Zinc in plants
Contents Summary 677 I. Physical and chemical properties of zinc 678 II. Biochemical properties of zinc 678 III. Proteins interacting with zinc 678 IV. Zinc fluxes in the soil–root–shoot continuum 679 V. Zinc in plants 684 VI. Plant responses to elevated soil Zn 686 Acknowledgements 695 Refere...
Uloženo v:
| Vydáno v: | The New phytologist Ročník 173; číslo 4; s. 677 - 702 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Blackwell Publishing Ltd
01.03.2007
|
| Témata: | |
| ISSN: | 0028-646X, 1469-8137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Contents
Summary 677
I.
Physical and chemical properties of zinc 678
II.
Biochemical properties of zinc 678
III.
Proteins interacting with zinc 678
IV.
Zinc fluxes in the soil–root–shoot continuum 679
V.
Zinc in plants 684
VI.
Plant responses to elevated soil Zn 686
Acknowledgements 695
References 696
Summary
Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil–root–shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn2+ at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn‐limited crop growth. Substantial within‐species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta‐analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. |
|---|---|
| AbstractList | Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Contents Summary 677 I. Physical and chemical properties of zinc 678 II. Biochemical properties of zinc 678 III. Proteins interacting with zinc 678 IV. Zinc fluxes in the soil–root–shoot continuum 679 V. Zinc in plants 684 VI. Plant responses to elevated soil Zn 686 Acknowledgements 695 References 696 Summary Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil–root–shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn2+ at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn‐limited crop growth. Substantial within‐species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta‐analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil–root–shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn²⁺ at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn‐limited crop growth. Substantial within‐species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta‐analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Contents Summary 677 I. Physical and chemical properties of zinc 678 II. Biochemical properties of zinc 678 III. Proteins interacting with zinc 678 IV. Zinc fluxes in the soil–root–shoot continuum 679 V. Zinc in plants 684 VI. Plant responses to elevated soil Zn 686 Acknowledgements 695 References 696 Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil–root–shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn 2+ at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn‐limited crop growth. Substantial within‐species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta‐analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri . Contents Summary 677 I. Physical and chemical properties of zinc 678 II. Biochemical properties of zinc 678 III. Proteins interacting with zinc 678 IV. Zinc fluxes in the soil–root–shoot continuum 679 V. Zinc in plants 684 VI. Plant responses to elevated soil Zn 686 Acknowledgements 695 References 696 ContentsSummary677I.Physical and chemical properties of zinc678II.Biochemical properties of zinc678III.Proteins interacting with zinc678IV.Zinc fluxes in the soil-root-shoot continuum679V.Zinc in plants684VI.Plant responses to elevated soil Zn686Acknowledgements695References696Summar yZinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn2+ at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.New Phytologist (2007) 173: 677-702[copy The Authors (2007). Journal compilation [copy New Phytologist (2007)doi: 10.1111/j.1469-8137.2007.01996.x |
| Author | Zelko, Ivan Broadley, Martin R. Hammond, John P. Lux, Alexander White, Philip J. |
| Author_xml | – sequence: 1 givenname: Martin R. surname: Broadley fullname: Broadley, Martin R. – sequence: 2 givenname: Philip J. surname: White fullname: White, Philip J. – sequence: 3 givenname: John P. surname: Hammond fullname: Hammond, John P. – sequence: 4 givenname: Ivan surname: Zelko fullname: Zelko, Ivan – sequence: 5 givenname: Alexander surname: Lux fullname: Lux, Alexander |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17286818$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkF1LwzAUhoNM3If6E2RX3rXmu8mFggx1wlAvFMSbENNTyOja2XS4_XtbOxW82XJxEjjPeU94hqhXlAUgNCY4Js25mMeESx0pwpKYYpzEmGgt4_UBGvw2emiAMVWR5PK1j4YhzDHGWkh6hPokoUoqogbo9M0XbuyL8TK3RR2O0WFm8wAn23uEXm5vnifTaPZ4dz-5nkWOUyGbmpJE29SCoAxSnWIHSkGWCQJOMEElWMnBZcIlKqOapYxjCYprmqUKWzZC513usio_VhBqs_DBQd58AspVMFJpTQUlO0GeUMEo1jtBirlkUrIGPNuCq_cFpGZZ-YWtNubHSQOoDnBVGUIF2R-CTavfzE1r2bSWTavffOs362b06t-o87WtfVnUlfX5PgGXXcCnz2Gz92Lz8DRtX-wLBH2btw |
| CitedBy_id | crossref_primary_10_1111_ppa_12171 crossref_primary_10_1002_fes3_197 crossref_primary_10_1080_07391102_2022_2118169 crossref_primary_10_1111_mec_14823 crossref_primary_10_3390_plants11111399 crossref_primary_10_1002_fsn3_1379 crossref_primary_10_1016_j_jplph_2013_11_016 crossref_primary_10_1093_jxb_eraa555 crossref_primary_10_1038_s41598_018_26859_7 crossref_primary_10_1007_s11738_015_2000_y crossref_primary_10_1080_00103624_2019_1659295 crossref_primary_10_3390_ijms19030787 crossref_primary_10_1007_s42729_022_00978_7 crossref_primary_10_1016_S2095_3119_15_61276_X crossref_primary_10_3390_plants8120540 crossref_primary_10_3390_plants7020047 crossref_primary_10_1007_s11356_014_3876_6 crossref_primary_10_1080_01904167_2012_706683 crossref_primary_10_1111_ppl_12867 crossref_primary_10_1016_j_soilbio_2013_11_001 crossref_primary_10_1093_aob_mcu246 crossref_primary_10_1016_j_jplph_2007_05_011 crossref_primary_10_1016_j_sajb_2020_12_016 crossref_primary_10_3389_fpls_2020_00044 crossref_primary_10_1016_j_talanta_2023_125380 crossref_primary_10_1007_s11829_013_9263_2 crossref_primary_10_1007_s11104_009_0060_8 crossref_primary_10_1155_2012_104826 crossref_primary_10_3390_nano11071722 crossref_primary_10_3390_agronomy14081810 crossref_primary_10_1007_s11738_021_03325_y crossref_primary_10_3390_ijerph20032749 crossref_primary_10_1007_s11240_021_02123_1 crossref_primary_10_1086_667798 crossref_primary_10_1016_j_ecoenv_2014_01_021 crossref_primary_10_3389_fpls_2014_00371 crossref_primary_10_1016_j_plaphy_2013_04_018 crossref_primary_10_3389_fpls_2024_1469691 crossref_primary_10_1007_s10812_021_01221_4 crossref_primary_10_3389_fsufs_2020_00135 crossref_primary_10_1016_j_molstruc_2019_05_014 crossref_primary_10_1016_j_foodchem_2017_01_017 crossref_primary_10_1016_S1001_0742_09_60339_9 crossref_primary_10_1007_s11104_017_3198_9 crossref_primary_10_1080_02571862_2021_1913249 crossref_primary_10_1093_aob_mcaa069 crossref_primary_10_3390_plants14131975 crossref_primary_10_1007_s11356_020_10183_7 crossref_primary_10_1080_01904167_2022_2067763 crossref_primary_10_3390_genes12020302 crossref_primary_10_1016_j_jhazmat_2025_138523 crossref_primary_10_1080_01904167_2013_766804 crossref_primary_10_1007_s11270_017_3681_1 crossref_primary_10_3390_ijerph19063583 crossref_primary_10_1016_j_chemosphere_2019_125579 crossref_primary_10_1016_j_chemosphere_2013_01_041 crossref_primary_10_3389_fpls_2018_00990 crossref_primary_10_1016_j_rsci_2019_02_002 crossref_primary_10_1007_s00468_014_1046_6 crossref_primary_10_1007_s11120_014_0028_2 crossref_primary_10_3390_ijms21186959 crossref_primary_10_1007_s10653_017_9924_7 crossref_primary_10_1039_C4MT00080C crossref_primary_10_1111_tpj_12022 crossref_primary_10_4028_www_scientific_net_AMM_699_957 crossref_primary_10_1080_09593330_2022_2050818 crossref_primary_10_1088_1742_6596_1942_1_012077 crossref_primary_10_1016_j_febslet_2010_08_041 crossref_primary_10_1016_j_bbrc_2010_01_129 crossref_primary_10_15446_agron_colomb_v36n1_66539 crossref_primary_10_3389_fpls_2023_1283588 crossref_primary_10_1007_s00709_018_1222_4 crossref_primary_10_1111_nph_13071 crossref_primary_10_1111_pce_14545 crossref_primary_10_3390_agriculture8030032 crossref_primary_10_1515_chem_2018_0114 crossref_primary_10_1080_01904161003728669 crossref_primary_10_3390_quat6030039 crossref_primary_10_1111_ppl_12894 crossref_primary_10_1186_1939_8433_5_9 crossref_primary_10_1016_j_talanta_2014_01_023 crossref_primary_10_1007_s11738_020_03067_3 crossref_primary_10_1016_j_arabjc_2021_103668 crossref_primary_10_1007_s00122_022_04110_2 crossref_primary_10_1128_AEM_01715_17 crossref_primary_10_1371_journal_pone_0108546 crossref_primary_10_1093_abbs_gmq092 crossref_primary_10_1080_01904167_2021_1936035 crossref_primary_10_1016_j_jseaes_2020_104227 crossref_primary_10_1016_S1002_0160_12_60066_6 crossref_primary_10_1016_j_chemosphere_2019_125350 crossref_primary_10_1016_j_eja_2025_127671 crossref_primary_10_15835_nbha50112579 crossref_primary_10_1016_j_chnaes_2015_01_002 crossref_primary_10_1039_C4MT00062E crossref_primary_10_1111_1440_1703_12513 crossref_primary_10_1111_j_1469_8137_2010_03241_x crossref_primary_10_1007_s11738_020_03119_8 crossref_primary_10_1007_s10653_021_01054_2 crossref_primary_10_1007_s42729_019_00040_z crossref_primary_10_1080_00103624_2018_1499766 crossref_primary_10_3390_ijms25179542 crossref_primary_10_1016_j_scienta_2018_09_036 crossref_primary_10_3390_plants14091382 crossref_primary_10_1111_j_1469_8137_2007_02078_x crossref_primary_10_1021_jacs_5b11720 crossref_primary_10_1007_s10725_025_01314_6 crossref_primary_10_3390_agronomy12020370 crossref_primary_10_17221_264_2012_PSE crossref_primary_10_1016_j_aquatox_2023_106438 crossref_primary_10_1016_j_plaphy_2016_03_035 crossref_primary_10_1016_j_apgeochem_2019_03_017 crossref_primary_10_1016_j_jprot_2014_03_006 crossref_primary_10_1007_s11104_012_1287_3 crossref_primary_10_1093_pcp_pcy100 crossref_primary_10_1007_s11032_014_0147_7 crossref_primary_10_1556_CRC_2013_0034 crossref_primary_10_1016_j_plantsci_2019_110270 crossref_primary_10_1017_S0021859615000441 crossref_primary_10_3389_fpls_2020_553087 crossref_primary_10_1007_s11356_022_20950_3 crossref_primary_10_1093_jxb_erab468 crossref_primary_10_1016_j_scitotenv_2023_169543 crossref_primary_10_1016_j_plantsci_2010_12_003 crossref_primary_10_4236_ojss_2025_159028 crossref_primary_10_1007_s42729_025_02329_8 crossref_primary_10_6000_1929_5634_2012_01_01_5 crossref_primary_10_1007_s11033_022_07326_z crossref_primary_10_3390_agronomy10060911 crossref_primary_10_1007_s10646_013_1069_6 crossref_primary_10_1111_pce_12553 crossref_primary_10_1002_xrs_3250 crossref_primary_10_1016_j_jece_2025_118376 crossref_primary_10_1007_s11104_024_06773_w crossref_primary_10_1016_j_plaphy_2009_08_006 crossref_primary_10_3390_plants9111471 crossref_primary_10_1016_j_apgeochem_2022_105263 crossref_primary_10_1007_s00344_023_11111_y crossref_primary_10_1080_01904167_2017_1385810 crossref_primary_10_1007_s11104_016_3105_9 crossref_primary_10_1080_00380768_2013_763382 crossref_primary_10_1016_j_ecolind_2023_111296 crossref_primary_10_1093_g3journal_jkab227 crossref_primary_10_1016_j_cmrp_2017_02_006 crossref_primary_10_3390_plants11192587 crossref_primary_10_2478_ohs_2019_0024 crossref_primary_10_1371_journal_pgen_1003120 crossref_primary_10_1134_S1021443719050091 crossref_primary_10_1016_j_ecoenv_2019_01_021 crossref_primary_10_1016_j_scitotenv_2022_156163 crossref_primary_10_1080_03650340_2015_1036043 crossref_primary_10_1134_S1607672919040057 crossref_primary_10_3390_plants12040961 crossref_primary_10_3389_fpls_2021_778275 crossref_primary_10_1038_s41598_022_11307_4 crossref_primary_10_1515_biolog_2016_0063 crossref_primary_10_1556_CRC_2013_0042 crossref_primary_10_1002_jsfa_7983 crossref_primary_10_3390_molecules27123712 crossref_primary_10_3390_plants14091331 crossref_primary_10_1002_slct_201701024 crossref_primary_10_1080_01904167_2023_2233566 crossref_primary_10_3390_w12061737 crossref_primary_10_1002_jsfa_6658 crossref_primary_10_1002_pmic_200900484 crossref_primary_10_1016_j_ecoenv_2016_03_041 crossref_primary_10_1007_s11270_017_3345_1 crossref_primary_10_3390_app11114797 crossref_primary_10_1111_pce_13621 crossref_primary_10_1111_ppl_12229 crossref_primary_10_1007_s42729_024_01772_3 crossref_primary_10_3389_fpls_2018_00326 crossref_primary_10_1016_j_cej_2025_161352 crossref_primary_10_1080_17429145_2015_1052026 crossref_primary_10_3390_en17163967 crossref_primary_10_1038_s41598_017_03903_6 crossref_primary_10_1111_j_1469_8137_2009_03062_x crossref_primary_10_1371_journal_pone_0191035 crossref_primary_10_1007_s11104_012_1504_0 crossref_primary_10_1007_s11104_013_1967_7 crossref_primary_10_1007_s11104_024_06529_6 crossref_primary_10_1007_s11356_018_2383_6 crossref_primary_10_1007_s11356_021_18419_w crossref_primary_10_1016_j_jhazmat_2024_135106 crossref_primary_10_1016_j_plana_2023_100026 crossref_primary_10_1080_03670244_2012_674448 crossref_primary_10_1007_s10722_023_01682_w crossref_primary_10_3390_plants12071426 crossref_primary_10_3390_molecules27061958 crossref_primary_10_3390_plants12203623 crossref_primary_10_1080_01904167_2020_1822393 crossref_primary_10_1080_15592324_2020_1836884 crossref_primary_10_1016_j_ecoenv_2019_02_084 crossref_primary_10_1186_s12870_025_06859_2 crossref_primary_10_1038_s41598_022_14630_y crossref_primary_10_1016_j_scitotenv_2021_146260 crossref_primary_10_1007_s10725_024_01201_6 crossref_primary_10_1007_s10646_014_1188_8 crossref_primary_10_1007_s42729_021_00681_z crossref_primary_10_1016_j_chemosphere_2009_05_001 crossref_primary_10_1155_2014_910497 crossref_primary_10_1016_j_plantsci_2018_03_006 crossref_primary_10_1016_j_indcrop_2014_06_045 crossref_primary_10_3390_agriculture10100481 crossref_primary_10_7717_peerj_17473 crossref_primary_10_1016_j_eja_2025_127801 crossref_primary_10_1007_s12230_011_9188_1 crossref_primary_10_1007_s11104_010_0490_3 crossref_primary_10_1007_s00709_014_0683_3 crossref_primary_10_1016_j_envexpbot_2021_104559 crossref_primary_10_1039_C4MT00173G crossref_primary_10_3389_fpls_2019_01645 crossref_primary_10_3390_agronomy6010014 crossref_primary_10_3389_fmicb_2022_855473 crossref_primary_10_1007_s11104_013_1693_1 crossref_primary_10_1016_j_plaphy_2016_04_044 crossref_primary_10_1371_journal_pone_0017814 crossref_primary_10_1016_j_atech_2024_100724 crossref_primary_10_1094_CCHEM_09_13_0001_N_testissue crossref_primary_10_2478_s11756_012_0054_5 crossref_primary_10_1007_s00128_021_03113_x crossref_primary_10_1007_s13593_011_0019_z crossref_primary_10_1111_tpj_14610 crossref_primary_10_3389_fpls_2016_01577 crossref_primary_10_1111_j_1469_8137_2009_03177_x crossref_primary_10_1007_s42729_020_00215_z crossref_primary_10_3389_fnut_2022_1037161 crossref_primary_10_1007_s12247_023_09770_1 crossref_primary_10_1093_jxb_erx478 crossref_primary_10_3389_fmicb_2023_1255921 crossref_primary_10_1007_s11105_010_0264_3 crossref_primary_10_1002_cbdv_202500817 crossref_primary_10_1007_s00709_022_01775_w crossref_primary_10_1111_geb_12427 crossref_primary_10_1007_s11356_015_5914_4 crossref_primary_10_1016_j_envexpbot_2013_10_018 crossref_primary_10_3389_fmicb_2020_01677 crossref_primary_10_1016_j_ecoenv_2018_05_019 crossref_primary_10_1016_j_scienta_2016_07_032 crossref_primary_10_3389_fpls_2022_962246 crossref_primary_10_1038_s41437_022_00500_w crossref_primary_10_1007_s11270_014_2027_5 crossref_primary_10_1007_s11816_024_00914_4 crossref_primary_10_1002_pld3_458 crossref_primary_10_1007_s11104_021_05078_6 crossref_primary_10_1007_s11869_024_01669_1 crossref_primary_10_1016_j_molstruc_2012_11_062 crossref_primary_10_1111_nph_13500 crossref_primary_10_3389_fpls_2021_628795 crossref_primary_10_3390_foods13213420 crossref_primary_10_1002_poc_4180 crossref_primary_10_3390_agronomy15010211 crossref_primary_10_1080_15226514_2019_1708862 crossref_primary_10_1111_nph_13989 crossref_primary_10_1039_D4EN00578C crossref_primary_10_1007_s13205_018_1386_9 crossref_primary_10_1105_tpc_109_070185 crossref_primary_10_1016_j_jphotobiol_2012_03_002 crossref_primary_10_3390_plants12183207 crossref_primary_10_1016_j_envres_2023_116423 