.fr organization: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France – sequence: 5 givenname: Pierre surname: Sagaut fullname: Sagaut, Pierre email: pierre.sagaut@univ-amu.fr organization: Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France |
| BackLink | https://hal.science/hal-01527618$$DView record in HAL |
| BookMark | eNp9kE1r4zAQQMXSwqYfP6A3w572YHdGsiWbPYWwuy2EFkrvYirLsYxjZSUn0H9fhbQs9NDTgHhPzLwLdjb5yTJ2g1AgoLwdisHsCg6oCuAFlOIbWyA0kHOF8owtADjmTdPgd3YR4wAAdVXWC_bwZA8uutlNm2zubRZ31syBxowmGl-ji1nnQ9a7TZ_70NrwH2hdNH5K4t7vY7a1c-_beMXOOxqjvX6fl-z5z-_n1V2-fvx7v1quc1Pyas5RKSWamqzgYEpCI5GEMVyRqMq26sCWDUFFKIgLItViLSWnil5a0UkrLtnP07c9jXoX3JbCq_bk9N1yrY9vgBVXEusDJvbHid0F_29v46wHvw_puqg5VLKUom5kotSJMsHHGGynjZtpdunCQG7UCPrYWQ86ddbHzhq4Tp2TiZ_Mj4W-cn6dHJsaHZwNOhpnJ2NbF1Je3Xr3hf0Gd02Xkg |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2022_111070 crossref_primary_10_1016_j_jcp_2019_108883 crossref_primary_10_1016_j_jocs_2022_101703 crossref_primary_10_1016_j_jcp_2018_07_018 crossref_primary_10_2514_1_J059830 crossref_primary_10_1016_j_camwa_2022_08_005 crossref_primary_10_1016_j_jcp_2020_109276 crossref_primary_10_1007_s10494_021_00273_y crossref_primary_10_1016_j_jcp_2021_110774 crossref_primary_10_1016_j_cma_2024_117413 crossref_primary_10_1093_imanum_drad006 crossref_primary_10_1093_mnras_stad226 crossref_primary_10_1007_s10915_020_01397_5 crossref_primary_10_1016_j_jcp_2022_111043 crossref_primary_10_1016_j_compfluid_2020_104433 crossref_primary_10_1007_s10915_022_02002_7 crossref_primary_10_1016_j_jocs_2020_101155 crossref_primary_10_1007_s10915_021_01484_1 crossref_primary_10_1016_j_jcp_2018_12_015 crossref_primary_10_1016_j_jcp_2021_110327 crossref_primary_10_1016_j_compfluid_2023_106060 crossref_primary_10_1007_s10494_021_00262_1 crossref_primary_10_1016_j_cad_2020_102846 crossref_primary_10_1016_j_jcp_2020_109860 crossref_primary_10_1007_s10915_020_01329_3 crossref_primary_10_1016_j_amc_2023_128426 crossref_primary_10_1016_j_jcp_2024_112983 |
| Cites_doi | 10.1016/j.jcp.2011.07.013 10.1016/j.jcp.2007.06.001 10.1016/0021-9991(92)90324-R 10.1007/s10915-011-9505-3 10.1016/j.compfluid.2013.12.007 10.1016/j.jcp.2003.09.003 10.1006/jcph.1999.6227 10.1016/j.jcp.2003.09.012 10.1016/j.jcp.2005.06.024 10.1007/s10915-010-9391-0 10.1016/j.cma.2011.08.019 10.1007/s10915-008-9201-0 10.1016/j.jcp.2006.01.024 10.1007/s10915-006-9113-9 10.1016/0021-9991(91)90264-L 10.1006/jcph.1993.1142 10.1006/jcph.2002.7041 10.1007/s10915-010-9420-z 10.1016/j.jcp.2005.08.033 10.1023/A:1025896119548 10.1016/j.jcp.2008.10.042 10.1006/jcph.1996.0091 10.1016/j.jcp.2009.07.036 10.1016/0021-9991(89)90183-6 10.1137/1.9781611970876 10.1016/j.jcp.2008.12.038 10.2514/2.1665 10.1142/S0218202503002568 10.1016/j.jcp.2010.03.027 10.1007/s10915-014-9882-5 10.1007/s10915-009-9339-4 10.1006/jcph.2002.7082 10.1051/meca/2013056 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Copyright Elsevier Science Ltd. May 15, 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. May 15, 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC |
| DOI | 10.1016/j.jcp.2017.02.043 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 402 |