crossref_primary_10_1016_j_gfs_2017_03_003 crossref_primary_10_1016_j_ecss_2024_109036 crossref_primary_10_1111_pce_13821 crossref_primary_10_1007_s10725_015_0042_1 crossref_primary_10_1155_2021_6829806 crossref_primary_10_1007_s10452_023_10079_x crossref_primary_10_3389_fpls_2015_01242 crossref_primary_10_1016_j_envexpbot_2017_09_006 crossref_primary_10_3390_agronomy11102074 crossref_primary_10_1016_j_scitotenv_2014_06_078 crossref_primary_10_4491_eer_2018_274 crossref_primary_10_1080_11263504_2011_567787 crossref_primary_10_1104_pp_110_162982 crossref_primary_10_1002_aoc_5556 crossref_primary_10_1007_s00709_022_01818_2 crossref_primary_10_1016_j_scitotenv_2023_167519 crossref_primary_10_1016_j_apgeochem_2022_105427 crossref_primary_10_1016_j_jtemb_2018_02_012 crossref_primary_10_56238_arev7n9_232 crossref_primary_10_1111_j_1365_3040_2007_01746_x crossref_primary_10_3390_plants10020197 crossref_primary_10_1080_00103624_2022_2110892 crossref_primary_10_1007_s11356_016_6177_4 crossref_primary_10_1016_j_scienta_2024_112938 crossref_primary_10_1080_01904167_2016_1240192 crossref_primary_10_1007_s00425_017_2700_1 crossref_primary_10_1016_j_ecolind_2014_07_011 crossref_primary_10_3390_plants10020194 crossref_primary_10_1016_j_jplph_2015_05_014 crossref_primary_10_1038_nchembio_166 crossref_primary_10_5004_dwt_2023_29220 crossref_primary_10_1002_em_22421 crossref_primary_10_1007_s00425_021_03642_z crossref_primary_10_1016_j_fcr_2017_11_016 crossref_primary_10_1093_jxb_ery311 crossref_primary_10_1038_s41598_017_10041_6 crossref_primary_10_1093_jxb_erx465 crossref_primary_10_1007_s00299_024_03297_6 crossref_primary_10_3390_biom11081085 crossref_primary_10_1016_j_marpolbul_2018_07_030 crossref_primary_10_3390_f7080159 crossref_primary_10_1016_j_plantsci_2013_05_015 crossref_primary_10_1016_j_gca_2023_03_029 crossref_primary_10_1007_s11104_015_2396_6 crossref_primary_10_1111_plb_13227 crossref_primary_10_1016_j_jplph_2017_08_014 crossref_primary_10_1016_j_plaphy_2023_107919 crossref_primary_10_1080_1343943X_2017_1383167 crossref_primary_10_1002_clen_201200310 crossref_primary_10_1007_s13399_019_00586_z crossref_primary_10_3389_fpls_2016_01378 crossref_primary_10_1016_j_plaphy_2023_107910 crossref_primary_10_3390_cells10113105 crossref_primary_10_1080_01904167_2023_2237526 crossref_primary_10_1007_s00425_017_2655_2 crossref_primary_10_1016_j_jfca_2024_106536 crossref_primary_10_1039_c3mt00215b crossref_primary_10_1007_s10343_016_0378_0 crossref_primary_10_1371_journal_pone_0226180 crossref_primary_10_3390_plants9050562 crossref_primary_10_1371_journal_pone_0254647 crossref_primary_10_1007_s10924_020_01811_x crossref_primary_10_1016_j_envpol_2020_115665 crossref_primary_10_1007_s11104_024_06984_1 crossref_primary_10_1002_jpln_200700222 crossref_primary_10_3390_ijms13067828 crossref_primary_10_1007_s11104_012_1315_3 crossref_primary_10_1186_s12870_022_03875_4 crossref_primary_10_3390_plants11233227 crossref_primary_10_1016_j_plantsci_2015_03_009 crossref_primary_10_3389_fpls_2021_730679 crossref_primary_10_3390_f14040842 crossref_primary_10_1016_j_jplph_2016_05_025 crossref_primary_10_1111_j_1469_8137_2010_03488_x crossref_primary_10_1111_nph_13413 crossref_primary_10_3390_plants10102223 crossref_primary_10_1016_j_resconrec_2016_05_013 crossref_primary_10_1007_s12571_011_0126_3 crossref_primary_10_1007_s13762_013_0474_y crossref_primary_10_1016_S1003_6326_13_62746_6 crossref_primary_10_3390_agronomy10040558 crossref_primary_10_1134_S1021443724605792 crossref_primary_10_1007_s11738_009_0354_8 crossref_primary_10_1080_01904167_2020_1730900 crossref_primary_10_1007_s00425_019_03162_x crossref_primary_10_3390_horticulturae10060575 crossref_primary_10_3390_nu14163352 crossref_primary_10_1007_s11104_012_1272_x crossref_primary_10_1016_j_chemosphere_2009_04_038 crossref_primary_10_1080_03235408_2012_677312 crossref_primary_10_1093_nutrit_nuad076 crossref_primary_10_1016_j_plaphy_2019_12_001 crossref_primary_10_1016_j_envres_2024_118884 crossref_primary_10_3389_fpls_2023_1140454 crossref_primary_10_1186_s12870_023_04091_4 crossref_primary_10_1111_j_1365_3040_2011_02305_x crossref_primary_10_1007_s10534_022_00475_5 crossref_primary_10_1007_s11356_021_13361_3 crossref_primary_10_1002_cmdc_202000562 crossref_primary_10_1111_nph_12786 crossref_primary_10_1016_j_scienta_2022_111218 crossref_primary_10_1016_j_jafr_2025_101978 crossref_primary_10_3390_ijms23052866 crossref_primary_10_3390_agronomy12092186 crossref_primary_10_1007_s00344_022_10781_4 crossref_primary_10_1007_s11103_007_9215_2 crossref_primary_10_1007_s12230_015_9456_6 crossref_primary_10_1051_e3sconf_202343403003 crossref_primary_10_1007_s11104_023_06288_w crossref_primary_10_1080_15592324_2023_2186640 crossref_primary_10_1007_s11738_012_1168_7 crossref_primary_10_1016_j_jece_2018_11_022 crossref_primary_10_1007_s11356_014_2919_3 crossref_primary_10_1016_j_dyepig_2024_112547 crossref_primary_10_1093_treephys_tpad045 crossref_primary_10_1186_s12951_024_02667_2 crossref_primary_10_1007_BF03326267 crossref_primary_10_1016_j_clay_2019_01_016 crossref_primary_10_1016_j_jplph_2010_10_012 crossref_primary_10_1134_S1067413613020033 crossref_primary_10_1016_j_envexpbot_2010_10_018 crossref_primary_10_1016_j_envpol_2019_113705 crossref_primary_10_1111_tpj_16281 crossref_primary_10_1002_jsfa_11564 crossref_primary_10_1016_j_jhazmat_2018_01_040 crossref_primary_10_1007_s11104_016_3166_9 crossref_primary_10_3390_horticulturae10101031 crossref_primary_10_1016_j_rsci_2025_04_007 crossref_primary_10_1111_1462_2920_15542 crossref_primary_10_1016_j_bbabio_2023_149018 crossref_primary_10_1080_15226514_2024_2317878 crossref_primary_10_1088_1755_1315_1158_4_042008 crossref_primary_10_3389_fpls_2021_739282 crossref_primary_10_1088_1755_1315_1158_4_042009 crossref_primary_10_1007_s10142_016_0525_9 crossref_primary_10_3390_plants14111599 crossref_primary_10_1080_15226514_2020_1803205 crossref_primary_10_1007_s11738_021_03307_0 crossref_primary_10_1016_j_chemosphere_2020_126692 crossref_primary_10_1007_s11738_012_0956_4 crossref_primary_10_1016_j_envexpbot_2018_09_020 crossref_primary_10_1007_s11105_025_01580_8 crossref_primary_10_1016_j_fcr_2012_07_010 crossref_primary_10_17221_54_2018_CJGPB crossref_primary_10_1007_s42976_023_00453_8 crossref_primary_10_1111_ppl_13004 crossref_primary_10_1371_journal_pone_0139503 crossref_primary_10_1007_s10661_022_09789_w crossref_primary_10_3390_agriculture12091424 crossref_primary_10_1111_j_1399_3054_2010_01399_x crossref_primary_10_1002_pei3_70086 crossref_primary_10_1080_03067319_2021_2023515 crossref_primary_10_1016_j_fuel_2011_01_020 crossref_primary_10_1007_s11032_018_0798_x crossref_primary_10_1073_pnas_2409541122 crossref_primary_10_1007_s42729_022_00766_3 crossref_primary_10_1007_s12665_016_6070_y crossref_primary_10_1002_pld3_277 crossref_primary_10_1016_j_scitotenv_2018_07_312 crossref_primary_10_1080_09064710_2024_2412767 crossref_primary_10_3389_fpls_2024_1293831 crossref_primary_10_1016_j_ecoenv_2013_10_014 crossref_primary_10_1007_s00709_015_0816_3 crossref_primary_10_3390_agriculture12070968 crossref_primary_10_1080_00380768_2017_1360750 crossref_primary_10_1021_acs_jafc_5c03002 crossref_primary_10_1007_s11356_014_3849_9 crossref_primary_10_1016_j_chemosphere_2019_125706 crossref_primary_10_1007_s10343_022_00776_2 crossref_primary_10_1016_j_geoderma_2018_02_013 crossref_primary_10_1080_01904167_2021_1918159 crossref_primary_10_1093_aob_mcs217 crossref_primary_10_1088_1742_6596_1531_1_012111 crossref_primary_10_1016_j_fcr_2022_108467 crossref_primary_10_1016_j_envexpbot_2010_09_009 crossref_primary_10_1007_s42106_024_00317_z crossref_primary_10_1007_s10853_017_1716_z crossref_primary_10_3390_life12050768 crossref_primary_10_1007_s00244_023_00979_2 crossref_primary_10_1016_j_envpol_2013_04_013 crossref_primary_10_1093_jxb_erx191 crossref_primary_10_1007_s11240_022_02235_2 crossref_primary_10_1016_j_scitotenv_2024_175949 crossref_primary_10_1371_journal_pone_0295391 crossref_primary_10_1002_jsfa_9277 crossref_primary_10_1007_s13205_019_1799_0 crossref_primary_10_1080_15226514_2015_1131235 crossref_primary_10_1007_s42729_022_01001_9 crossref_primary_10_3390_ijms20194676 crossref_primary_10_1007_s00425_022_04019_6 crossref_primary_10_1007_s11104_012_1346_9 crossref_primary_10_1016_j_sajb_2017_06_009 crossref_primary_10_3390_molecules28145396 crossref_primary_10_1039_C7MT00076F crossref_primary_10_1016_j_rsci_2023_01_005 crossref_primary_10_1007_s42729_025_02360_9 crossref_primary_10_1016_j_envexpbot_2013_08_003 crossref_primary_10_1016_j_jprot_2013_09_002 crossref_primary_10_1016_j_crte_2015_05_005 crossref_primary_10_1371_journal_pone_0263753 crossref_primary_10_1111_1440_1703_12439 crossref_primary_10_1080_01904167_2016_1237647 crossref_primary_10_1111_pce_14151 crossref_primary_10_1016_j_crte_2015_05_004 crossref_primary_10_1016_j_ecoenv_2015_12_006 crossref_primary_10_1111_nph_15447 crossref_primary_10_1371_journal_pone_0136647 crossref_primary_10_1111_j_1469_8137_2008_02748_x crossref_primary_10_1111_j_1469_8137_2009_02996_x crossref_primary_10_1371_journal_pone_0185395 crossref_primary_10_1080_01904160903506282 crossref_primary_10_1007_s11240_019_01636_0 crossref_primary_10_1016_j_jhazmat_2021_125375 crossref_primary_10_1016_j_envexpbot_2020_104074 crossref_primary_10_1080_01904167_2019_1609510 crossref_primary_10_1093_jxb_erab478 crossref_primary_10_1371_journal_pone_0113782 crossref_primary_10_56093_ijas_v94i10_151991 crossref_primary_10_1038_s41598_023_46504_2 crossref_primary_10_1007_s00300_024_03266_5 crossref_primary_10_15212_ijafr_2020_0124 crossref_primary_10_1007_s11104_024_06882_6 crossref_primary_10_1007_s11104_022_05805_7 crossref_primary_10_1007_s11104_012_1128_4 crossref_primary_10_1007_s13201_019_1073_y crossref_primary_10_1007_s11738_009_0423_z crossref_primary_10_1016_j_scienta_2015_08_022 crossref_primary_10_1007_s11104_021_05027_3 crossref_primary_10_1016_j_indcrop_2014_02_033 crossref_primary_10_17221_137_2021_PSE crossref_primary_10_1016_j_chemosphere_2009_02_033 crossref_primary_10_3390_agronomy11030580 crossref_primary_10_1134_S1062359021010039 crossref_primary_10_5194_acp_17_2673_2017 crossref_primary_10_1093_pcp_pcw148 crossref_primary_10_1039_D5SU00021A crossref_primary_10_1016_j_sajb_2023_09_059 crossref_primary_10_1016_j_chemosphere_2021_131438 crossref_primary_10_1007_s11104_016_2983_1 crossref_primary_10_1093_jxb_erp257 crossref_primary_10_1039_C8MT00247A crossref_primary_10_1016_j_jhazmat_2009_04_004 crossref_primary_10_1007_s11738_016_2095_9 crossref_primary_10_12677_BR_2014_31002 crossref_primary_10_1016_j_plantsci_2022_111259 crossref_primary_10_3389_fpls_2020_00784 crossref_primary_10_1155_ijel_8851048 crossref_primary_10_1016_j_envexpbot_2011_05_016 crossref_primary_10_1016_j_gexplo_2012_01_010 crossref_primary_10_3390_horticulturae9050535 crossref_primary_10_1002_adma_202109865 crossref_primary_10_1007_s11696_024_03584_2 crossref_primary_10_1016_j_bcab_2025_103644 crossref_primary_10_1093_pcp_pcab022 crossref_primary_10_1007_s11306_012_0429_1 crossref_primary_10_1016_j_jprot_2012_12_006 crossref_primary_10_1155_aess_5575783 crossref_primary_10_1093_jxb_erp023 crossref_primary_10_1080_03650340_2017_1338343 crossref_primary_10_1016_j_snb_2018_01_185 crossref_primary_10_1039_C9RA06866J crossref_primary_10_2478_s11756_012_0039_4 crossref_primary_10_1016_j_envexpbot_2016_02_003 crossref_primary_10_1093_jxb_erab491 crossref_primary_10_3390_environments4020040 crossref_primary_10_1016_j_fuproc_2011_06_023 crossref_primary_10_21273_JASHS03938_16 crossref_primary_10_1007_s11356_021_16287_y crossref_primary_10_3390_foods10020223 crossref_primary_10_1038_s41598_020_58647_7 crossref_primary_10_1111_nph_13237 crossref_primary_10_1007_s00374_013_0886_3 crossref_primary_10_1016_j_jenvman_2019_109430 crossref_primary_10_1016_j_foodcont_2024_110454 crossref_primary_10_1007_s11104_016_2961_7 crossref_primary_10_1080_15226514_2015_1094445 crossref_primary_10_1016_j_envpol_2013_02_033 crossref_primary_10_3390_antiox14050607 crossref_primary_10_3390_plants13111534 crossref_primary_10_1007_s00709_018_01335_1 crossref_primary_10_1080_10934529_2012_645784 crossref_primary_10_13080_z_a_2021_108_016 crossref_primary_10_1007_s11356_014_3938_9 crossref_primary_10_1093_aob_mcq085 crossref_primary_10_1093_aob_mcs263 crossref_primary_10_3390_plants13111541 crossref_primary_10_1016_j_phytol_2019_10_009 crossref_primary_10_1111_j_1469_8137_2012_04228_x crossref_primary_10_1111_mpp_12891 crossref_primary_10_3389_fpls_2016_01944 crossref_primary_10_1080_01904167_2022_2155530 crossref_primary_10_3390_agronomy11061057 crossref_primary_10_1007_s42832_025_0362_7 crossref_primary_10_1007_s11240_017_1241_4 crossref_primary_10_1111_pce_13035 crossref_primary_10_1016_j_jhazmat_2025_138558 crossref_primary_10_1093_aob_mct123 crossref_primary_10_3390_environments8050045 crossref_primary_10_14720_aas_2019_113_1_13 crossref_primary_10_1038_s41598_025_14136_3 crossref_primary_10_1080_03650340_2023_2231350 crossref_primary_10_3389_fpls_2020_00739 crossref_primary_10_1007_s10535_009_0074_3 crossref_primary_10_1080_01904167_2022_2046067 crossref_primary_10_1016_j_snb_2015_05_122 crossref_primary_10_29050_harranziraat_1700013 crossref_primary_10_3389_fpls_2016_00842 crossref_primary_10_3390_environments11090205 crossref_primary_10_1016_j_gexplo_2023_107349 crossref_primary_10_32604_phyton_2023_025813 crossref_primary_10_1080_15226514_2014_898018 crossref_primary_10_1007_s10653_019_00279_6 crossref_primary_10_1016_j_envpol_2018_02_053 crossref_primary_10_1094_PDIS_01_15_0131_RE crossref_primary_10_1080_01904167_2016_1193603 crossref_primary_10_1007_s11104_020_04793_w crossref_primary_10_1039_C0JA00058B crossref_primary_10_1002_clen_201500964 crossref_primary_10_1007_s11104_016_3146_0 crossref_primary_10_3390_plants10051005 crossref_primary_10_1002_jpln_201100332 crossref_primary_10_1016_j_chemosphere_2021_131485 crossref_primary_10_1038_s41598_019_55736_0 crossref_primary_10_1104_pp_107_102236 crossref_primary_10_1186_s11671_025_04270_2 crossref_primary_10_1007_s11104_013_1861_3 crossref_primary_10_1016_j_jhazmat_2010_09_093 crossref_primary_10_1080_01904167_2022_2046077 crossref_primary_10_18510_gctl_2017_321 crossref_primary_10_1093_jxb_erab052 crossref_primary_10_3390_microorganisms10010051 crossref_primary_10_1016_j_ijbiomac_2025_141948 crossref_primary_10_3390_ijms12106894 crossref_primary_10_1016_j_plaphy_2020_12_014 crossref_primary_10_3390_plants11030306 crossref_primary_10_1016_j_jclepro_2020_124948 crossref_primary_10_1080_00103624_2022_2043346 crossref_primary_10_1080_15226514_2017_1365347 crossref_primary_10_1007_s11104_019_04288_3 crossref_primary_10_1016_j_eti_2021_101957 crossref_primary_10_3390_plants10061038 crossref_primary_10_1186_s12870_024_05823_w crossref_primary_10_1016_j_envexpbot_2016_08_005 crossref_primary_10_3390_agronomy13010073 crossref_primary_10_1007_s11738_010_0487_9 crossref_primary_10_3390_biom15010118 crossref_primary_10_1007_s11104_008_9559_7 crossref_primary_10_1080_00103624_2020_1763383 crossref_primary_10_3390_jof7080671 crossref_primary_10_1016_j_plana_2022_100012 crossref_primary_10_1016_j_plana_2022_100011 crossref_primary_10_1002_jpln_202200339 crossref_primary_10_3390_plants12040877 crossref_primary_10_1016_j_scitotenv_2017_02_153 crossref_primary_10_1016_j_plaphy_2020_11_007 crossref_primary_10_3390_ijms20081909 crossref_primary_10_1007_s11104_010_0527_7 crossref_primary_10_1016_j_chemosphere_2013_08_017 crossref_primary_10_1007_s10725_016_0202_y crossref_primary_10_3390_agronomy14030589 crossref_primary_10_1007_s10705_021_10133_w crossref_primary_10_1007_s00018_012_1089_z crossref_primary_10_1007_s11104_018_3628_3 crossref_primary_10_1186_s12870_019_1641_1 crossref_primary_10_1007_s11270_017_3507_1 crossref_primary_10_1007_s12665_015_4814_8 crossref_primary_10_1080_00103624_2024_2431633 crossref_primary_10_1038_s41467_020_19391_8 crossref_primary_10_1080_00103624_2021_2017449 crossref_primary_10_1016_j_proenv_2014_03_049 crossref_primary_10_1016_j_scitotenv_2022_159330 crossref_primary_10_1007_s11104_020_04450_2 crossref_primary_10_1371_journal_pone_0037193 crossref_primary_10_1007_s13762_014_0647_3 crossref_primary_10_1080_00103624_2025_2489119 crossref_primary_10_1016_j_plaphy_2020_03_019 crossref_primary_10_3389_fpls_2016_00541 crossref_primary_10_1002_jsfa_7231 crossref_primary_10_1016_j_scitotenv_2021_149481 crossref_primary_10_1016_j_envexpbot_2020_104347 crossref_primary_10_1007_s00468_017_1646_z crossref_primary_10_1111_pbi_13689 crossref_primary_10_1111_are_15077 crossref_primary_10_3390_su132313440 crossref_primary_10_1111_ppl_12518 crossref_primary_10_7717_peerj_15330 crossref_primary_10_2478_s11756_012_0040_y crossref_primary_10_1111_tpj_16749 crossref_primary_10_1007_s00442_024_05608_w crossref_primary_10_1002_tqem_21650 crossref_primary_10_1007_s11104_020_04802_y crossref_primary_10_1111_pce_12234 crossref_primary_10_1080_11263504_2024_2371459 crossref_primary_10_3389_fmicb_2022_995830 crossref_primary_10_1016_j_poly_2015_08_027 crossref_primary_10_1155_2017_6391454 crossref_primary_10_1111_ejss_12216 crossref_primary_10_1007_s10661_024_12868_9 crossref_primary_10_1016_j_envexpbot_2020_104133 crossref_primary_10_1016_j_jhazmat_2021_125631 crossref_primary_10_1016_j_plantsci_2011_07_007 crossref_primary_10_3390_molecules23112986 crossref_primary_10_3390_agriculture12111905 crossref_primary_10_1007_s00709_021_01635_z crossref_primary_10_1111_j_1469_8137_2012_04165_x crossref_primary_10_1016_j_jplph_2014_04_017 crossref_primary_10_1002_jpln_201300326 crossref_primary_10_1016_j_fcr_2015_09_007 crossref_primary_10_1016_j_scienta_2018_10_071 crossref_primary_10_3390_agronomy15071501 crossref_primary_10_1134_S1062359022010083 crossref_primary_10_3390_f14112116 crossref_primary_10_1186_s40795_015_0036_4 crossref_primary_10_1186_s13007_017_0188_0 crossref_primary_10_1007_s00344_023_11189_4 crossref_primary_10_1007_s11270_010_0442_9 crossref_primary_10_1007_s12011_015_0607_x crossref_primary_10_1016_j_gene_2018_11_076 crossref_primary_10_1007_s42729_021_00411_5 crossref_primary_10_1016_j_envexpbot_2013_09_006 crossref_primary_10_3390_ijerph16111976 crossref_primary_10_1007_s00709_015_0767_8 crossref_primary_10_1590_1519_6984_244593 crossref_primary_10_1080_15226514_2018_1438359 crossref_primary_10_1002_jpln_201800014 crossref_primary_10_1007_s00128_014_1374_7 crossref_primary_10_1080_01904167_2025_2527743 crossref_primary_10_1111_ppl_12700 crossref_primary_10_1016_j_plantsci_2022_111237 crossref_primary_10_56093_ijas_v90i11_108569 crossref_primary_10_46810_tdfd_1481031 crossref_primary_10_1016_j_jcs_2016_08_007 crossref_primary_10_1002_jpln_201100035 crossref_primary_10_3390_plants11182424 crossref_primary_10_1093_jxb_eru251 crossref_primary_10_3390_antiox11081500 crossref_primary_10_1080_01904167_2022_2144361 crossref_primary_10_3389_fpls_2014_00213 crossref_primary_10_1007_s00344_019_10059_2 crossref_primary_10_1007_s00344_018_9793_z crossref_primary_10_1007_s11356_021_13763_3 crossref_primary_10_1007_s11104_013_1904_9 crossref_primary_10_1016_j_bcab_2018_09_017 crossref_primary_10_1007_s11270_012_1292_4 crossref_primary_10_1159_000464337 crossref_primary_10_1039_c7pp00391a crossref_primary_10_1093_mmy_myw045 crossref_primary_10_1007_s00411_010_0320_2 crossref_primary_10_1016_j_geoderma_2022_115915 crossref_primary_10_1016_j_jembe_2013_05_017 crossref_primary_10_1139_cjm_2014_0599 crossref_primary_10_1016_j_ijpharm_2023_123167 crossref_primary_10_1016_j_scitotenv_2020_140572 crossref_primary_10_1016_j_ejsobi_2016_06_006 crossref_primary_10_1007_s13762_022_04437_9 crossref_primary_10_1080_10256016_2024_2324966 crossref_primary_10_1111_j_1744_7348_2007_00138_x crossref_primary_10_1007_s10646_012_0953_9 crossref_primary_10_1016_j_rsci_2022_07_004 crossref_primary_10_1615_PlasmaMed_v14_i3_10 crossref_primary_10_1590_1807_1929_agriambi_v21n7p465_470 crossref_primary_10_3390_stresses2040031 crossref_primary_10_3389_fpls_2019_01171 crossref_primary_10_1007_s11104_016_2920_3 crossref_primary_10_1080_01904167_2022_2087090 crossref_primary_10_1007_s11104_007_9530_z crossref_primary_10_1007_s00425_021_03634_z crossref_primary_10_1016_j_foodchem_2025_146271 crossref_primary_10_1186_s12870_019_2203_2 crossref_primary_10_1007_s42729_021_00640_8 crossref_primary_10_1007_s11756_022_01099_3 crossref_primary_10_1016_S1001_0742_10_60415_9 crossref_primary_10_1155_2015_756120 crossref_primary_10_1111_pce_12434 crossref_primary_10_1016_j_envpol_2019_07_077 crossref_primary_10_1016_j_plantsci_2025_112543 crossref_primary_10_1007_s11033_023_08521_2 crossref_primary_10_1016_j_ijbiomac_2018_12_274 crossref_primary_10_3390_ijms23115937 crossref_primary_10_3390_horticulturae11020123 crossref_primary_10_1093_jxb_eraa483 crossref_primary_10_1016_j_aquabot_2012_04_003 crossref_primary_10_1039_D1RA04591A crossref_primary_10_7717_peerj_19966 crossref_primary_10_1016_j_gene_2022_146283 crossref_primary_10_1016_j_envpol_2011_12_031 crossref_primary_10_1111_tpj_15623 crossref_primary_10_1007_s12011_021_02911_y crossref_primary_10_1186_s12870_022_03739_x crossref_primary_10_1038_s41598_023_41575_7 crossref_primary_10_1007_s11356_022_24776_x crossref_primary_10_1111_j_1365_3040_2010_02174_x crossref_primary_10_1007_s11104_020_04700_3 crossref_primary_10_1111_pce_14862 crossref_primary_10_1007_s11258_024_01477_8 crossref_primary_10_1017_S143192761800003X crossref_primary_10_21603_2074_9414_2024_1_2487 crossref_primary_10_1039_C4MT00071D crossref_primary_10_1080_01904167_2025_2479760 crossref_primary_10_1105_tpc_109_072694 crossref_primary_10_29328_journal_jpsp_1001008 crossref_primary_10_1016_j_arabjc_2013_07_005 crossref_primary_10_1007_s11738_015_1870_3 crossref_primary_10_1007_s40502_022_00677_6 crossref_primary_10_1002_jpln_201500146 crossref_primary_10_1016_j_jfca_2025_108277 crossref_primary_10_1016_j_tplants_2008_02_006 crossref_primary_10_1111_tpj_13655 crossref_primary_10_1007_s11104_022_05810_w crossref_primary_10_1007_s40003_024_00750_6 crossref_primary_10_1111_j_1469_8137_2008_02740_x crossref_primary_10_1111_plb_12665 crossref_primary_10_1016_j_plaphy_2023_107829 crossref_primary_10_1016_j_jspr_2025_102622 crossref_primary_10_1088_2058_8585_ad8fba crossref_primary_10_1007_s11104_017_3507_3 crossref_primary_10_1016_j_jphotobiol_2010_08_005 crossref_primary_10_1080_01904167_2019_1676904 crossref_primary_10_1007_s11738_015_1904_x crossref_primary_10_1016_j_scib_2025_02_010 crossref_primary_10_1002_agj2_20247 crossref_primary_10_1007_s00572_025_01221_8 crossref_primary_10_1016_j_envexpbot_2014_06_004 crossref_primary_10_1186_s12932_015_0018_0 crossref_primary_10_3389_fnut_2019_00081 crossref_primary_10_1016_j_cj_2017_09_001 crossref_primary_10_1007_s42729_023_01354_9 crossref_primary_10_1038_s41598_018_30632_1 crossref_primary_10_3390_plants13233363 crossref_primary_10_1111_j_1439_037X_2012_00533_x crossref_primary_10_1111_nph_17173 crossref_primary_10_18393_ejss_1057928 crossref_primary_10_1080_15226514_2018_1537241 crossref_primary_10_1111_ppl_13447 crossref_primary_10_1371_journal_pone_0117571 crossref_primary_10_3389_fnut_2023_1310020 crossref_primary_10_3389_fpls_2015_01160 crossref_primary_10_12944_CARJ_6_1_04 crossref_primary_10_1080_01904167_2021_1927079 crossref_primary_10_1039_c004880a crossref_primary_10_1039_c9pp00024k crossref_primary_10_1007_s11356_017_0062_7 crossref_primary_10_1186_s12863_015_0176_1 crossref_primary_10_1111_j_1469_8137_2008_02544_x crossref_primary_10_1007_s10142_017_0556_x crossref_primary_10_1016_j_exppara_2019_107826 crossref_primary_10_3390_pharmaceutics15030822 crossref_primary_10_1007_s00344_019_09976_z crossref_primary_10_1080_15226514_2023_2270692 crossref_primary_10_1007_s10535_017_0758_z crossref_primary_10_1007_s10311_020_01125_3 crossref_primary_10_1111_j_1747_0765_2009_00441_x crossref_primary_10_1016_j_jcs_2022_103470 crossref_primary_10_3390_horticulturae7100332 crossref_primary_10_1080_01904160903308101 crossref_primary_10_1007_s40502_017_0313_0 crossref_primary_10_1039_D3EN00708A crossref_primary_10_1093_pcp_pcp067 crossref_primary_10_3389_fpls_2022_976311 crossref_primary_10_1007_s40502_023_00732_w crossref_primary_10_1111_aab_12197 crossref_primary_10_3390_plants12040815 crossref_primary_10_1631_jzus_B1000291 crossref_primary_10_17660_eJHS_2015_80_4_6 crossref_primary_10_1002_ppp3_10101 crossref_primary_10_3390_agriculture14122285 crossref_primary_10_1016_j_ecoleng_2021_106505 crossref_primary_10_1371_journal_pone_0192026 crossref_primary_10_1590_1807_1929_agriambi_v19n11p1114_1120 crossref_primary_10_3389_fpls_2017_00588 crossref_primary_10_1007_s00244_021_00910_7 crossref_primary_10_1016_j_jplph_2011_08_008 crossref_primary_10_1007_s13762_025_06437_x crossref_primary_10_1080_01904167_2022_2058536 crossref_primary_10_1007_s11103_016_0429_z crossref_primary_10_3390_microorganisms11051276 crossref_primary_10_1007_s11356_017_9187_y crossref_primary_10_1016_j_apgeochem_2012_05_004 crossref_primary_10_1007_s11104_012_1240_5 crossref_primary_10_1134_S1062359009060053 crossref_primary_10_1016_j_chemosphere_2016_08_026 crossref_primary_10_1007_s10661_025_14456_x crossref_primary_10_1007_s10661_015_5042_0 crossref_primary_10_1016_j_eti_2017_08_002 crossref_primary_10_1016_j_plaphy_2020_01_038 crossref_primary_10_1134_S1021443720010045 crossref_primary_10_1007_s11270_017_3348_y crossref_primary_10_1007_s11738_016_2277_5 crossref_primary_10_1017_S0021859616000836 crossref_primary_10_1016_j_ecoenv_2017_11_006 crossref_primary_10_1002_ecy_3007 crossref_primary_10_1371_journal_pone_0124078 crossref_primary_10_1038_s41598_021_98902_z crossref_primary_10_1007_s00284_016_1118_5 crossref_primary_10_1007_s11356_016_6176_5 crossref_primary_10_1111_ejss_12437 crossref_primary_10_1093_treephys_tpr106 crossref_primary_10_1093_jxb_erv188 crossref_primary_10_3390_biology10121242 crossref_primary_10_1111_j_1469_8137_2008_02640_x crossref_primary_10_3390_plants12183322 crossref_primary_10_1016_j_ecoleng_2010_06_010 crossref_primary_10_3390_agriculture13020400 crossref_primary_10_1007_s11829_022_09904_1 crossref_primary_10_3389_fpls_2020_582577 crossref_primary_10_1016_j_jenvman_2017_05_090 crossref_primary_10_3390_agronomy15081767 crossref_primary_10_1007_s11356_021_14127_7 crossref_primary_10_1016_j_plantsci_2014_07_010 crossref_primary_10_1007_s41742_023_00528_8 crossref_primary_10_1007_s42729_021_00540_x crossref_primary_10_1016_j_fcr_2022_108525 crossref_primary_10_1007_s10534_011_9457_y crossref_primary_10_1016_j_gfs_2020_100477 crossref_primary_10_1080_15226514_2013_828017 crossref_primary_10_1007_s10681_013_0933_z crossref_primary_10_1007_s42535_022_00370_x crossref_primary_10_1007_s00344_021_10388_1 crossref_primary_10_1007_s40502_016_0225_4 crossref_primary_10_1016_j_molstruc_2019_127540 crossref_primary_10_21273_HORTTECH_23_4_490 crossref_primary_10_1007_s40858_025_00704_5 crossref_primary_10_1016_j_chemosphere_2020_127497 crossref_primary_10_1111_j_1469_8137_2008_02699_x crossref_primary_10_1155_2016_5464373 crossref_primary_10_1007_s11356_012_0757_8 crossref_primary_10_1016_j_scitotenv_2021_147438 crossref_primary_10_1007_s11104_016_2815_3 crossref_primary_10_1080_01904167_2024_2377822 crossref_primary_10_3390_plants11212868 crossref_primary_10_1007_s00344_012_9300_x crossref_primary_10_1016_j_envexpbot_2014_05_012 crossref_primary_10_1038_s41598_024_52736_7 crossref_primary_10_1016_j_plantsci_2017_02_004 crossref_primary_10_3389_fpls_2023_1127032 crossref_primary_10_1111_j_1469_8137_2010_03549_x crossref_primary_10_1111_j_1654_109X_2009_01005_x crossref_primary_10_1007_s11104_007_9412_4 crossref_primary_10_1016_j_rsci_2022_05_004 crossref_primary_10_1016_j_foodchem_2025_143393 crossref_primary_10_1016_j_jhazmat_2021_127182 crossref_primary_10_1016_j_niox_2019_06_003 crossref_primary_10_1016_S1573_5214_08_80036_X crossref_primary_10_1080_17429145_2022_2074157 crossref_primary_10_1007_s10653_025_02482_0 crossref_primary_10_1016_j_envpol_2020_113987 crossref_primary_10_1016_j_jhazmat_2022_129899 crossref_primary_10_1007_s00128_017_2241_0 crossref_primary_10_1016_j_chemosphere_2019_05_098 crossref_primary_10_1007_s40502_019_00473_9 crossref_primary_10_1111_nph_12987 crossref_primary_10_4236_ajps_2025_164036 crossref_primary_10_1016_j_jhazmat_2025_137920 crossref_primary_10_1038_s41598_020_70303_8 crossref_primary_10_1111_plb_13344 crossref_primary_10_1080_01904167_2020_1730895 crossref_primary_10_1080_01904167_2021_1871753 crossref_primary_10_1128_AEM_02521_09 crossref_primary_10_1007_s12298_012_0139_1 crossref_primary_10_1007_s11104_013_1975_7 crossref_primary_10_1093_jxb_erx039 crossref_primary_10_1080_15320383_2024_2379318 crossref_primary_10_1002_jpln_201900339 crossref_primary_10_3390_plants10010002 crossref_primary_10_1094_CCHEM_09_13_0001_N_test crossref_primary_10_3390_molecules22101623 crossref_primary_10_1080_00103624_2014_909829 crossref_primary_10_1016_j_chemgeo_2020_119866 crossref_primary_10_1016_j_envpol_2021_116909 crossref_primary_10_3390_agronomy4020242 crossref_primary_10_1002_app_49419 crossref_primary_10_1016_j_plaphy_2014_09_018 crossref_primary_10_1016_j_envexpbot_2009_05_014 crossref_primary_10_3390_agronomy10030403 crossref_primary_10_1007_s12010_022_04177_z crossref_primary_10_1139_cjb_2016_0194 crossref_primary_10_1007_s10535_014_0479_5 crossref_primary_10_5194_bg_14_3371_2017 crossref_primary_10_3389_fagro_2023_1285880 crossref_primary_10_1007_s10534_022_00452_y crossref_primary_10_1007_s12298_017_0494_z crossref_primary_10_1016_j_scitotenv_2019_02_291 crossref_primary_10_1007_s00344_017_9708_4 crossref_primary_10_1007_s10653_019_00317_3 crossref_primary_10_1016_j_jplph_2019_152998 crossref_primary_10_1080_03650340_2019_1644501 crossref_primary_10_3390_land12050997 crossref_primary_10_1016_j_heliyon_2024_e28422 crossref_primary_10_1007_s40502_023_00747_3 crossref_primary_10_2478_prolas_2020_0006 crossref_primary_10_3389_fpls_2016_01192 crossref_primary_10_1016_j_jplph_2014_08_012 crossref_primary_10_1016_j_cjph_2017_03_009 crossref_primary_10_3390_agronomy12122929 crossref_primary_10_3390_su11010019 crossref_primary_10_1007_s12355_020_00897_w crossref_primary_10_1002_xrs_2791 crossref_primary_10_1016_j_geoderma_2020_114509 crossref_primary_10_1080_15275922_2024_2431317 crossref_primary_10_3389_fpls_2023_1177844 crossref_primary_10_1007_s00894_017_3306_z crossref_primary_10_3159_TORREY_D_13_00034_1 crossref_primary_10_1080_03650340_2019_1587749 crossref_primary_10_1002_slct_201600863 crossref_primary_10_1007_s00425_013_1978_x crossref_primary_10_1016_j_envres_2023_116276 crossref_primary_10_1021_acs_jafc_5c03574 crossref_primary_10_1007_s10646_022_02533_7 crossref_primary_10_1016_j_ecoenv_2018_05_039 crossref_primary_10_1016_j_jhazmat_2020_123783 crossref_primary_10_1007_s11032_015_0252_2 crossref_primary_10_1007_s10725_012_9697_z crossref_primary_10_1016_j_jtemb_2019_09_007 crossref_primary_10_3389_fmicb_2024_1383360 crossref_primary_10_1007_s42729_024_01908_5 crossref_primary_10_1016_j_jasrep_2016_03_006 crossref_primary_10_1111_ele_12760 crossref_primary_10_1002_jpln_201800622 crossref_primary_10_3389_fnut_2020_00124 crossref_primary_10_1111_nph_12434 crossref_primary_10_1038_s41598_019_46796_3 crossref_primary_10_1080_00103624_2024_2343356 crossref_primary_10_1007_s11356_019_04126_0 crossref_primary_10_1007_s40003_024_00792_w crossref_primary_10_17221_508_2019_PSE crossref_primary_10_1042_BST20200716 crossref_primary_10_1007_s13562_019_00525_z crossref_primary_10_1016_j_envexpbot_2015_03_004 crossref_primary_10_1080_01904167_2021_1889587 crossref_primary_10_3389_fpls_2024_1435086 crossref_primary_10_1111_1365_2435_12344 crossref_primary_10_1590_0001_37652014117912 crossref_primary_10_1111_j_1747_0765_2008_00350_x crossref_primary_10_7717_peerj_18396 crossref_primary_10_3390_nano12091527 crossref_primary_10_1080_15320383_2012_636983 