| ExternalDocumentID | oai:HAL:hal-01527618v1 10_1016_j_jcp_2017_02_043 S0021999117301468 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c425t-1777398ae320c4a1c61a3cc27a354d5f0e49a05a13a23aa7d18662a5abd3f6e3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398874700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Sat Nov 29 15:01:32 EST 2025 Sun Nov 09 08:28:04 EST 2025 Sat Nov 29 03:10:16 EST 2025 Tue Nov 18 22:06:19 EST 2025 Fri Feb 23 02:17:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Space–time spectral analysis Matrix Power Method Spectral discontinuous Aliasing Aeroacoustics Finite Difference Space-time spectral analysis |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c425t-1777398ae320c4a1c61a3cc27a354d5f0e49a05a13a23aa7d18662a5abd3f6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0408-2467 0000-0002-3043-7911 0000-0002-3785-120X |
| PQID | 2056463896 |
| PQPubID | 2047462 |
| PageCount | 24 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01527618v1 proquest_journals_2056463896 crossref_citationtrail_10_1016_j_jcp_2017_02_043 crossref_primary_10_1016_j_jcp_2017_02_043 elsevier_sciencedirect_doi_10_1016_j_jcp_2017_02_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-15 |
| PublicationDateYYYYMMDD | 2017-05-15 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
| References | Fosso Pouangué, Deniau, Sicot, Sagaut (br0420) 2010; 229 Vincent, Castonguay, Jameson (br0200) 2011; 47 Golub, Van Loan (br0400) 1996 Cockburn, Lin, Shu (br0060) 1989; 84 Hesthaven, Warburton (br0080) 2008 Sengupta (br0380) 2013 Huynh (br0180) 2007 Bogey, Bailly, Juvé (br0430) 2002; 40 Liang, Jameson, Wang (br0120) 2009; 228 Hu, Hussaini, Rasetarinera (br0250) 1999; 151 Wang, Gao (br0190) 2009; 228 Gaitonde, Visbal (br0320) 1999 Allaneau, Jameson (br0230) 2011; 200 Zhang, Shu (br0260) 2003; 13 Rai, Moin (br0010) 1991; 96 Vincent, Castonguay, Jameson (br0290) 2011; 230 Kopriva, Kolias (br0090) 1996; 125 Bogey, de Cacqueray, Bailly (br0350) 2009; 228 Wang, Liu (br0140) 2002; 179 Sengupta, Dipankar, Sagaut (br0370) 2007; 226 Wang, Liu, May, Jameson (br0110) 2007; 32 Vichnevetsky, Bowles (br0240) 1982 Ramboer, Broeckhoven, Smirnov, Lacor (br0360) 2006; 213 Axelsson (br0390) 1996 Cassagne, Puigt, Boussuge (br0450) 2015 Asthana, Jameson (br0300) 2015; 62 Liu, Vinokur, Wang (br0100) 2006; 216 Wang (br0130) 2002; 178 Huynh, Wang, Vincent (br0220) 2014; 98 Jameson (br0460) 2010; 45 Kannan, Wang (br0270) 2011; 46 Reed, Hill (br0040) 1973 Tam, Webb (br0030) 1993; 107 Cassagne, Boussuge, Villedieu, Puigt, D'Ast, Genot (br0440) 2015 Castonguay, Vincent, Jameson (br0210) 2012; 51 Lele (br0020) 1992; 103 Cockburn, Hou, Shu (br0070) 1990; 54 Liu, Vinokur, Wang (br0170) 2006; 212 Cockburn, Shu (br0050) 1989; 52 Bogey, Bailly (br0310) 2004; 194 Le Bras, Deniau, Bogey, Daviller (br0340) 2015 Wang, Liu (br0150) 2004; 20 Wang, Zang, Liu (br0160) 2004; 194 Van den Abeele, Lacor, Wang (br0280) 2008; 37 Aikens, Dhamankar, Martha, Situ, Blaisdell (br0330) 2014 Cambier, Heib, Plot (br0410) 2013; 14 Liu (10.1016/j.jcp.2017.02.043_br0170) 2006; 212 Tam (10.1016/j.jcp.2017.02.043_br0030) 1993; 107 Vichnevetsky (10.1016/j.jcp.2017.02.043_br0240) 1982 Cassagne (10.1016/j.jcp.2017.02.043_br0440) 2015 Bogey (10.1016/j.jcp.2017.02.043_br0430) 2002; 40 Zhang (10.1016/j.jcp.2017.02.043_br0260) 2003; 13 Allaneau (10.1016/j.jcp.2017.02.043_br0230) 2011; 200 Rai (10.1016/j.jcp.2017.02.043_br0010) 1991; 96 Vincent (10.1016/j.jcp.2017.02.043_br0200) 2011; 47 Hesthaven (10.1016/j.jcp.2017.02.043_br0080) 2008 Le Bras (10.1016/j.jcp.2017.02.043_br0340) 2015 Wang (10.1016/j.jcp.2017.02.043_br0150) 2004; 20 Fosso Pouangué (10.1016/j.jcp.2017.02.043_br0420) 2010; 229 Reed (10.1016/j.jcp.2017.02.043_br0040) 1973 Liu (10.1016/j.jcp.2017.02.043_br0100) 2006; 216 Castonguay (10.1016/j.jcp.2017.02.043_br0210) 2012; 51 Wang (10.1016/j.jcp.2017.02.043_br0140) 2002; 179 Wang (10.1016/j.jcp.2017.02.043_br0190) 2009; 228 Cambier (10.1016/j.jcp.2017.02.043_br0410) 2013; 14 Cockburn (10.1016/j.jcp.2017.02.043_br0050) 1989; 52 Aikens (10.1016/j.jcp.2017.02.043_br0330) 2014 Jameson (10.1016/j.jcp.2017.02.043_br0460) 2010; 45 Lele (10.1016/j.jcp.2017.02.043_br0020) 1992; 103 Vincent (10.1016/j.jcp.2017.02.043_br0290) 2011; 230 Van den Abeele (10.1016/j.jcp.2017.02.043_br0280) 2008; 37 Bogey (10.1016/j.jcp.2017.02.043_br0310) 2004; 194 Ramboer (10.1016/j.jcp.2017.02.043_br0360) 2006; 213 Sengupta (10.1016/j.jcp.2017.02.043_br0370) 2007; 226 Cockburn (10.1016/j.jcp.2017.02.043_br0070) 1990; 54 Huynh (10.1016/j.jcp.2017.02.043_br0180) 2007 Sengupta (10.1016/j.jcp.2017.02.043_br0380) 2013 Wang (10.1016/j.jcp.2017.02.043_br0130) 2002; 178 Kannan (10.1016/j.jcp.2017.02.043_br0270) 2011; 46 Liang (10.1016/j.jcp.2017.02.043_br0120) 2009; 228 Hu (10.1016/j.jcp.2017.02.043_br0250) 1999; 151 Axelsson (10.1016/j.jcp.2017.02.043_br0390) 1996 Golub (10.1016/j.jcp.2017.02.043_br0400) 1996 Kopriva (10.1016/j.jcp.2017.02.043_br0090) 1996; 125 Wang (10.1016/j.jcp.2017.02.043_br0110) 2007; 32 Cockburn (10.1016/j.jcp.2017.02.043_br0060) 1989; 84 Gaitonde (10.1016/j.jcp.2017.02.043_br0320) 1999 Cassagne (10.1016/j.jcp.2017.02.043_br0450) Bogey (10.1016/j.jcp.2017.02.043_br0350) 2009; 228 Asthana (10.1016/j.jcp.2017.02.043_br0300) 2015; 62 Wang (10.1016/j.jcp.2017.02.043_br0160) 2004; 194 Huynh (10.1016/j.jcp.2017.02.043_br0220) 2014; 98 |
| References_xml | – volume: 228 start-page: 2847 year: 2009 end-page: 2858 ident: br0120 article-title: Spectral difference method for compressible flow on unstructured grids with mixed elements publication-title: J. Comput. Phys. – volume: 46 start-page: 314 year: 2011 end-page: 328 ident: br0270 article-title: LGD2: a variant of the LDG flux formulation for the spectral volume method publication-title: J. Sci. Comput. – volume: 40 start-page: 235 year: 2002 end-page: 243 ident: br0430 article-title: Computation of flow noise using source terms in linearized Euler's equations publication-title: AIAA J. – year: 2008 ident: br0080 article-title: Nodal Discontinuous Galerkin Methods – Algorithms, Analysis and Applications – volume: 84 start-page: 90 year: 1989 end-page: 113 ident: br0060 article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems publication-title: J. Comput. Phys. – volume: 45 start-page: 348 year: 2010 end-page: 358 ident: br0460 article-title: A proof of the stability of the spectral difference method for all orders of accuracy publication-title: J. Sci. Comput. – year: 2007 ident: br0180 article-title: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods publication-title: 18th AIAA Computational Fluid Dynamics Conference – volume: 47 start-page: 50 year: 2011 end-page: 72 ident: br0200 article-title: A new class of high-order energy stable flux reconstruction schemes publication-title: J. Sci. Comput. – volume: 228 start-page: 1447 year: 2009 end-page: 1465 ident: br0350 article-title: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations publication-title: J. Comput. Phys. – volume: 37 start-page: 162 year: 2008 end-page: 188 ident: br0280 article-title: On the