crossref_primary_10_1111_ppl_12095 crossref_primary_10_15252_embr_202255542 crossref_primary_10_1016_j_biotechadv_2016_07_003 crossref_primary_10_1104_pp_111_173716 crossref_primary_10_1016_j_scitotenv_2022_157858 crossref_primary_10_1007_s11104_016_2903_4 crossref_primary_10_3390_f16060991 crossref_primary_10_3390_plants14020215 crossref_primary_10_1080_00103624_2021_1921189 crossref_primary_10_1002_pc_23778 crossref_primary_10_1080_15569543_2021_1958867 crossref_primary_10_3390_cells14151167 crossref_primary_10_1007_s12633_023_02500_9 crossref_primary_10_1038_s41467_024_50106_5 crossref_primary_10_1039_D4EN00997E crossref_primary_10_1007_s11157_016_9390_1 crossref_primary_10_1080_01904167_2019_1567782 crossref_primary_10_56093_ijas_v91i7_115123 crossref_primary_10_1080_15226514_2016_1207598 crossref_primary_10_1016_j_fuel_2013_10_005 crossref_primary_10_3390_plants10020254 crossref_primary_10_1080_00914037_2013_769168 crossref_primary_10_1021_ic902547t crossref_primary_10_1093_aob_mcz179 crossref_primary_10_1007_s00425_019_03163_w crossref_primary_10_1016_j_envexpbot_2014_07_001 crossref_primary_10_1016_j_colsurfa_2020_125781 crossref_primary_10_1111_nph_13588 crossref_primary_10_1016_j_ecoleng_2015_05_039 crossref_primary_10_1111_j_1469_8137_2010_03606_x crossref_primary_10_1016_j_plaphy_2021_01_032 crossref_primary_10_1080_15324982_2019_1703060 crossref_primary_10_1111_tpj_17251 crossref_primary_10_1371_journal_pone_0095775 crossref_primary_10_1016_j_jhazmat_2021_127238 crossref_primary_10_1111_nph_70522 crossref_primary_10_1016_j_ecolind_2021_108183 crossref_primary_10_1134_S1021443710060099 crossref_primary_10_1093_jxb_erad179 crossref_primary_10_1016_j_hydromet_2020_105362 crossref_primary_10_3389_fpls_2021_661542 crossref_primary_10_1111_ppl_70153 crossref_primary_10_1007_s40502_016_0210_y crossref_primary_10_1080_15226514_2016_1183566 crossref_primary_10_1016_j_ecoenv_2020_110856 crossref_primary_10_1007_s11104_015_2430_8 crossref_primary_10_1016_j_cropro_2021_105755 crossref_primary_10_1016_j_ecoenv_2019_109677 crossref_primary_10_1038_s41598_021_93396_1 crossref_primary_10_1080_01904167_2022_2067051 crossref_primary_10_1186_s12870_020_2255_3 crossref_primary_10_1016_j_jksus_2022_102132 crossref_primary_10_1080_00103624_2021_1971693 crossref_primary_10_1016_j_plaphy_2021_01_040 crossref_primary_10_1007_s11051_022_05583_4 crossref_primary_10_1080_23311932_2021_1907954 crossref_primary_10_1002_jpln_201900398 crossref_primary_10_1007_s10535_012_0020_7 crossref_primary_10_21273_HORTSCI15314_20 crossref_primary_10_1007_s40415_023_00878_9 crossref_primary_10_1186_1471_2229_12_111 crossref_primary_10_1016_j_scienta_2016_09_024 crossref_primary_10_1016_j_scitotenv_2024_171463 crossref_primary_10_1111_ppl_13370 crossref_primary_10_1134_S1021443715060023 crossref_primary_10_1038_s41598_023_30899_z crossref_primary_10_3390_agronomy13123014 crossref_primary_10_1007_s40011_022_01433_4 crossref_primary_10_1016_j_jplph_2021_153419 crossref_primary_10_1007_s40009_015_0409_x crossref_primary_10_1016_j_plaphy_2014_08_020 crossref_primary_10_1080_09603123_2024_2394622 crossref_primary_10_1093_jxb_erz240 crossref_primary_10_3390_plants11223138 crossref_primary_10_1007_s41742_018_0103_1 crossref_primary_10_1038_s41598_025_97535_w crossref_primary_10_1007_s00709_014_0714_0 crossref_primary_10_1111_j_1365_313X_2011_04850_x crossref_primary_10_17221_205_2021_PSE crossref_primary_10_1016_j_scitotenv_2012_10_027 crossref_primary_10_1002_jpln_201500441 crossref_primary_10_1038_s41438_020_00369_y crossref_primary_10_1093_aob_mcr009 crossref_primary_10_24326_as_2024_5199 crossref_primary_10_1016_j_jece_2022_107155 crossref_primary_10_1016_j_scienta_2013_10_013 crossref_primary_10_1080_15226514_2014_922929 crossref_primary_10_1016_j_geoderma_2018_07_025 crossref_primary_10_1016_j_jes_2023_10_002 crossref_primary_10_3390_jof7110892 crossref_primary_10_1016_j_plantsci_2019_04_022 crossref_primary_10_1134_S1021443724604312 crossref_primary_10_1007_s10533_023_01018_x crossref_primary_10_18393_ejss_1424458 crossref_primary_10_3390_ma16206729 crossref_primary_10_1093_aob_mcs105 crossref_primary_10_29296_25877313_2025_06_14 crossref_primary_10_3390_plants10020204 crossref_primary_10_1111_j_1438_8677_2008_00153_x crossref_primary_10_1007_s11104_012_1334_0 crossref_primary_10_1111_pce_14037 crossref_primary_10_1093_aob_mcq162 crossref_primary_10_1016_j_electacta_2009_12_097 crossref_primary_10_1016_j_ecoleng_2012_07_002 crossref_primary_10_1016_j_sajb_2023_01_043 crossref_primary_10_1016_j_scitotenv_2017_11_236 crossref_primary_10_3390_su13084508 crossref_primary_10_1016_j_jplph_2014_07_029 crossref_primary_10_3390_horticulturae8060467 crossref_primary_10_1007_s11738_025_03773_w crossref_primary_10_1007_s11104_021_04867_3 crossref_primary_10_1007_s13562_016_0382_6 crossref_primary_10_1016_j_biotechadv_2013_11_011 crossref_primary_10_1016_j_tplants_2008_06_005 crossref_primary_10_1051_e3sconf_202015901003 crossref_primary_10_1016_j_plantsci_2020_110754 crossref_primary_10_1590_1983_084x_15_220 crossref_primary_10_3390_agronomy12030686 crossref_primary_10_1016_j_procbio_2014_02_004 crossref_primary_10_1007_s00344_025_11863_9 crossref_primary_10_1007_s11157_011_9250_y crossref_primary_10_1016_j_plantsci_2010_11_013 crossref_primary_10_1093_aob_mcs111 crossref_primary_10_1007_s00425_012_1648_4 crossref_primary_10_1016_j_envexpbot_2022_105032 crossref_primary_10_1016_j_plaphy_2024_108528 crossref_primary_10_11118_actaun201159060017 crossref_primary_10_1016_j_envexpbot_2023_105330 crossref_primary_10_1007_s00425_008_0882_2 crossref_primary_10_3389_fnut_2023_1151101 crossref_primary_10_1111_plb_13093 crossref_primary_10_1111_j_1469_8137_2008_02738_x crossref_primary_10_1007_s10535_010_0088_x crossref_primary_10_1093_jxb_erp372 crossref_primary_10_4491_KSEE_2017_39_7_418 crossref_primary_10_1016_j_scitotenv_2021_152024 crossref_primary_10_3390_plants10030476 crossref_primary_10_1016_j_jclepro_2021_129548 crossref_primary_10_1007_s11104_023_05969_w crossref_primary_10_1007_s10534_010_9373_6 crossref_primary_10_1007_s11032_019_1077_1 crossref_primary_10_1007_s00344_024_11400_0 crossref_primary_10_1111_pce_14257 crossref_primary_10_1016_j_envexpbot_2016_11_009 crossref_primary_10_3390_w16223294 crossref_primary_10_1002_jsfa_6074 crossref_primary_10_1016_j_apgeochem_2020_104576 crossref_primary_10_1111_nph_14219 crossref_primary_10_2135_cropsci2018_02_0133 crossref_primary_10_1016_j_scienta_2016_10_040 crossref_primary_10_1093_jxb_eraa288 crossref_primary_10_3390_nano12122099 crossref_primary_10_1111_j_1365_3040_2012_02496_x crossref_primary_10_1007_s11104_011_0974_9 crossref_primary_10_1007_s10725_018_0414_4 crossref_primary_10_1007_s00122_009_1033_2 crossref_primary_10_1007_s11356_018_1254_5 crossref_primary_10_3390_toxics9030042 crossref_primary_10_1371_journal_pone_0199464 crossref_primary_10_1017_S002185961700034X crossref_primary_10_1007_s42729_020_00275_1 crossref_primary_10_1016_j_abb_2008_02_027 crossref_primary_10_1080_15226514_2015_1086303 crossref_primary_10_1007_s11104_015_2719_7 crossref_primary_10_1007_s11738_012_0933_y crossref_primary_10_1016_j_aquatox_2023_106731 crossref_primary_10_1016_j_scitotenv_2025_179849 crossref_primary_10_1093_jxb_erq281 crossref_primary_10_1080_01904167_2023_2202185 crossref_primary_10_3389_fpls_2021_679469 crossref_primary_10_1007_s12011_025_04598_x crossref_primary_10_1016_j_scitotenv_2016_03_206 crossref_primary_10_1007_s11104_012_1332_2 crossref_primary_10_1016_j_jenvman_2025_127167 crossref_primary_10_1111_ijfs_15112 crossref_primary_10_1016_j_ecoenv_2012_09_021 crossref_primary_10_1186_s12870_018_1603_z crossref_primary_10_1111_ppl_13196 crossref_primary_10_1039_c1mt00117e crossref_primary_10_1007_s11104_023_06185_2 crossref_primary_10_1007_s11104_025_07570_9 crossref_primary_10_3390_agronomy9110711 crossref_primary_10_1007_s42729_024_02017_z crossref_primary_10_1016_j_scitotenv_2018_08_277 crossref_primary_10_1002_eap_1573 crossref_primary_10_1016_j_scienta_2024_113227 crossref_primary_10_1007_s11705_020_1927_8 crossref_primary_10_17221_364_2017_PSE crossref_primary_10_3390_proteomes6010003 crossref_primary_10_1111_nph_19952 crossref_primary_10_3390_agriculture12111843 crossref_primary_10_1016_j_jhazmat_2025_137100 crossref_primary_10_1007_s40003_020_00534_8 crossref_primary_10_1016_j_envpol_2011_08_050 crossref_primary_10_1016_j_plana_2025_100193 crossref_primary_10_1111_j_1469_8137_2010_03554_x crossref_primary_10_1002_jpln_201800654 crossref_primary_10_3390_plants14142119 crossref_primary_10_3390_agronomy13020400 crossref_primary_10_3389_fpls_2022_1049004 crossref_primary_10_3389_fpls_2024_1285050 crossref_primary_10_3390_plants10030456 crossref_primary_10_1007_s44169_025_00089_1 crossref_primary_10_1016_j_envexpbot_2012_05_005 crossref_primary_10_1016_j_marpolbul_2018_04_073 crossref_primary_10_1080_09064710_2014_978884 crossref_primary_10_1007_s00709_013_0557_0 crossref_primary_10_1016_j_fcr_2020_107718 crossref_primary_10_1016_j_chemosphere_2017_11_058 crossref_primary_10_1016_j_jhazmat_2025_138204 crossref_primary_10_1111_ppa_13642 crossref_primary_10_1007_s42976_025_00644_5 crossref_primary_10_1016_j_pmpp_2025_102776 crossref_primary_10_1007_s11356_018_2205_x crossref_primary_10_1016_j_jksus_2024_103433 crossref_primary_10_1371_journal_pone_0049027 crossref_primary_10_3390_foods10081738 crossref_primary_10_1007_s11270_013_1813_9 crossref_primary_10_1016_j_envpol_2021_116778 crossref_primary_10_1016_j_plaphy_2018_10_038 crossref_primary_10_1038_srep05464 crossref_primary_10_1016_j_jksus_2021_101607 crossref_primary_10_1016_j_atmosenv_2022_119504 crossref_primary_10_3390_antiox10050775 crossref_primary_10_1111_pbi_70230 crossref_primary_10_1093_jxb_erac025 crossref_primary_10_1007_s10750_011_0944_5 crossref_primary_10_1080_01904167_2024_2380790 crossref_primary_10_1007_s11356_018_2741_4 crossref_primary_10_1080_01904167_2016_1143490 crossref_primary_10_1021_acsagscitech_5c00420 crossref_primary_10_1080_01904167_2012_631669 crossref_primary_10_1093_jxb_erz091 crossref_primary_10_3390_agronomy10030450 crossref_primary_10_5586_aa_203377 crossref_primary_10_1089_ars_2012_5084 crossref_primary_10_3390_plants11030429 crossref_primary_10_1111_pce_12041 crossref_primary_10_1186_s12870_018_1275_8 crossref_primary_10_17221_612_2012_PSE |
| Cites_doi | 10.1104/pp.112.4.1715 10.1079/SUM2005348 10.1007/s00775-005-0056-7 10.1006/jmbi.1999.3007 10.1111/j.1399-3054.1978.tb02546.x 10.1093/jxb/48.4.935 10.1111/j.1469-8137.1980.tb04777.x 10.1104/pp.106.085225 10.1016/j.febslet.2005.01.065 10.2136/sssaj1980.03615995004400060028x 10.1007/BF00693131 10.2307/2402534 10.1111/j.1469-8137.2006.01662.x 10.1046/j.1469-8137.2003.00758.x 10.1007/BF02380592 10.1016/S0014-5793(04)00072-9 10.1023/B:PLAN.0000038271.96019.aa 10.1007/BF03184113 10.1007/s10725-005-5816-4 10.1007/978-94-011-2270-2 10.1080/01904168109362867 10.1016/j.febslet.2004.09.023 10.1104/pp.1.3.231 10.1016/S0044-328X(76)80127-4 10.1080/00378941.1887.10830217 10.1007/s006060170049 10.1080/01904169609365220 10.1007/BF00251110 10.1093/jexbot/53.366.1 10.1046/j.1365-3040.2000.00569.x 10.18388/abp.2003_3648 10.1046/j.1469-8137.2000.00570.x 10.1023/A:1004255323909 10.1016/S0168-9452(98)00112-5 10.1046/j.1365-3040.1998.00270.x 10.1007/978-94-011-1344-1 10.1105/tpc.009134 10.2134/jeq1983.00472425001200010004x 10.1104/pp.116.4.1393 10.1016/S0065-2113(01)70004-1 10.1016/S0005-2736(02)00509-6 10.1111/j.1399-3054.2006.00646.x 10.1126/science.1060331 10.1016/j.pbi.2006.03.015 10.1002/pmic.200501357 10.1105/tpc.020487 10.1079/9780851992365.0000 10.1111/j.1469-8137.2004.01178.x 10.1016/j.tplants.2005.10.001 10.1186/1471-2148-5-1 10.1093/pcp/pci015 10.1111/j.1469-8137.1987.tb04685.x 10.1046/j.1365-313X.2003.01960.x 10.1111/j.1095-8339.1997.tb02253.x 10.1111/j.1365-3040.2001.00666.x 10.1023/A:1022542725880 10.1023/A:1012905406548 10.1080/0735-260291044359 10.1111/j.1469-8137.2004.01113.x 10.1016/j.tplants.2005.08.008 10.1139/b06-014 10.1023/A:1009717619579 10.1016/j.copbio.2005.02.006 10.1126/science.271.5252.1081 10.2134/agronj1979.00021962007100010031x 10.1111/j.1365-3040.2001.00669.x 10.1046/j.1365-313x.2001.01163.x 10.1111/j.1365-3040.2004.01264.x 10.1034/j.1399-3054.2002.1160109.x 10.1111/j.1438-8677.1992.tb01332.x 10.1104/pp.104.046599 10.1093/jxb/erh002 10.1016/S0005-2736(00)00133-4 10.1021/ar030182c 10.1111/j.1365-313X.2004.02126.x 10.1074/jbc.M106276200 10.1007/s11103-005-8268-3 10.1111/j.1469-8137.1956.tb05291.x 10.1007/s004250000366 10.1016/S0378-4290(98)00130-0 10.1105/tpc.105.032771 10.1111/j.1365-294X.2006.02981.x 10.1046/j.1469-8137.2003.00684.x 10.1046/j.1469-8137.2003.00819.x 10.1023/A:1004256429979 10.1038/hdy.1968.30 10.1104/pp.120.3.779 10.1146/annurev.arplant.49.1.643 10.1002/fedr.19790900302 10.1042/BST0320589 10.1146/annurev.biophys.34.040204.144452 10.2134/agronj1971.00021962006300060015x 10.1046/j.1365-313X.2003.01790.x 10.1104/pp.118.1.219 10.1046/j.1469-8137.2002.00432.x 10.1016/S1360-1385(00)01600-9 10.1081/CSS-100104107 10.1104/pp.119.3.1047 10.1111/j.1469-8137.1975.tb01391.x 10.1002/j.1537-2197.1985.tb08441.x 10.1007/BF00197584 10.1046/j.1365-313X.2003.01959.x 10.1046/j.1469-8137.2003.00826.x 10.1007/BF02374760 10.1146/annurev.pp.29.060178.002455 10.1104/pp.103.4.1305 10.1016/S0176-1617(11)81091-6 10.1023/A:1012976615056 10.1007/s11104-005-5848-6 10.1016/j.tplants.2004.08.009 10.1046/j.1469-8137.2001.00167.x 10.1046/j.1469-8137.2003.00701.x 10.1007/BF00010701 10.1111/j.1469-8137.1993.tb03846.x 10.1104/pp.103.037788 10.1093/biostatistics/4.2.249 10.1023/A:1004519611152 10.1016/0375-6742(83)90073-0 10.1111/j.1469-8137.2005.01625.x 10.1111/j.1365-3040.2004.01189.x 10.1046/j.1469-8137.2001.00003.x 10.1006/anbo.1997.0554 10.1093/jxb/erl062 10.2135/cropsci1979.0011183X001900010034x 10.1186/1746-4811-1-10 10.1007/s11099-005-1011-0 10.1016/S0065-2296(05)40002-6 10.1078/0176-1617-00988 10.1104/pp.105.076232 10.1002/j.1537-2197.1985.tb08440.x 10.1093/jxb/erf107 10.1016/0375-6742(95)00048-8 10.2134/agronj1943.00021962003500120003x 10.1021/es980825x 10.1046/j.1469-8137.2000.00634.x 10.1104/pp.104.041723 10.1046/j.1365-3040.2003.01084.x 10.1111/j.1438-8677.1994.tb00792.x 10.1104/pp.007799 10.1111/j.1365-313X.2006.02746.x 10.1111/j.1469-8137.1996.tb04515.x 10.1046/j.1469-8137.2003.00822.x 10.1016/j.gexplo.2005.08.005 10.1002/fedr.19730840503 10.1071/SR9941231 10.1002/j.1537-2197.1940.tb13958.x 10.1104/pp.104.044503 10.2136/sssaj1972.03615995003600020035x 10.2136/sssaj1972.03615995003600020034x 10.1007/BF00007879 10.1021/pr050361j 10.1007/978-94-011-0878-2_2 10.1093/jxb/eri062 10.1046/j.1365-3040.2000.00590.x 10.1111/j.1469-8137.1985.tb02837.x 10.2307/1222140 10.1046/j.1432-1033.2002.02900.x 10.1111/j.1365-313X.2004.02143.x 10.1046/j.1469-8137.2002.00484.x 10.1111/j.1469-8137.2004.01240.x 10.2134/agronj1979.00021962007100010032x 10.1079/SUM2005349 10.1016/j.tplants.2005.05.008 10.1600/036364404774195566 10.1016/j.scitotenv.2004.12.031 10.1111/j.1469-8137.1994.tb04259.x 10.1111/j.1558-5646.1996.tb03576.x 10.2307/2258352 10.1104/pp.126.4.1646 10.1046/j.1469-8137.2000.00599.x 10.1093/pcp/pch055 10.1016/j.febslet.2004.05.036 10.1093/aob/mci255 10.1016/j.envpol.2004.06.021 10.1111/j.1469-8137.2004.01307.x 10.1080/01904168109362830 10.1016/j.febslet.2005.06.046 10.1007/s11104-005-3937-1 10.1007/s11103-004-1965-5 10.1080/00380768.1984.10434720 10.1073/pnas.171039798 10.1080/00103629309368925 10.1007/s00425-004-1392-5 10.1046/j.0028-646x.2001.00238.x 10.1104/pp.125.1.456 10.1007/BF02370159 10.1104/pp.103.032953 10.5109/4658 10.1111/j.1399-3054.1965.tb06945.x 10.1038/hdy.1990.86 10.1016/S0305-1978(98)00057-X 10.1126/science.272.5259.223 10.1016/S0076-6879(05)01011-6 10.1046/j.1469-8137.1997.00756.x 10.1111/j.1399-3054.1977.tb01509.x 10.1111/j.1469-8137.1984.tb06108.x 10.1007/s004250000458 10.1111/j.1469-8137.2006.01714.x 10.1093/jxb/erg303 10.2307/2419713 10.1111/j.1365-313X.2006.02788.x 10.1002/j.1537-2197.1983.tb07919.x 10.1104/pp.125.1.164 10.1007/BF00018051 10.1111/j.1469-8137.1965.tb05381.x 10.1016/S0176-1617(98)80064-3 10.1046/j.0028-646X.2001.00325.x 10.1007/978-94-011-0878-2_10 10.1016/j.mib.2005.02.001 10.1016/j.pbi.2004.07.012 10.1093/jexbot/52.358.891 10.2307/2425864 10.1186/1471-2164-5-39 10.1104/pp.104.046292 10.1023/A:1021194511492 10.1007/978-94-011-0878-2_1 10.1093/jxb/erg143 10.1071/AR9680859 10.1016/j.jtemb.2005.02.003 10.1073/pnas.97.9.4956 10.1016/j.fcr.2005.03.005 10.1111/j.1469-8137.2004.01227.x 10.1080/15226510108500054 10.1023/A:1022510130148 10.1046/j.1365-3040.1997.d01-134.x 10.1093/jxb/23.2.552 10.1105/tpc.017541 10.1111/j.1365-3040.2005.01479.x 10.1023/A:1007620627083 10.1111/j.1469-8137.1986.tb00812.x 10.1007/s00425-005-0006-1 10.1007/s11104-005-0099-0 10.1007/s00122-006-0350-y 10.1016/j.jmb.2004.01.015 10.1007/BF00011135 10.1111/j.1469-8137.2005.01631.x 10.1104/pp.119.1.305 10.1093/jexbot/53.368.535 10.1046/j.1469-8137.2001.00034.x 10.1007/BF00012018 10.1093/jxb/erh064 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN C1K 7S9 L.6 7X8 |
| DOI | 10.1111/j.1469-8137.2007.01996.x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE CrossRef Ecology Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany Chemistry |
| EISSN | 1469-8137 |
| EndPage | 702 |
| ExternalDocumentID | 17286818 10_1111_j_1469_8137_2007_01996_x NPH1996 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABGDZ ABSQW ABUFD ADXHL AEFGJ AEYWJ AGHNM AGUYK AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM PKN 7SN C1K 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c4256-c4d179adae523ed9d0ce88eff51ec53526ea64ecf5c78f293d3406e8492fd80a3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 1533 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000244060200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X |
| IngestDate | Mon Nov 24 07:15:15 EST 2025 Fri Sep 05 17:16:23 EDT 2025 Tue Oct 07 09:12:13 EDT 2025 Wed Feb 19 02:27:59 EST 2025 Tue Nov 18 22:02:52 EST 2025 Sat Nov 29 04:37:52 EST 2025 Wed Jan 22 16:31:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4256-c4d179adae523ed9d0ce88eff51ec53526ea64ecf5c78f293d3406e8492fd80a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
| PMID | 17286818 |
| PQID | 20463663 |
| PQPubID | 23462 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_68992521 proquest_miscellaneous_47253209 proquest_miscellaneous_20463663 pubmed_primary_17286818 crossref_primary_10_1111_j_1469_8137_2007_01996_x crossref_citationtrail_10_1111_j_1469_8137_2007_01996_x wiley_primary_10_1111_j_1469_8137_2007_01996_x_NPH1996 |
| PublicationCentury | 2000 |
| PublicationDate | March 2007 |
| PublicationDateYYYYMMDD | 2007-03-01 |
| PublicationDate_xml | – month: 03 year: 2007 text: March 2007 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2007 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2004; 561 2004; 29 1987; 106 2004; 27 2004; 7 1980; 44 2004; 9 1956; 55 2005b; 10 2004; 5 2003; 159 1983; 18 2004; 569 2003; 157 1998; 153 2001; 149 1983; 12 1999; 208 2004; 32 1972b; 36 1973; 84 1976; 79 2004; 576 2004; 39 2004; 37 2002b; 153 2003; 160 1996; 132 1940; 27 2004; 337 2001; 52 2000; 1465 1992; 41 1979; 16 1976; 45 1992; 140 1992; 143 1981; 3 1992; 146 2004; 45 1972; 60 1998; 137 2001; 28 2001; 24 2006; 113 2004; 552 2004; 54 2004; 55 1984; 30 2001; 151 2001; 152 1994; 19 2005; 401 2005; 8 2005; 5 2005; 96 1999; 33 2005; 1 1915; 160 1996; 112 1979c; 71 1999; 119 2001; 32 1968; 23 2002; 53 2005; 133 1943; 35 1997; 197 2002a; 1564 1999; 120 2002; 116 2001; 227 2006; 11 2001; 212 1965; 64 2002; 47 1968; 19 2000 1999; 17 1997; 188 1978; 29 2003; 4 1979b; 19 1985b; 72 2006; 126 1994; 107 2001; 14 1972c; 36 1948 1985a; 72 1971; 63 1965; 74 1987; 99 2005; 273 in press 2006; 15 1996; 50 1985; 101 2006 2005 1975; 75 2004 1999; 266 2001; 126 2001; 125 1996; 56 1994; 127 2000; 146 2005; 165 2002; 21 2006; 142 2000; 145 1993; 24 2004; 164 1997; 48 2004; 163 1999; 293 2002; 155 2005; 579 2002; 277 2006; 170 1998; 81 1993; 124 2003; 50 1965; 18 2003; 54 1979 1977 1971; 7 1986; 102 1990 2005; 220 2005; 342 2006; 21 2000; 97 2006; 283 2002; 269 2006; 29 1983 2006; 282 2003; 40 1985c; 69 2006; 169 1989; 1 1986; 94 1986; 115 1996; 19 1986; 96 2006; 57 1997; 20 2002; 130 1973; 39 1973; 38 1998 2003; 35 1995 1979; 90 1993 1992 1983; 70 1993; 103 2005; 19 2003a; 159 2006; 46 1978; 42 2006; 47 2006; 48 1887 2002; 247 2003; 26 1972a; 23 2005; 10 1996; 198 2005; 17 1990; 4 1998; 49 2000; 212 2000; 5 1980; 84 2005a; 16 1988; 37 1926; 1 1998; 118 2003; 15 1998; 116 1979a; 71 2004; 134 2004; 136 2003; 249 2004; 135 2001; 292 1984; 98 2005; 38 2005; 34 2001; 97 1994; 32 2001; 98 2001; 70 1998; 26 1997; 136 2003b; 159 2006; 95 2000; 23 2006; 9 1997; 133 1977; 40 2006; 5 2005; 43 2006; 6 1977; 46 1999; 60 1998; 21 1997; 125 1990; 65 2006; 84 2004; 16 2006; 88 1996; 272 1996; 271 222 2001; 3 2005; 50 2005; 56 2005; 58 e_1_2_8_241_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 Barber SA (e_1_2_8_20_1) 1995 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 Mazé P (e_1_2_8_149_1) 1915; 160 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 Chaney RL (e_1_2_8_50_1) 1983 e_1_2_8_238_1 Whiting SN (e_1_2_8_252_1) 2005 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 Vreugdenhil D (e_1_2_8_233_1) 2005 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_48_1 Cakmak I (e_1_2_8_46_1) 2004; 552 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 Nicolls OW (e_1_2_8_167_1) 1965; 74 e_1_2_8_40_1 e_1_2_8_156_1 Grusak MA (e_1_2_8_95_1) 2005 Friedland AJ (e_1_2_8_88_1) 1990 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 Borhidi A (e_1_2_8_33_1) 2001; 97 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 Alloway BJ (e_1_2_8_3_1) 2004 Lloyd‐Thomas DH (e_1_2_8_136_1) 1995 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_39_1 e_1_2_8_210_1 Baker AJM (e_1_2_8_16_1) 1989; 1 e_1_2_8_218_1 e_1_2_8_256_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 Hoagland DR (e_1_2_8_109_1) 1948 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 Taylor SI (e_1_2_8_219_1) 2004 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 Ernst WHO (e_1_2_8_78_1) 1990; 4 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 Marschner H (e_1_2_8_146_1) 1995 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_250_1 e_1_2_8_79_1 Lindsay WL (e_1_2_8_135_1) 1979 e_1_2_8_212_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_10_1 e_1_2_8_56_1 Zelko I (e_1_2_8_263_1) e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 Reeves RD (e_1_2_8_182_1) 2000 Lasat MM (e_1_2_8_133_1) 2000 e_1_2_8_247_1 Barber SA (e_1_2_8_21_1) 1977 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 Macnair MR (e_1_2_8_140_1) 1990 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 Webb EC (e_1_2_8_235_1) 1992 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_104_1 e_1_2_8_188_1 |
| References_xml | – volume: 99 start-page: 115 year: 1987 end-page: 125 article-title: Physiology of genotypic differences in zinc and copper uptake in rice and tomato publication-title: Plant and Soil – volume: 18 start-page: 860 year: 1965 end-page: 869 article-title: Absorption of zinc by excised barley roots publication-title: Physiologia Plantarum – volume: 1 start-page: 231 year: 1926 end-page: 249 article-title: Evidence on the indispensable nature of zinc and boron for higher green plants publication-title: Plant Physiology – volume: 50 start-page: 443 year: 2005 end-page: 458 article-title: Analytical model for zinc uptake by root system of publication-title: Journal of the Faculty of Agriculture, Kyushu University – volume: 32 start-page: 589 year: 2004 end-page: 591 article-title: Plant translation initiation factors: it is not easy to be green publication-title: Biochemical Society Transactions – volume: 283 start-page: 155 year: 2006 end-page: 162 article-title: Organic anion exudation by lowland rice ( L.) at zinc and phosphorus deficiency publication-title: Plant and Soil – start-page: 201 year: 2005 end-page: 219 – volume: 133 start-page: 221 year: 1997 end-page: 231 article-title: Heavy metal tolerance and accumulation in metallicolous and non‐metallicolous populations of from continental Europe publication-title: Plant Ecology – volume: 17 start-page: 333 year: 1999 end-page: 350 article-title: Alcohol dehydrogenases: identification and names for gene families publication-title: Plant Molecular Biology Reporter – volume: 81 start-page: 173 year: 1998 end-page: 183 article-title: Calcium channels in the plasma membrane of root cells publication-title: Annals of Botany – volume: 3 start-page: 643 year: 1981 end-page: 654 article-title: Accumulators and excluders – strategies in the response of plants to heavy metals publication-title: Journal of Plant Nutrition – volume: 19 start-page: 73 year: 1994 end-page: 88 article-title: Chloroplast DNA restriction site variation and phylogenetic relationships in the genus sensu lato (Brassicaceae) publication-title: Systematic Botany – volume: 197 start-page: 71 year: 1997 end-page: 78 article-title: Zinc and cadmium uptake by the hyperaccumulator in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution publication-title: Plant and Soil – volume: 127 start-page: 61 year: 1994 end-page: 68 article-title: Heavy metal accumulation and tolerance in British populations of the metallophyte . J. & C. Presl (Brassicaceae) publication-title: New Phytologist – volume: 159 start-page: 383 year: 2003b end-page: 390 article-title: A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator publication-title: New Phytologist – volume: 15 start-page: 1131 year: 2003 end-page: 1142 article-title: Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance publication-title: Plant Cell – volume: 49 start-page: 643 year: 1998 end-page: 668 article-title: Phytoremediation publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 16 start-page: 133 year: 2005a end-page: 141 article-title: Phytoremediation: novel approaches to cleaning up polluted soils publication-title: Current Opinion in Biotechnology – volume: 55 start-page: 319 year: 1956 end-page: 330 article-title: The influence of the breeding system on the genecology of L publication-title: New Phytologist – volume: 220 start-page: 731 year: 2005 end-page: 736 article-title: Subcellular localisation of Cd and Zn in the leaves of a Cd‐hyperaccumulating ecotype of publication-title: Planta – volume: 24 start-page: 141 year: 2001 end-page: 153 article-title: Carbonic anhydrases in plants and algae publication-title: Plant, Cell & Environment – volume: 143 start-page: 239 year: 1992 end-page: 247 article-title: Heavy metal tolerance in L. from contaminated sites in the Eifel mountains publication-title: Germany. Plant and Soil – volume: 26 start-page: 823 year: 1998 end-page: 838 article-title: Systematics and evolutionary history of heavy metal tyolerance in Western Europe: evidence from genetic studies based on isozyme analysis publication-title: Biochemical Systematics and Ecology – volume: 53 start-page: 535 year: 2002 end-page: 543 article-title: Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator publication-title: Thlaspi caerulescens. Journal of Experimental Botany – volume: 134 start-page: 1718 year: 2004 end-page: 1732 article-title: The GATA family of transcription factors in Arabidopsis and rice publication-title: Plant Physiology – start-page: 287 year: 2005 end-page: 315 – volume: 53 start-page: 2381 year: 2002 end-page: 2392 article-title: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non‐hyperaccumulator metallophytes publication-title: Journal of Experimental Botany – volume: 142 start-page: 148 year: 2006 end-page: 167 article-title: Zn‐dependent global transcriptional control, transcriptional de‐regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator publication-title: Plant Physiology – volume: 54 start-page: 583 year: 2004 end-page: 596 article-title: Identification and characterization of several new members of the ZIP family of metal ion transporters in publication-title: Plant Molecular Biology – volume: 1564 start-page: 299 year: 2002a end-page: 309 article-title: Genes for calcium‐permeable channels in the plasma membrane of plant root cells publication-title: Biochimica et Biophysica Acta-Biomembranea – volume: 38 start-page: 62 year: 2005 end-page: 69 article-title: How to hide zinc in a small protein publication-title: Accounts of Chemical Research – volume: 165 start-page: 111 year: 2005 end-page: 119 article-title: Zinc tolerance and hyperaccumulation in F and F offspring from intra and interecotype crosses of publication-title: New Phytologist – year: in press article-title: Difference in the root structure of hyperaccumulator and non‐hyperaccumulator publication-title: International Journal of Environment and Pollution. – volume: 126 start-page: 1646 year: 2001 end-page: 1667 article-title: Phylogenetic relationships within cation transporter families of publication-title: Plant Physiology – volume: 157 start-page: 633 year: 2003 end-page: 641 article-title: Genetic structure and mating systems of metallicolous and nonmetallicolous populations of publication-title: New Phytologist – volume: 34 start-page: 267 year: 2005 end-page: 294 article-title: Structural and sequence motifs of protein (histone) methylation enzymes publication-title: Annual Review of Biophysics and Biomolecular Structure – volume: 401 start-page: 169 year: 2005 end-page: 186 article-title: Plant glutathione transferases publication-title: Methods in Enzymology – volume: 9 start-page: 322 year: 2006 end-page: 330 article-title: Put the metal to the petal: metal uptake and transport throughout plants publication-title: Current Opinion in Plant Biology – start-page: 358 year: 1977 end-page: 364 – volume: 12 start-page: 29 year: 1983 end-page: 33 article-title: Distribution of cadmium, zinc, copper, and lead in soils of industrial northwestern Indiana publication-title: Journal of Environmental Quality – volume: 60 start-page: 11 year: 1999 end-page: 26 article-title: Mapping soil micronutrients publication-title: Field Crops Research – volume: 149 start-page: 167 year: 2001 end-page: 192 article-title: The apoplast and its significance for plant mineral nutrition publication-title: New Phytologist – volume: 20 start-page: 898 year: 1997 end-page: 906 article-title: Uptake and transport of zinc in the hyperaccumulator and the non‐hyperaccumulator publication-title: Plant, Cell & Environment – volume: 11 start-page: 2 year: 2006 end-page: 12 article-title: Metal ion ligands in hyperaccumulating plants publication-title: Journal of Biological Inorganic Chemistry – volume: 29 start-page: 950 year: 2006 end-page: 963 article-title: Comparative transcriptome analysis of toxic metal responses in and the Cd ‐hypertolerant facultative metallophyte publication-title: Plant, Cell & Environment – volume: 119 start-page: 305 year: 1999 end-page: 311 article-title: Cellular compartmentation of zinc in leaves of the hyperaccumulator publication-title: Plant Physiology – volume: 94 start-page: 99 year: 1986 end-page: 107 article-title: Kinetics of zinc uptake by two rice cultivars publication-title: Plant and Soil – volume: 21 start-page: 450 year: 2006 end-page: 458 article-title: Characterizing the availability of metals in contaminated soils. I. The solid phase: sequential extraction and isotopic dilution publication-title: Soil Use and Management – volume: 23 start-page: 219 year: 1968 end-page: 238 article-title: Evolution in closely adjacent plant populations. V. Evolution of self‐fertility publication-title: Heredity – volume: 16 start-page: 595 year: 1979 end-page: 612 article-title: The use of metal tolerant plant populations for the reclamation of metalliferous wastes publication-title: Journal of Applied Ecology – volume: 107 start-page: 243 year: 1994 