stability and accuracy of the spectral difference method publication-title: J. Sci. Comput. – volume: 230 start-page: 8134 year: 2011 end-page: 8154 ident: br0290 article-title: Insights from von Neumann analysis of high-order flux reconstruction schemes publication-title: J. Comput. Phys. – volume: 62 start-page: 913 year: 2015 end-page: 944 ident: br0300 article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation publication-title: J. Sci. Comput. – volume: 51 start-page: 224 year: 2012 end-page: 256 ident: br0210 article-title: A new class of high-order energy stable flux reconstruction schemes for triangular elements publication-title: J. Sci. Comput. – volume: 200 start-page: 3626 year: 2011 end-page: 3636 ident: br0230 article-title: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations publication-title: Comput. Methods Appl. Mech. Eng. – year: 2015 ident: br0340 article-title: Development of compressible large-eddy simulations combining high-order schemes and wall modeling publication-title: AIAA Aviation 21st AIAA/CEAS Aeroacoustics Conference – volume: 194 start-page: 194 year: 2004 end-page: 214 ident: br0310 article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations publication-title: J. Comput. Phys. – volume: 103 start-page: 16 year: 1992 end-page: 42 ident: br0020 article-title: Compact finite difference schemes with spectral-like resolution publication-title: J. Comput. Phys. – volume: 179 start-page: 665 year: 2002 end-page: 697 ident: br0140 article-title: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation publication-title: J. Comput. Phys. – volume: 96 start-page: 15 year: 1991 end-page: 53 ident: br0010 article-title: Direct simulations of turbulent flow using finite-difference schemes publication-title: J. Comput. Phys. – volume: 14 start-page: 159 year: 2013 end-page: 174 ident: br0410 article-title: The Onera elsA CFD software: input from research and feedback from industry publication-title: Mech. Ind. – year: 2015 ident: br0440 article-title: JAGUAR: a new CFD code dedicated to massively parallel high-order LES computations on complex geometry publication-title: 50th 3AF International Conference on Applied Aerodynamics – volume: 216 start-page: 780 year: 2006 end-page: 801 ident: br0100 article-title: Spectral difference method for unstructured grids I: basic formulation publication-title: J. Comput. Phys. – volume: 13 start-page: 395 year: 2003 end-page: 414 ident: br0260 article-title: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations publication-title: Math. Methods Appl. Sci. – year: 1973 ident: br0040 article-title: Triangular Mesh Methods for the Neutron Transport Equation – volume: 228 start-page: 8161 year: 2009 end-page: 8186 ident: br0190 article-title: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids publication-title: J. Comput. Phys. – volume: 226 start-page: 1211 year: 2007 end-page: 1218 ident: br0370 article-title: Error dynamics: beyond von Neumann analysis publication-title: J. Comput. Phys. – volume: 212 start-page: 454 year: 2006 end-page: 472 ident: br0170 article-title: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems publication-title: J. Comput. Phys. – volume: 98 start-page: 209 year: 2014 end-page: 220 ident: br0220 article-title: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids publication-title: Comput. Fluids – volume: 107 start-page: 262 year: 1993 end-page: 281 ident: br0030 article-title: Dispersion–relation–preserving finite difference schemes for computational acoustics publication-title: J. Comput. Phys. – year: 1999 ident: br0320 article-title: Further development of a Navier–Stokes solution procedure based on higher-order formulas publication-title: 37th AIAA Aerospace Sciences Meeting – volume: 52 start-page: 411 year: 1989 end-page: 435 ident: br0050 article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite method for conservation laws II: general framework publication-title: Math. Comput. – volume: 194 start-page: 716 year: 2004 end-page: 741 ident: br0160 article-title: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems publication-title: J. Comput. Phys. – year: 1982 ident: br0240 article-title: Fourier Analysis of Numerical Approximation of Hyperbolic Equations publication-title: SIAM Studies in Applied Mathematics – year: 2013 ident: br0380 article-title: High Accuracy Computing Methods: Fluid Flows and Wave Phenomena – volume: 178 start-page: 210 year: 2002 end-page: 251 ident: br0130 article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation publication-title: J. Comput. Phys. – volume: 20 start-page: 137 year: 2004 end-page: 157 ident: br0150 article-title: Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional system and partition optimization publication-title: J. Sci. Comput. – year: 2015 ident: br0450 article-title: High-Order Method for a New Generation of Large Eddy Simulation Solver – volume: 151 start-page: 921 year: 1999 end-page: 946 ident: br0250 article-title: An analysis of the discontinuous Galerkin method for wave propagation problems publication-title: J. Comput. Phys. – volume: 229 start-page: 5090 year: 2010 end-page: 5122 ident: br0420 article-title: Curvilinear finite-volume schemes using high-order compact interpolation publication-title: J. Comput. Phys. – volume: 32 start-page: 45 year: 2007 end-page: 71 ident: br0110 article-title: Spectral difference method for unstructured grids II: extension to the Euler equations publication-title: J. Sci. Comput. – year: 2014 ident: br0330 article-title: Equilibrium wall model for large eddy simulations of jets for aeroacoustics publication-title: AIAA SciTech, 52nd Aerospace Sciences Meeting – volume: 213 start-page: 777 year: 2006 end-page: 802 ident: br0360 article-title: Optimization of time integration schemes coupled to spatial discretization for use in CAA applications publication-title: J. Comput. Phys. – year: 1996 ident: br0390 article-title: Iterative Solution Methods – volume: 125 start-page: 244 year: 1996 end-page: 261 ident: br0090 article-title: A conservative staggered-grid Chebyshev multidomain method for compressible flows publication-title: J. Comput. Phys. – volume: 54 start-page: 545 year: 1990 end-page: 581 ident: br0070 article-title: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case publication-title: Math. Comput. – year: 1996 ident: br0400 article-title: Matrix Computations – volume: 230 start-page: 8134 issue: 22 year: 2011 ident: 10.1016/j.jcp.2017.02.043_br0290 article-title: Insights from von Neumann analysis of high-order flux reconstruction schemes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.07.013 – volume: 52 start-page: 411 issue: 186 year: 1989 ident: 10.1016/j.jcp.2017.02.043_br0050 article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite method for conservation laws II: general framework publication-title: Math. Comput. – volume: 226 start-page: 1211 year: 2007 ident: 10.1016/j.jcp.2017.02.043_br0370 article-title: Error dynamics: beyond von Neumann analysis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.001 – volume: 103 start-page: 16 year: 1992 ident: 10.1016/j.jcp.2017.02.043_br0020 article-title: Compact finite difference schemes with spectral-like resolution publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90324-R – volume: 51 start-page: 224 year: 2012 ident: 10.1016/j.jcp.2017.02.043_br0210 article-title: A new class of high-order energy stable flux reconstruction schemes for triangular elements publication-title: J. Sci. Comput. doi: 10.1007/s10915-011-9505-3 – volume: 98 start-page: 209 year: 2014 ident: 10.1016/j.jcp.2017.02.043_br0220 article-title: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.12.007 – volume: 194 start-page: 194 issue: 1 year: 2004 ident: 10.1016/j.jcp.2017.02.043_br0310 article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.003 – volume: 151 start-page: 921 year: 1999 ident: 10.1016/j.jcp.2017.02.043_br0250 article-title: An analysis of the discontinuous Galerkin method for wave propagation problems publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6227 – year: 2014 ident: 10.1016/j.jcp.2017.02.043_br0330 article-title: Equilibrium wall model for large eddy simulations of jets for aeroacoustics – volume: 194 start-page: 716 issue: 2 year: 2004 ident: 10.1016/j.jcp.2017.02.043_br0160 article-title: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.012 – year: 2007 ident: 10.1016/j.jcp.2017.02.043_br0180 article-title: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods – volume: 212 start-page: 454 issue: 2 year: 2006 ident: 10.1016/j.jcp.2017.02.043_br0170 article-title: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.06.024 – volume: 46 start-page: 314 year: 2011 ident: 10.1016/j.jcp.2017.02.043_br0270 article-title: LGD2: a variant of the LDG flux formulation for the spectral volume method publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9391-0 – volume: 200 start-page: 3626 year: 2011 ident: 10.1016/j.jcp.2017.02.043_br0230 article-title: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.08.019 – year: 1996 ident: 10.1016/j.jcp.2017.02.043_br0400 – volume: 54 start-page: 545 year: 1990 ident: 10.1016/j.jcp.2017.02.043_br0070 article-title: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case publication-title: Math. Comput. – volume: 37 start-page: 162 year: 2008 ident: 10.1016/j.jcp.2017.02.043_br0280 article-title: On the stability and accuracy of the spectral difference method publication-title: J. Sci. Comput. doi: 10.1007/s10915-008-9201-0 – volume: 216 start-page: 780 issue: 2 year: 2006 ident: 10.1016/j.jcp.2017.02.043_br0100 article-title: Spectral difference method for unstructured grids I: basic formulation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.024 – volume: 32 start-page: 45 year: 2007 ident: 10.1016/j.jcp.2017.02.043_br0110 article-title: Spectral difference method for unstructured grids II: extension to the Euler equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-006-9113-9 – volume: 96 start-page: 15 issue: 1 year: 1991 ident: 10.1016/j.jcp.2017.02.043_br0010 article-title: Direct simulations of turbulent flow using finite-difference