end-page: 250 article-title: Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator J & C Presl publication-title: Botanica Acta – volume: 1465 start-page: 104 year: 2000 end-page: 126 article-title: Emerging mechanisms for heavy metal transport in plants publication-title: Biochimica et Biophysica Acta-Biomembranea – volume: 39 start-page: 425 year: 2004 end-page: 439 article-title: Two genes encoding MTP1 metal transport proteins co‐segregate with zinc tolerance and account for high MTP1 transcript levels publication-title: Plant Journal – volume: 29 start-page: 511 year: 1978 end-page: 566 article-title: The physiology of metal toxicity in plants publication-title: Annual Review of Plant Physiology – volume: 63 start-page: 874 year: 1971 end-page: 876 article-title: Crop response to excessive zinc fertilization of alkaline soil publication-title: Agronomy Journal – year: 1995 – volume: 115 start-page: 277 year: 1986 end-page: 281 article-title: Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon publication-title: Arizona American Midland Naturalist – volume: 27 start-page: 828 year: 2004 end-page: 839 article-title: Natural variation and QTL analysis for cationic mineral content in seeds of publication-title: Plant, Cell & Environment – volume: 273 start-page: 327 year: 2005 end-page: 335 article-title: Growth and mineral element composition in two ecotypes of on Cd contaminated soil publication-title: Plant and Soil – volume: 165 start-page: 703 year: 2005 end-page: 710 article-title: Isotopic discrimination of zinc in higher plants publication-title: New Phytologist – volume: 8 start-page: 196 year: 2005 end-page: 202 article-title: Bacterial zinc uptake and regulators publication-title: Current Opinion in Microbiology – volume: 36 start-page: 327 year: 1972c end-page: 331 article-title: Zinc absorption by wheat seedlings. II. Inhibition by hydrogen ions and by micronutrient cations publication-title: Soil Science Society of America Proceedings – volume: 35 start-page: 1012 year: 1943 end-page: 1023 article-title: Minor element studies with soybeans. I. Varietal reaction to concentrations of zinc in excess of the nutritional requirement publication-title: Journal of the American Society of Agronomy – volume: 16 start-page: 1327 year: 2004 end-page: 1339 article-title: P‐type ATPase heavy metal transporters with roles in essential zinc homeostasis in publication-title: Plant Cell – volume: 272 start-page: 223 year: 1996 end-page: 224 article-title: A history of global metal pollution publication-title: Science – volume: 45 start-page: 386 year: 2004 end-page: 391 article-title: Dof domain proteins: plant‐specific transcription factors associated with diverse phenomena unique to plants publication-title: Plant and Cell Physiology – volume: 145 start-page: 429 year: 2000 end-page: 437 article-title: Zinc and cadmium hyperaccumulation by from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation publication-title: New Phytologist – volume: 42 start-page: 190 year: 1978 end-page: 194 article-title: Characteristics of zinc uptake by barley roots publication-title: Physiologia Plantarum – volume: 3 start-page: 145 year: 2001 end-page: 172 article-title: Distribution and metal‐accumulating behaviour of and associated metallophytes in France publication-title: International Journal of Phytoremediation – volume: 28 start-page: 619 year: 2001 end-page: 631 article-title: Functional importance of conserved domains in the flowering‐time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants publication-title: Plant Journal – year: 1979 – volume: 21 start-page: 108 year: 1998 end-page: 114 article-title: Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator publication-title: Plant, Cell & Environment – volume: 7 start-page: 1 year: 1971 end-page: 85 article-title: Heavy metal tolerance in plants publication-title: Advances in Ecological Research – volume: 155 start-page: 47 year: 2002 end-page: 57 article-title: Do from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? publication-title: New Phytologist – start-page: 7 year: 1990 end-page: 19 – volume: 249 start-page: 45 year: 2003 end-page: 56 article-title: Applying a solute transfer model to phytoextraction: Zinc acquisition by publication-title: Plant and Soil – volume: 35 start-page: 164 year: 2003 end-page: 176 article-title: Functional expression of AtHMA4, a P ‐type ATPase of the Zn/Co/Cd/Pb subclass publication-title: Plant Journal – start-page: 235 year: 1990 end-page: 253 – volume: 70 start-page: 1297 year: 1983 end-page: 1303 article-title: Accumulation of nickel and zinc by western North American genera containing serpentine‐tolerant species publication-title: American Journal of Botany – volume: 569 start-page: 140 year: 2004 end-page: 148 article-title: A novel CPx‐ATPase from the cadmium hyperaccumulator publication-title: FEBS Letters – volume: 137 start-page: 1 year: 1998 end-page: 12 article-title: The regulation of zinc uptake in wheat plants publication-title: Plant Science – volume: 136 start-page: 3814 year: 2004 end-page: 3823 article-title: Identification of the genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase publication-title: Plant Physiology – volume: 24 start-page: 1883 year: 1993 end-page: 1895 article-title: Radish as an indicator plant for derelict land – uptake of zinc at toxic concentrations publication-title: Communications in Soil Science and Plant Analysis – volume: 53 start-page: 1 year: 2002 end-page: 11 article-title: Cellular mechanisms for heavy metal detoxification and tolerance publication-title: Journal of Experimental Botany – volume: 292 start-page: 2488 year: 2001 end-page: 2492 article-title: Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis publication-title: Science – volume: 552 start-page: 1 year: 2004 end-page: 26 article-title: Identification and correction of widespread zinc deficiency in Turkey – a success story (a NATO‐Science for Stability Project) publication-title: Proceedings of the International Fertiliser Society – year: 2004 – volume: 198 start-page: 39 year: 1996 end-page: 45 article-title: The mechanism of zinc uptake in plants. Characterisation of the low‐affinity system publication-title: Planta – volume: 133 start-page: 233 year: 2005 end-page: 242 article-title: Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia publication-title: Environmental Pollution – volume: 5 start-page: 196 year: 2006 end-page: 201 article-title: Counting the zinc‐proteins encoded in the human genome publication-title: Journal of Proteome Research – volume: 342 start-page: 175 year: 2005 end-page: 183 article-title: Trends of heavy metal components in the Arctic aerosols and their relationship to the emissions in the Northern Hemisphere publication-title: Science of the Total Environment – volume: 96 start-page: 1027 year: 2005 end-page: 1046 article-title: Phylogenetic variation in the silicon composition of plants publication-title: Annals of Botany – volume: 136 start-page: 489 year: 1997 end-page: 496 article-title: Multiple tolerance and co‐tolerance to heavy metals in : a co‐segregation analysis publication-title: New Phytologist – start-page: 50 year: 1983 end-page: 76 – volume: 135 start-page: 1718 year: 2004 end-page: 1737 article-title: Salt cress. A halophyte and cryophyte arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles publication-title: Plant Physiology – volume: 277 start-page: 3412 year: 2002 end-page: 3418 article-title: A novel binding protein composed of homophilic tetramer exhibits unique properties for the small GTPase Rab5 publication-title: Journal of Biological Chemistry – volume: 5 start-page: 1 year: 2005 article-title: The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants publication-title: BMC Evolutionary Biology – volume: 30 start-page: 527 year: 1984 end-page: 532 article-title: Kinetics of cadmium and zinc absorption by rice seedling roots publication-title: Soil Science and Plant Nutrition – volume: 84 start-page: 631 year: 1980 end-page: 647 article-title: Multiple metal tolerances in the grass (L.) Beauv. from the Sudbury smelting area publication-title: New Phytologist – volume: 5 start-page: 199 year: 2000 end-page: 206 article-title: The WRKY superfamily of plant transcription factors publication-title: Trends in Plant Science – volume: 125 start-page: 456 year: 2001 end-page: 463 article-title: High‐ and low‐affinity zinc transport systems and their possible role in zinc efficiency in bread wheat publication-title: Plant Physiology – volume: 142 start-page: 1127 year: 2006 end-page: 1147 article-title: Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of and the related metal hyperaccumulator publication-title: Plant Physiology – volume: 40 start-page: 130 year: 1977 end-page: 136 article-title: The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc‐resistance in herbage plants publication-title: Physiologia Plantarum – volume: 32 start-page: 1163 year: 2001 end-page: 1186 article-title: Genotypic differences in micronutrient use efficiency in crops publication-title: Communications in Soil Science and Plant Analysis – volume: 112 start-page: 1715 year: 1996 end-page: 1722 article-title: Physiological characterization of root Zn absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of publication-title: Plant Physiology – volume: 75 start-page: 231 year: 1975 end-page: 237 article-title: Zinc and copper uptake by , tolerant to both zinc and copper publication-title: New Phytologist – volume: 212 start-page: 75 year: 2000 end-page: 84 article-title: Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator publication-title: Planta – volume: 140 start-page: 350 year: 1992 end-page: 355 article-title: Localization of zinc and cadmium in (Brassicaceae), a metallophyte that can hyperaccumulate both metals publication-title: Journal of Plant Physiology – volume: 60 start-page: 351 year: 1972 end-page: 365 article-title: Population dynamics of the grass on a zinc mine publication-title: Journal of Ecology – volume: 44 start-page: 1272 year: 1980 end-page: 1279 article-title: A model of zinc movement to single roots in soils publication-title: Soil Science Society of America Journal – volume: 90 start-page: 129 year: 1979 end-page: 154 article-title: Kritische Revision der ‘ ’‐arten Europas, Afrikas und Vorderasiens. I. Geschichte, Morphologie und Chorologie publication-title: Feddes Repertorium – volume: 79 start-page: 177 year: 1976 end-page: 181 article-title: Kinetics of zinc uptake by citrus roots publication-title: Zeitschrift für Pflanzenphysiologie – volume: 72 start-page: 1695 year: 1985a end-page: 1699 article-title: Pollen‐tube competition and selection for metal tolerance in (Caryophyllaceae) and (Scrophulariaceae) publication-title: American Journal of Botany – volume: 29 start-page: 375 year: 2004 end-page: 384 article-title: Taxonomic and phylogenetic evaluation of the American ‘ ’ species: identity and relationship to the Eurasian genus (Brassicaceae) publication-title: Systematic Botany – volume: 134 start-page: 748 year: 2004 end-page: 757 article-title: Tissue‐ and age‐dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator (Ganges ecotype) revealed by X‐ray absorption spectroscopy publication-title: Plant Physiology – volume: 40 start-page: 63 year: 2003 end-page: 105 article-title: The hyperaccumulation of metals by plants publication-title: Advances in Botanical Research – volume: 146 start-page: 241 year: 1992 end-page: 250 article-title: Selecting zinc‐efficient cereal genotypes for soils of low zinc status publication-title: Plant and Soil – volume: 47 start-page: 329 year: 2006 end-page: 342 article-title: A putative novel role for plant defensins: a defensin from the zinc hyper‐accumulating plant, , confers zinc tolerance publication-title: Plant Journal – volume: 106 start-page: 93 year: 1987 end-page: 111 article-title: Metal tolerance publication-title: New Phytologist – volume: 43 start-page: 1 year: 2005 end-page: 11 article-title: Carbonic anhydrase in relation to higher plants publication-title: Photosynthetica – volume: 36 start-page: 323 year: 1972b end-page: 327 article-title: Zinc absorption by wheat seedlings. I. Inhibition by macronutrient ions in short‐term experiments and its relevance to long‐term zinc nutrition publication-title: Soil Science Society of America Proceedings – volume: 48 start-page: 935 year: 1997 end-page: 941 article-title: Kinetic parameters of Zn uptake by wheat are affected by the herbicide chlorosulfuron publication-title: Journal of Experimental Botany – volume: 337 start-page: 49 year: 2004 end-page: 63 article-title: A novel zinc‐binding motif revealed by solution structures of DNA‐binding domains of Arabidopsis SBP‐family transcription factors publication-title: Journal of Molecular Biology – volume: 64 start-page: 131 year: 1965 end-page: 143 article-title: Heavy metal tolerance in populations of Sibth. and other grasses publication-title: New Phytologist – volume: 119 start-page: 1047 year: 1999 end-page: 1055 article-title: Overexpression of a novel gene related to putative zinc‐transporter genes from animals can lead to enhanced zinc resistance and accumulation publication-title: Plant Physiology – volume: 26 start-page: 1657 year: 2003 end-page: 1672 article-title: Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of from western Europe publication-title: Plant, Cell & Environment – start-page: 135 year: 1993 end-page: 150 – volume: 27 start-page: 939 year: 1940 end-page: 951 article-title: Relationships between zinc and auxin in the growth of higher plants publication-title: American Journal of Botany – volume: 247 start-page: 3 year: 2002 end-page: 24 article-title: Plant nutrition research: priorities to meet human needs for food in sustainable ways publication-title: Plant and Soil – volume: 208 start-page: 103 year: 1999 end-page: 115 article-title: Root development of the zinc‐hyperaccumulator plant as affected by metal origin, content and localization in the soil publication-title: Plant and Soil – volume: 48 start-page: 145 year: 2006 end-page: 155 article-title: Organic acids accumulation and antioxidant enzyme activities in under Zn and Cd stress publication-title: Plant Growth Regulation – volume: 96 start-page: 153 year: 1986 end-page: 164 article-title: Cadmium and zinc influx characteristics by intact corn ( L.) seedlings publication-title: Plant and Soil – volume: 1 start-page: 81 year: 1989 end-page: 126 article-title: Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry publication-title: Biorecovery – volume: 130 start-page: 1815 year: 2002 end-page: 1826 article-title: Forms of zinc accumulated in the hyperaccumulator publication-title: Plant Physiology – volume: 155 start-page: 363 year: 2002 end-page: 372 article-title: Zincophilic root foraging in publication-title: New Phytologist – volume: 55 start-page: 727 year: 2004 end-page: 741 article-title: Transcriptional regulation and functional properties of Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants publication-title: Plant Molecular Biology – volume: 47 start-page: 1634 year: 2002 end-page: 1637 article-title: H: a new Zn hyperaccumulating plant first found in China publication-title: Chinese Science Bulletin – volume: 56 start-page: 37 year: 1996 end-page: 45 article-title: A re‐evaluation of species as geobotanical indicators of copper and cobalt publication-title: Journal of Geochemical Exploration – volume: 169 start-page: 505 year: 2006 end-page: 514 article-title: Within and between population variation for znic and nickel accumulation in two species of (Brassicaceae) publication-title: New Phytologist – volume: 74 start-page: 695 year: 1965 end-page: 799 article-title: Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District publication-title: Australia Transactions of the Institution