schemes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90264-L – volume: 107 start-page: 262 issue: 2 year: 1993 ident: 10.1016/j.jcp.2017.02.043_br0030 article-title: Dispersion–relation–preserving finite difference schemes for computational acoustics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1142 – volume: 178 start-page: 210 issue: 1 year: 2002 ident: 10.1016/j.jcp.2017.02.043_br0130 article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7041 – volume: 47 start-page: 50 issue: 1 year: 2011 ident: 10.1016/j.jcp.2017.02.043_br0200 article-title: A new class of high-order energy stable flux reconstruction schemes publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9420-z – year: 2013 ident: 10.1016/j.jcp.2017.02.043_br0380 – volume: 213 start-page: 777 issue: 2 year: 2006 ident: 10.1016/j.jcp.2017.02.043_br0360 article-title: Optimization of time integration schemes coupled to spatial discretization for use in CAA applications publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.08.033 – volume: 20 start-page: 137 year: 2004 ident: 10.1016/j.jcp.2017.02.043_br0150 article-title: Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional system and partition optimization publication-title: J. Sci. Comput. doi: 10.1023/A:1025896119548 – year: 1999 ident: 10.1016/j.jcp.2017.02.043_br0320 article-title: Further development of a Navier–Stokes solution procedure based on higher-order formulas – volume: 228 start-page: 1447 issue: 5 year: 2009 ident: 10.1016/j.jcp.2017.02.043_br0350 article-title: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.10.042 – ident: 10.1016/j.jcp.2017.02.043_br0450 – volume: 125 start-page: 244 issue: 1 year: 1996 ident: 10.1016/j.jcp.2017.02.043_br0090 article-title: A conservative staggered-grid Chebyshev multidomain method for compressible flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0091 – volume: 228 start-page: 8161 issue: 21 year: 2009 ident: 10.1016/j.jcp.2017.02.043_br0190 article-title: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.07.036 – volume: 84 start-page: 90 year: 1989 ident: 10.1016/j.jcp.2017.02.043_br0060 article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90183-6 – year: 1982 ident: 10.1016/j.jcp.2017.02.043_br0240 article-title: Fourier Analysis of Numerical Approximation of Hyperbolic Equations doi: 10.1137/1.9781611970876 – volume: 228 start-page: 2847 issue: 8 year: 2009 ident: 10.1016/j.jcp.2017.02.043_br0120 article-title: Spectral difference method for compressible flow on unstructured grids with mixed elements publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.12.038 – volume: 40 start-page: 235 issue: 2 year: 2002 ident: 10.1016/j.jcp.2017.02.043_br0430 article-title: Computation of flow noise using source terms in linearized Euler's equations publication-title: AIAA J. doi: 10.2514/2.1665 – volume: 13 start-page: 395 issue: 3 year: 2003 ident: 10.1016/j.jcp.2017.02.043_br0260 article-title: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations publication-title: Math. Methods Appl. Sci. doi: 10.1142/S0218202503002568 – volume: 229 start-page: 5090 issue: 13 year: 2010 ident: 10.1016/j.jcp.2017.02.043_br0420 article-title: Curvilinear finite-volume schemes using high-order compact interpolation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.03.027 – year: 2015 ident: 10.1016/j.jcp.2017.02.043_br0440 article-title: JAGUAR: a new CFD code dedicated to