of Mining and Metallurgy – volume: 55 start-page: 321 year: 2004 end-page: 336 article-title: Phylogenetic variation in the shoot mineral concentration of angiosperms publication-title: Journal of Experimental Botany – year: 1998 – volume: 157 start-page: 643 year: 2003 end-page: 648 article-title: Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of (Brassicaceae) publication-title: New Phytologist – volume: 116 start-page: 73 year: 2002 end-page: 78 article-title: Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings publication-title: Physiologia Plantarum – volume: 118 start-page: 219 year: 1998 end-page: 226 article-title: Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivars publication-title: Plant Physiology – volume: 1 start-page: 10 year: 2005 article-title: Using genomic DNA‐based probe‐selection to improve the sensitivity of high‐density oligonucleotide arrays when applied to heterologous species publication-title: Plant Methods – volume: 19 start-page: 7 year: 2005 end-page: 12 article-title: Zinc coordination environments in proteins determine zinc functions publication-title: Journal of Trace Elements in Medicine and Biology – volume: 113 start-page: 907 year: 2006 end-page: 920 article-title: QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator publication-title: Theoretical and Applied Genetics – volume: 145 start-page: 199 year: 2000 end-page: 210 article-title: Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator publication-title: New Phytologist – volume: 23 start-page: 507 year: 2000 end-page: 514 article-title: Zinc hyperaccumulation and cellular distribution in publication-title: Plant, Cell & Environment – volume: 120 start-page: 779 year: 1999 end-page: 785 article-title: Properties of enhanced tonoplast zinc transport in naturally selected zinc‐tolerant publication-title: Plant Physiology – volume: 50 start-page: 1245 year: 2003 end-page: 1256 article-title: Plant purple acid phosphatases – genes, structures and biological function publication-title: Acta Biochimica Polonica – volume: 170 start-page: 753 year: 2006 end-page: 766 article-title: The heavy metal hyperaccumulator expresses many species‐specific genes, as identified by comparative expressed sequence tag analysis publication-title: New Phytologist – volume: 72 start-page: 1700 year: 1985b end-page: 1706 article-title: Pollen selection and the gametophytic expression of metal tolerance in (Caryophyllaceae) and (Scrophulariaceae) publication-title: American Journal of Botany – volume: 269 start-page: 2403 year: 2002 end-page: 2413 article-title: Systematic search for zinc‐binding proteins in publication-title: European Journal of Biochemistry – volume: 271 start-page: 1081 year: 1996 end-page: 1085 article-title: The galvanization of biology: a growing appreciation for the roles of zinc publication-title: Science – volume: 84 start-page: 342 year: 2006 end-page: 362 article-title: Ribosomal protein gene regulation: what about plants? publication-title: Canadian Journal of Botany – volume: 15 start-page: 2911 year: 2003 end-page: 2928 article-title: Poplar Metal Tolerance Protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif publication-title: Plant Cell – volume: 153 start-page: 188 year: 1998 end-page: 191 article-title: Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in publication-title: Journal of Plant Physiology – volume: 54 start-page: 1431 year: 2003 end-page: 1446 article-title: Variation in the shoot calcium content of angiosperms publication-title: Journal of Experimental Botany – volume: 37 start-page: 309 year: 1988 end-page: 318 article-title: Nickel and zinc accumulation by species of L., L. & other genera of the Brassicaceae publication-title: Taxon – volume: 71 start-page: 121 year: 1979c end-page: 126 article-title: Differential cultivar tolerance in soybean to phytotoxic levels of soil Zn. 1. Range of cultivar response publication-title: Agronomy Journal – start-page: 193 year: 2000 end-page: 229 – volume: 561 start-page: 22 year: 2004 end-page: 28 article-title: AtHMA3, a plant P ‐ATPase, functions as a Cd/Pb transporter in yeast publication-title: FEBS Letters – volume: 50 start-page: 1888 year: 1996 end-page: 1895 article-title: Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of publication-title: Evolution – volume: 70 start-page: 77 year: 2001 end-page: 142 article-title: Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps publication-title: Advances in Agronomy – volume: 18 start-page: 275 year: 1983 end-page: 283 article-title: European species of L. (Cruciferae) as indicators of nickel and zinc publication-title: Journal of Geobotanical Exploration – volume: 152 start-page: 9 year: 2001 end-page: 27 article-title: Phylogenetic variation in heavy metal accumulation in angiosperms publication-title: New Phytologist – volume: 293 start-page: 215 year: 1999 end-page: 218 article-title: Zinc finger peptides for the regulation of gene expression publication-title: Journal of Molecular Biology – volume: 23 start-page: 552 year: 1972a end-page: 560 article-title: Zinc absorption by wheat seedlings and the nature of its inhibition by alkaline earth cations publication-title: Journal of Experimental Botany – volume: 39 start-page: 237 year: 2004 end-page: 251 article-title: The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator acts to enhance efflux of Zn at the plasma membrane when expressed in publication-title: Plant Journal – start-page: 125 year: 1887 end-page: 131 – year: 1992 – volume: 88 start-page: 6 year: 2006 end-page: 9 article-title: Environmental impact of the former Pb‐Zn mining and smelting in East Belgium publication-title: Journal of Geochemical Exploration – volume: 222 start-page: 716 end-page: 729 article-title: 2005. Variations in plant metallothioneins: the heavy metal hyperaccumulator as a study case publication-title: Planta – volume: 116 start-page: 1393 year: 1998 end-page: 1401 article-title: Development, characterization, and application of a cadmium‐selective microelectrode for the measurement of cadmium fluxes in roots of species and wheat publication-title: Plant Physiology – volume: 212 start-page: 475 year: 2001 end-page: 486 article-title: Molecular mechanisms of plant metal tolerance and homeostasis publication-title: Planta – volume: 95 start-page: 420 year: 2006 end-page: 425 article-title: Molecular mapping of quantitative trait loci for zinc toxicity in rice seedling ( L.) publication-title: Field Crops Research – volume: 101 start-page: 309 year: 1985 end-page: 315 article-title: Differential tolerance of three cultivars of L. to cadmium, copper, lead, nickel and zinc publication-title: New Phytologist – volume: 17 start-page: 1994 year: 2005 end-page: 2008 article-title: The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the leaf publication-title: Plant Cell – volume: 21 start-page: 459 year: 2006 end-page: 467 article-title: Characterizing the availability of metals in contaminated soils. II. The soil solution publication-title: Soil Use and Management – volume: 170 start-page: 239 year: 2006 end-page: 260 article-title: A comparison of the and shoot transcriptomes publication-title: New Phytologist – volume: 282 start-page: 227 year: 2006 end-page: 238 article-title: Analysis of micro‐nutrient behaviour in the rhizosphere using a DGT parameterised dynamic plant uptake model publication-title: Plant and Soil – volume: 19 start-page: 1541 year: 1996 end-page: 1550 article-title: Zinc hyperaccumulation in . II. Influence on organic acids publication-title: Journal of Plant Nutrition – volume: 19 start-page: 126 year: 1979b end-page: 128 article-title: Role of roots and shoots of soybean in tolerance to excess soil zinc publication-title: Crop Science – start-page: 15 year: 1993 end-page: 31 – volume: 54 start-page: 2601 year: 2003 end-page: 2613 article-title: Transition metal transporters in plants publication-title: Journal of Experimental Botany – volume: 10 start-page: 586 year: 2005 end-page: 593 article-title: Biofortifying crops with essential mineral elements publication-title: Trends in Plant Science – volume: 160 start-page: 211 year: 1915 end-page: 214 article-title: Détermination des éléments minéraux rares nécessaires au développement du maïs publication-title: Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences – volume: 69 start-page: 597 year: 1985c end-page: 602 article-title: The parallel expression of metal tolerance in pollen and sporophytes of (L.) Clairv, Silene alba (Mill) Krause and DC publication-title: Theoretical and Applied Genetics – volume: 579 start-page: 1515 year: 2005 end-page: 1522 article-title: Heavy metal transport by AtHMA4 involves the N‐terminal degenerated metal binding domain and the C‐terminal His stretch publication-title: FEBS Letters – volume: 24 start-page: 217 year: 2001 end-page: 226 article-title: Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator publication-title: Plant, Cell & Environment – volume: 102 start-page: 219 year: 1986 end-page: 233 article-title: . J. & C. Presl. ( L.) in Britain publication-title: New Phytologist – volume: 84 start-page: 449 year: 1973 end-page: 470 article-title: Conspectus der ‘ ’‐arten Europas, Afrikas und Vorderasiens publication-title: Feddes Repertorium – volume: 10 start-page: 313 year: 2005b end-page: 315 article-title: MTP1 mops up excess zinc in cells publication-title: Trends in Plant Science – volume: 124 start-page: 541 year: 1993 end-page: 559 article-title: The genetics of metal tolerance in vascular plants publication-title: New Phytologist – volume: 52 start-page: 891 year: 2001 end-page: 899 article-title: The pathways of calcium movement to the xylem publication-title: Journal of Experimental Botany – volume: 56 start-page: 765 year: 2005 end-page: 775 article-title: Distribution of cadmium in leaves of publication-title: Journal of Experimental Botany – volume: 19 start-page: 859 year: 1968 end-page: 868 article-title: Response of plant species to concentrations of zinc in solution. I. Growth and zinc content of plants publication-title: Australian Journal of Agricultural Research – volume: 32 start-page: 1231 year: 1994 end-page: 1242 article-title: Zinc buffer capacity of vertisols publication-title: Australian Journal of Soil Research – volume: 45 start-page: 1749 year: 2004 end-page: 1758 article-title: Zinc transporter of AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis publication-title: Plant and Cell Physiology – volume: 23 start-page: 675 year: 2000 end-page: 687 article-title: Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator publication-title: Plant, Cell & Environment – volume: 10 start-page: 491 year: 2005 end-page: 502 article-title: P ‐ATPases – an ancient family of transition metal pumps with diverse functions in plants publication-title: Trends in Plant Science – volume: 159 start-page: 411 year: 2003a end-page: 419 article-title: Differential metal‐specific tolerance and accumulation patterns among populations originating from different soil types publication-title: New Phytologist – volume: 4 start-page: 249 year: 2003 end-page: 264 article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data publication-title: Biostatistics – volume: 163 start-page: 299 year: 2004 end-page: 312 article-title: Co‐segregation analysis of cadmium and zinc accumulation in interecotypic crosses publication-title: New Phytologist – volume: 46 start-page: 861 year: 2006 end-page: 879 article-title: The metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply publication-title: Plant Journal – volume: 579 start-page: 4165 year: 2005 end-page: 4174 article-title: MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation publication-title: FEBS Letters – volume: 6 start-page: 3696 year: 2006 end-page: 3706 article-title: Multivariate analysis of protein profiles of metal hyperaccumulator accessions publication-title: Proteomics – volume: 136 start-page: 2734 year: 2004 end-page: 2746 article-title: Arabidopsis Cys2/His2‐type zinc‐finger proteins function as transcription repressors under drought, cold, and high‐salinity stress conditions publication-title: Plant Physiology – start-page: 1 year: 1993 end-page: 13 – volume: 97 start-page: 544 year: 2001 end-page: 547 article-title: Phylogenetic trends in Ni‐accumulating plants publication-title: South African Journal of Science – volume: 170 start-page: 21 year: 2006 end-page: 32 article-title: Construction of a genetic linkage map of and quantitative trait loci analysis of zinc accumulation publication-title: New Phytologist – volume: 125 start-page: 183 year: 1997 end-page: 199 article-title: Molecular data reveal convergence in fruit characters used in the classification of s.1 (Brassicaceae) publication-title: Botanical Journal of the Linnean Society – volume: 14 start-page: 271 year: 2001 end-page: 313 article-title: Zinc coordination sphere in biochemical zinc sites publication-title: Biometals – volume: 39 start-page: 125 year: 1973 end-page: 129 article-title: Kinetics of zinc absorption by excised roots of two sugarcane clones publication-title: Plant and Soil – volume: 45 start-page: 137 year: 1976 end-page: 143 article-title: Interaction of zinc with other micronutrient cations. I. Effect of copper on zinc absorption by wheat seedlings and its translocation within the plants publication-title: Plant and Soil – volume: 38 start-page: 621 year: 1973 end-page: 635 article-title: Uptake of solutes by multiple root systems from soil III: A model for calculating the solute uptake by a randomly dispersed root system developing in a finite volume of soil publication-title: Plant and Soil – volume: 37 start-page: 251 year: 2004 end-page: 268 article-title: Cross‐species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator publication-title: Plant Journal – volume: 33 start-page: 713 year: 1999 end-page: 717 article-title: Zinc ligands in the metal hyperaccumulator as determined using X‐ray absorption spectroscopy publication-title: Environmental Science and Technology – volume: 136 start-page: 3712 year: 2004 end-page: 3723 article-title: Arabidopsis HMA2, a divalent heavy metal‐transportnig P ‐type ATPase, is involved in cytoplasmic Zn homeostasis publication-title: Plant Physiology – volume: 5 start-page: 39 year: 2004 article-title: Conservation, diversification and expansion of C H zinc finger proteins in the genome publication-title: BMC Genomics – year: 1983 – start-page: 159 year: 2000 end-page: 169 – volume: 126 start-page: 407 year: 2006 end-page: 417 article-title: Progress in the genetic understanding of plant iron and zinc nutrition publication-title: Physiologia Plantarum – volume: 71 start-page: 126 year: 1979a end-page: 131 article-title: Differential cultivar tolerance in soybean to phytotoxic levels of soil Zn. 2. Range of Zn additions and the uptake and translocation of Zn, Mn, Fe, and P publication-title: Agronomy Journal – volume: 249 start-page: 1 year: 2003 end-page: 8 article-title: Metal accumulation and competitive ability in metallicolous and non‐metallicolous fed with different Zn salts publication-title: Plant and Soil – volume: 7 start-page: 491 year: 2004 end-page: 498 article-title: WRKY transcription factors: from DNA binding towards biological function publication-title: Current Opinion in Plant Biology – volume: 97 start-page: 4956 year: 2000 end-page: 4960 article-title: The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator publication-title: Proceedings of the National Academy of Sciences, USA – volume: 159 start-page: 421 year: 2003 end-page: 430 article-title: Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area publication-title: New Phytologist – volume: 188 start-page: 309 year: 1997 end-page: 317 article-title: Chlorsulfuron reduces rates of zinc uptake by wheat seedlings from solution culture publication-title: Plant and Soil – volume: 14 start-page: 331 year: 2001 end-page: 341 article-title: Functions of zinc in signaling, proliferation and differentiation of mammalian cells publication-title: Biometals – volume: 146 start-page: 225 year: 2000 end-page: 233 article-title: Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of (Brassicaceae) publication-title: New Phytologist – volume: 41 start-page: 229 year: 1992 end-page: 248 article-title: Metal tolerance in plants publication-title: Acta Botanica Neerlandica – year: 1948 – volume: 9 start-page: 490 year: 2004 end-page: 498 article-title: Reactive oxygen gene network of plants publication-title: Trends in Plant Science – volume: 160 start-page: 615 year: 2003 end-page: 626 article-title: Colonization of pennycresses ( spp.) of the Brassicaceae by arbuscular mycorrhizal fungi publication-title: Journal of Plant Physiology – volume: 55 start-page: 353 year: 2004 end-page: 364 article-title: Breeding for micronutrients in staple food crops from a human nutrition perspective publication-title: Journal of Experimental Botany – volume: 21 start-page: 539 year: 2002 end-page: 566 article-title: The genetic basis of metal hyperaccumulation in plants publication-title: Critical Reviews in Plant Sciences – volume: 142 start-page: 731 year: 2006 end-page: 741 article-title: Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance publication-title: Plant Physiology – volume: 151 start-page: 67 year: 2001 end-page: 89 article-title: MAP kinase signal transduction pathways in plants publication-title: New Phytologist – volume: 153 start-page: 201 year: 2002b end-page: 207 article-title: Does zinc move apoplastically to the xylem in roots of ? publication-title: New Phytologist – volume: 159 start-page: 341 year: 2003 end-page: 350 article-title: How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants publication-title: New Phytologist – volume: 103 start-page: 1305 year: 1993 end-page: 1309 article-title: Increased zinc tolerance in (Moench) Garcke is not due to increased production of phytochelatins publication-title: Plant Physiology – volume: 132 start-page: 113 year: 1996 end-page: 118 article-title: Quantitative genetics of zinc hyperaccumulation in publication-title: New Phytologist – volume: 266 start-page: 2175 year: 1999 end-page: 2179 article-title: Zinc tolerance and hyperaccumulation are genetically independent characters publication-title: Proceeedings of the Royal Society of London Series B-Biological Sciences – volume: 125 start-page: 164 year: 2001 end-page: 167 article-title: Fortified foods and phytoremediation. Two sides of the same coin publication-title: Plant Physiology – volume: 4 start-page: 45 year: 1990 end-page: 51 article-title: Evolutionary biology of metal resistance in publication-title: Evolutionary Trends in Plants – volume: 15 start-page: 3045 year: 2006 end-page: 3059 article-title: Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation publication-title: Molecular Ecology – volume: 164 start-page: 289 year: 2004 end-page: 295 article-title: Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, and publication-title: New Phytologist – volume: 149 start-page: 53 year: 2001 end-page: 60 article-title: Physiological evidence for a high‐affinity cadmium transporter highly expressed in a publication-title: Thlaspi caerulescens ecotype. New Phytologist – volume: 58 start-page: 839 year: 2005 end-page: 855 article-title: The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation publication-title: Plant Molecular Biology – volume: 3 start-page: 215 year: 1981 end-page: 223 article-title: Kinetics of active uptake of boron, zinc, copper and manganese in barley and sugarcane publication-title: Journal of Plant Nutrition – start-page: 265 year: 2005 end-page: 286 – volume: 65 start-page: 179 year: 1990 end-page: 188 article-title: Genetic variation between and within populations of a perennial grass – publication-title: Heredity – volume: 165 start-page: 503 year: 2005 end-page: 512 article-title: on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition publication-title: New Phytologist – volume: 57 start-page: 2967 year: 2006 end-page: 2983 article-title: Comparative cDNA‐AFLP analysis of Cd‐tolerant and ‐sensitive genotypes derived from crosses between the Cd hyperaccumulator ssp. publication-title: Journal of Experimental Botany – year: 2006 – volume: 46 start-page: 251 year: 1977 end-page: 257 article-title: Comparative study of metal levels in plants from two contrasting lead‐mine sites publication-title: Plant and Soil – volume: 98 start-page: 9995 year: 2001 end-page: 10000 article-title: Functional activity and role of cation‐efflux family members in Ni hyperaccumulation in publication-title: Proceedings of the National Academy of Sciences, USA – volume: 37 start-page: 269 year: 2004 end-page: 281 article-title: Comparative microarray analysis of and roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors publication-title: Plant Journal – volume: 227 start-page: 209 year: 2001 end-page: 225 article-title: s.str. (Brassicaceae) versus s.1. morphological and anatomical characters in the light of ITS nrDNA sequence data publication-title: Plant Systematics and Evolution – volume: 576 start-page: 306 year: 2004 end-page: 312 article-title: Overexpression of AtHMA4 enhances root‐to‐shoot translocation of zinc and cadmium and plant metal tolerance publication-title: FEBS Letters – volume: 98 start-page: 191 year: 1984 end-page: 204 article-title: Studies on metal uptake by plants from serpentine and non‐seprentine populations of Hálácsy (Cruciferae) publication-title: New Phytologist – ident: e_1_2_8_132_1 doi: 10.1104/pp.112.4.1715 – ident: e_1_2_8_261_1 doi: 10.1079/SUM2005348 – ident: e_1_2_8_47_1 doi: 10.1007/s00775-005-0056-7 – ident: e_1_2_8_121_1 doi: 10.1006/jmbi.1999.3007 – ident: e_1_2_8_228_1 doi: 10.1111/j.1399-3054.1978.tb02546.x – volume-title: Lectures on the inorganic nutrition of plants year: 1948 ident: e_1_2_8_109_1 – ident: e_1_2_8_189_1 doi: 10.1093/jxb/48.4.935 – ident: e_1_2_8_263_1 article-title: Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non‐hyperaccumulator Thlaspi arvense publication-title: International Journal of Environment and Pollution. – start-page: 287 volume-title: Plant nutritional genomics year: 2005 ident: e_1_2_8_252_1 – ident: e_1_2_8_62_1 doi: 10.1111/j.1469-8137.1980.tb04777.x – ident: e_1_2_8_255_1 doi: 10.1104/pp.106.085225 – ident: e_1_2_8_231_1 doi: 10.1016/j.febslet.2005.01.065 – ident: e_1_2_8_23_1 doi: 10.2136/sssaj1980.03615995004400060028x – ident: e_1_2_8_118_1 doi: 10.1007/BF00693131 – ident: e_1_2_8_215_1 doi: 10.2307/2402534 – ident: e_1_2_8_102_1 doi: 10.1111/j.1469-8137.2006.01662.x – ident: e_1_2_8_12_1 doi: 10.1046/j.1469-8137.2003.00758.x – ident: e_1_2_8_36_1 doi: 10.1007/BF02380592 – ident: e_1_2_8_212_1 – ident: e_1_2_8_93_1 doi: 10.1016/S0014-5793(04)00072-9 – ident: e_1_2_8_138_1 doi: 10.1023/B:PLAN.0000038271.96019.aa – ident: e_1_2_8_260_1 doi: 10.1007/BF03184113 – ident: e_1_2_8_256_1 doi: 10.1007/s10725-005-5816-4 – volume-title: Zinc in soils and crop nutrition. year: 2004 ident: e_1_2_8_3_1 – ident: e_1_2_8_83_1 doi: 10.1007/978-94-011-2270-2 – ident: e_1_2_8_14_1 doi: 10.1080/01904168109362867 – ident: e_1_2_8_230_1 doi: 10.1016/j.febslet.2004.09.023 – ident: e_1_2_8_216_1 doi: 10.1104/pp.1.3.231 – ident: e_1_2_8_108_1 doi: 10.1016/S0044-328X(76)80127-4 – ident: e_1_2_8_221_1 doi: 10.1080/00378941.1887.10830217 – ident: e_1_2_8_125_1 doi: 10.1007/s006060170049 – ident: e_1_2_8_223_1 doi: 10.1080/01904169609365220 – ident: e_1_2_8_211_1 doi: 10.1007/BF00251110 – ident: e_1_2_8_100_1 doi: 10.1093/jexbot/53.366.1 – ident: e_1_2_8_268_1 doi: 10.1046/j.1365-3040.2000.00569.x – volume: 1 start-page: 81 year: 1989 ident: e_1_2_8_16_1 article-title: Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry publication-title: Biorecovery – ident: e_1_2_8_169_1 doi: 10.18388/abp.2003_3648 – ident: e_1_2_8_251_1 doi: 10.1046/j.1469-8137.2000.00570.x – ident: e_1_2_8_122_1 doi: 10.1023/A:1004255323909 – ident: e_1_2_8_200_1 doi: 10.1016/S0168-9452(98)00112-5 – ident: e_1_2_8_269_1 doi: 10.1046/j.1365-3040.1998.00270.x – ident: e_1_2_8_2_1 doi: 10.1007/978-94-011-1344-1 – ident: e_1_2_8_67_1 doi: 10.1105/tpc.009134 – ident: e_1_2_8_155_1 doi: 10.2134/jeq1983.00472425001200010004x – ident: e_1_2_8_176_1 doi: 10.1104/pp.116.4.1393 – ident: e_1_2_8_92_1 doi: 10.1016/S0065-2113(01)70004-1 – ident: e_1_2_8_243_1 doi: 10.1016/S0005-2736(02)00509-6 – ident: e_1_2_8_89_1 doi: 10.1111/j.1399-3054.2006.00646.x – ident: e_1_2_8_170_1 doi: 10.1126/science.1060331 – ident: e_1_2_8_60_1 doi: 10.1016/j.pbi.2006.03.015 – ident: e_1_2_8_224_1 doi: 10.1002/pmic.200501357 – ident: e_1_2_8_114_1 doi: 10.1105/tpc.020487 – ident: e_1_2_8_42_1 doi: 10.1079/9780851992365.0000 – ident: e_1_2_8_145_1 doi: 10.1111/j.1469-8137.2004.01178.x – volume: 97 start-page: 544 year: 2001 ident: e_1_2_8_33_1 article-title: Phylogenetic trends in Ni‐accumulating plants publication-title: South African Journal of Science – ident: e_1_2_8_244_1 doi: 10.1016/j.tplants.2005.10.001 – ident: e_1_2_8_265_1 doi: 10.1186/1471-2148-5-1 – ident: e_1_2_8_123_1 doi: 10.1093/pcp/pci015 – ident: e_1_2_8_15_1 doi: 10.1111/j.1469-8137.1987.tb04685.x – ident: e_1_2_8_236_1 doi: 10.1046/j.1365-313X.2003.01960.x – start-page: 7 volume-title: Heavy metal tolerance in plants: evolutionary aspects. year: 1990 ident: e_1_2_8_88_1 – ident: e_1_2_8_165_1 doi: 10.1111/j.1095-8339.1997.tb02253.x – ident: e_1_2_8_10_1 doi: 10.1111/j.1365-3040.2001.00666.x – ident: e_1_2_8_250_1 doi: 10.1023/A:1022542725880 – ident: e_1_2_8_29_1 doi: 10.1023/A:1012905406548 – ident: e_1_2_8_178_1 doi: 10.1080/0735-260291044359 – ident: e_1_2_8_264_1 doi: 10.1111/j.1469-8137.2004.01113.x – start-page: 50 volume-title: Land treatment of hazardous wastes. year: 1983 ident: e_1_2_8_50_1 – ident: e_1_2_8_253_1 doi: 10.1016/j.tplants.2005.08.008 – ident: e_1_2_8_150_1 doi: 10.1139/b06-014 – ident: e_1_2_8_152_1 doi: 10.1023/A:1009717619579 – ident: e_1_2_8_127_1 doi: 10.1016/j.copbio.2005.02.006 – ident: e_1_2_8_25_1 doi: 10.1126/science.271.5252.1081 – ident: e_1_2_8_247_1 doi: 10.2134/agronj1979.00021962007100010031x – ident: e_1_2_8_161_1 doi: 10.1111/j.1365-3040.2001.00669.x – ident: e_1_2_8_193_1 doi: 10.1046/j.1365-313x.2001.01163.x – ident: e_1_2_8_203_1 – ident: e_1_2_8_163_1 doi: 10.1111/j.1365-3040.2004.01264.x – ident: e_1_2_8_107_1 doi: 10.1034/j.1399-3054.2002.1160109.x – ident: e_1_2_8_79_1 doi: 10.1111/j.1438-8677.1992.tb01332.x – ident: e_1_2_8_197_1 doi: 10.1104/pp.104.046599 – ident: e_1_2_8_40_1 doi: 10.1093/jxb/erh002 – ident: e_1_2_8_254_1 doi: 10.1016/S0005-2736(00)00133-4 – ident: e_1_2_8_31_1 doi: 10.1021/ar030182c – ident: e_1_2_8_120_1 doi: 10.1111/j.1365-313X.2004.02126.x – ident: e_1_2_8_196_1 doi: 10.1074/jbc.M106276200 – ident: e_1_2_8_270_1 doi: 10.1007/s11103-005-8268-3 – ident: e_1_2_8_192_1 doi: 10.1111/j.1469-8137.1956.tb05291.x – ident: e_1_2_8_129_1 doi: 10.1007/s004250000366 – ident: e_1_2_8_249_1 doi: 10.1016/S0378-4290(98)00130-0 – ident: e_1_2_8_58_1 doi: 10.1105/tpc.105.032771 – ident: e_1_2_8_82_1 doi: 10.1111/j.1365-294X.2006.02981.x – ident: e_1_2_8_72_1 doi: 10.1046/j.1469-8137.2003.00684.x – ident: e_1_2_8_9_1 doi: 10.1046/j.1469-8137.2003.00819.x – start-page: 358 volume-title: Biological implications of metals in the environment. Proceedings of the Fifteenth Hanford Life Sciences Symposium. year: 1977 ident: e_1_2_8_21_1 – ident: e_1_2_8_240_1 doi: 10.1023/A:1004256429979 – ident: e_1_2_8_5_1 doi: 10.1038/hdy.1968.30 – ident: e_1_2_8_52_1 doi: 10.1104/pp.120.3.779 – ident: e_1_2_8_143_1 doi: 10.1146/annurev.arplant.49.1.643 – ident: e_1_2_8_154_1 doi: 10.1002/fedr.19790900302 – start-page: 201 volume-title: Plant nutritional genomics year: 2005 ident: e_1_2_8_233_1 – ident: e_1_2_8_44_1 doi: 10.1042/BST0320589 – ident: e_1_2_8_57_1 doi: 10.1146/annurev.biophys.34.040204.144452 – ident: e_1_2_8_32_1 doi: 10.2134/agronj1971.00021962006300060015x – ident: e_1_2_8_156_1 doi: 10.1046/j.1365-313X.2003.01790.x – volume: 160 start-page: 211 year: 1915 ident: e_1_2_8_149_1 article-title: Détermination des éléments minéraux rares nécessaires au développement du maïs publication-title: Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences – start-page: 235 volume-title: Heavy metal tolerance in plants: evolutionary aspects. year: 1990 ident: e_1_2_8_140_1 – ident: e_1_2_8_106_1 doi: 10.1104/pp.118.1.219 – ident: e_1_2_8_27_1 doi: 10.1046/j.1469-8137.2002.00432.x – ident: e_1_2_8_81_1 doi: 10.1016/S1360-1385(00)01600-9 – ident: e_1_2_8_188_1 doi: 10.1081/CSS-100104107 – ident: e_1_2_8_262_1 doi: 10.1104/pp.119.3.1047 – ident: e_1_2_8_257_1 doi: 10.1111/j.1469-8137.1975.tb01391.x – ident: e_1_2_8_210_1 doi: 10.1002/j.1537-2197.1985.tb08441.x – ident: e_1_2_8_187_1 doi: 10.1007/BF00197584 – volume: 552 start-page: 1 year: 2004 ident: e_1_2_8_46_1 article-title: Identification and correction of widespread zinc deficiency in Turkey – a success story (a NATO‐Science for Stability Project) publication-title: Proceedings of the International Fertiliser Society – ident: e_1_2_8_24_1 doi: 10.1046/j.1365-313X.2003.01959.x – ident: e_1_2_8_98_1 doi: 10.1046/j.1469-8137.2003.00826.x – ident: e_1_2_8_164_1 doi: 10.1007/BF02374760 – ident: e_1_2_8_84_1 doi: 10.1146/annurev.pp.29.060178.002455 – ident: e_1_2_8_105_1 doi: 10.1104/pp.103.4.1305 – ident: e_1_2_8_226_1 doi: 10.1016/S0176-1617(11)81091-6 – ident: e_1_2_8_13_1 doi: 10.1023/A:1012976615056 – ident: e_1_2_8_134_1 doi: 10.1007/s11104-005-5848-6 – ident: e_1_2_8_159_1 doi: 10.1016/j.tplants.2004.08.009 – ident: e_1_2_8_162_1 doi: 10.1046/j.1469-8137.2001.00167.x – volume-title: Soil nutrient bioavailability year: 1995 ident: e_1_2_8_20_1 – ident: e_1_2_8_86_1 doi: 10.1046/j.1469-8137.2003.00701.x – ident: e_1_2_8_18_1 doi: 10.1007/BF00010701 – ident: e_1_2_8_141_1 doi: 10.1111/j.1469-8137.1993.tb03846.x – ident: e_1_2_8_190_1 doi: 10.1104/pp.103.037788 – ident: e_1_2_8_117_1 doi: 10.1093/biostatistics/4.2.249 – ident: e_1_2_8_208_1 doi: 10.1023/A:1004519611152 – ident: e_1_2_8_183_1 doi: 10.1016/0375-6742(83)90073-0 – ident: e_1_2_8_220_1 doi: 10.1111/j.1469-8137.2005.01625.x – ident: e_1_2_8_234_1 doi: 10.1111/j.1365-3040.2004.01189.x – volume-title: Enzyme nomenclature, recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology year: 1992 ident: e_1_2_8_235_1 – ident: e_1_2_8_137_1 doi: 10.1046/j.1469-8137.2001.00003.x – ident: e_1_2_8_241_1 doi: 10.1006/anbo.1997.0554 – ident: e_1_2_8_63_1 doi: 10.1093/jxb/erl062 – ident: e_1_2_8_246_1 doi: 10.2135/cropsci1979.0011183X001900010034x – ident: e_1_2_8_103_1 doi: 10.1186/1746-4811-1-10 – ident: e_1_2_8_222_1 doi: 10.1007/s11099-005-1011-0 – ident: e_1_2_8_142_1 doi: 10.1016/S0065-2296(05)40002-6 – ident: e_1_2_8_186_1 doi: 10.1078/0176-1617-00988 – ident: e_1_2_8_218_1 doi: 10.1104/pp.105.076232 – ident: e_1_2_8_209_1 doi: 10.1002/j.1537-2197.1985.tb08440.x – ident: e_1_2_8_204_1 doi: 10.1093/jxb/erf107 – volume-title: Chemical equilibria in soils year: 1979 ident: e_1_2_8_135_1 – ident: e_1_2_8_172_1 doi: 10.1016/0375-6742(95)00048-8 – ident: e_1_2_8_74_1 doi: 10.2134/agronj1943.00021962003500120003x – ident: e_1_2_8_198_1 doi: 10.1021/es980825x – ident: e_1_2_8_28_1 doi: 10.1046/j.1469-8137.2000.00634.x – ident: e_1_2_8_115_1 doi: 10.1104/pp.104.041723 – ident: e_1_2_8_195_1 doi: 10.1046/j.1365-3040.2003.01084.x – ident: e_1_2_8_227_1 doi: 10.1111/j.1438-8677.1994.tb00792.x – ident: e_1_2_8_201_1 doi: 10.1104/pp.007799 – ident: e_1_2_8_8_1 doi: 10.1111/j.1365-313X.2006.02746.x – ident: e_1_2_8_177_1 doi: 10.1111/j.1469-8137.1996.tb04515.x – volume-title: Mineral nutrition of higher plants year: 1995 ident: e_1_2_8_146_1 – ident: e_1_2_8_173_1 doi: 10.1046/j.1469-8137.2003.00822.x – ident: e_1_2_8_48_1 doi: 10.1016/j.gexplo.2005.08.005