massively parallel high-order LES computations on complex geometry – year: 2008 ident: 10.1016/j.jcp.2017.02.043_br0080 – year: 1996 ident: 10.1016/j.jcp.2017.02.043_br0390 – volume: 62 start-page: 913 issue: 3 year: 2015 ident: 10.1016/j.jcp.2017.02.043_br0300 article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9882-5 – volume: 45 start-page: 348 year: 2010 ident: 10.1016/j.jcp.2017.02.043_br0460 article-title: A proof of the stability of the spectral difference method for all orders of accuracy publication-title: J. Sci. Comput. doi: 10.1007/s10915-009-9339-4 – volume: 179 start-page: 665 issue: 2 year: 2002 ident: 10.1016/j.jcp.2017.02.043_br0140 article-title: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7082 – year: 1973 ident: 10.1016/j.jcp.2017.02.043_br0040 – year: 2015 ident: 10.1016/j.jcp.2017.02.043_br0340 article-title: Development of compressible large-eddy simulations combining high-order schemes and wall modeling – volume: 14 start-page: 159 issue: 3 year: 2013 ident: 10.1016/j.jcp.2017.02.043_br0410 article-title: The Onera elsA CFD software: input from research and feedback from industry publication-title: Mech. Ind. doi: 10.1051/meca/2013056 |
| SSID | ssj0008548 |
| Score | 2.430654 |
| Snippet | The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 379 |
| SubjectTerms | Aeroacoustics Aliasing Computational physics Convection Dissipation Energy dissipation Engineering Sciences Finite Difference Finite difference method Finite element analysis Fluids mechanics Fourier transforms Linear equations Mathematical analysis Matrix Power Method Mechanics Space–time spectral analysis Spectra Spectral discontinuous Studies Time integration |
| Title | Revisiting the spectral analysis for high-order spectral discontinuous methods |
| URI | https://dx.doi.org/10.1016/j.jcp.2017.02.043 https://www.proquest.com/docview/2056463896 https://hal.science/hal-01527618 |
| Volume | 337 |
| WOSCitedRecordID | wos000398874700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKxwMvfCPKBooQT0iZEjuJk8cKNrpRVRVUqG-W4zprq5JOTVPt3-2vcf2VrEObxgMvUeUmVuJ7cn3s3HsuQp9CkeOkwDM_5fC6RbKI_ZxmMz9OgS7LQGkWaRHXIR2N0uk0G3c61y4XZreiZZleXWWX_9XU0AbGVqmz_2DuplNogN9gdDiC2eH4IMP_0PniW5cGpVMpN1oRwMqPqMBCpVLsa9nN9gSVoLtWhSNqFRZrSktXd5BXoYtBuI1Esz3SsPNfvJzzjcv6AJLbAHBcLy601_9Wq2pH9W_ZXlNVstbwmXI1Vzf7BHAzVW0KwJ9LXvqKauvP-3S92Nu0gIlQ6Z3G7U6anfZvemYVKpKZyl3H0jjjIAt8TE0upvPWxGjEWH9LTCUaO3VHOnn771nBbFAsj5dCKZSGVKu0GnWofQXuQf8nG389ZcOz0ff9f2-ELQ76QzjO-coPVE3gJEx3sPw-wDTO0i466J-dTM8bMpDGkSED9vHch3UdYnjrfu6iRo_mKkb3FlXQ_GfyHD21tvf6BnAvUEeWL9Ezu4jx7BRRvUKjFn8e4M9z8PIc_jzAn9firz1hD3-exd9rNDk9mXwZ-LZohy_A_W_9kFJKspRLggMR8VAkISdCYMpJHM3iIpBRxoOYh4RjwjmdKcVFzGOez0iRSPIGdct1Kd8ij4i8gFZKUl5EuQwzIWIcFUXIgUVjkvdQ4IaLCStor-qqrJiLXFwyGGGmRpgFmMEI99Dn5pJLo-Zy38mRswGzdNTQTAa4uu-yj2Cvpnsl3w6IYaqtxUsPHTlzMus7KugkTiK1gkjePaSPQ_SkfbWOUHe7qeV79Fjstotq88EC8Q99mME1 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+spectral+analysis+for+high-order+spectral+discontinuous+methods&rft.jtitle=Journal+of+computational+physics&rft.au=Vanharen%2C+Julien&rft.au=Puigt%2C+Guillaume&rft.au=Vasseur%2C+Xavier&rft.au=Boussuge%2C+Jean-Fran%C3%A7ois&rft.date=2017-05-15&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=337&rft.spage=379&rft.epage=402&rft_id=info:doi/10.1016%2Fj.jcp.2017.02.043&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01527618v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |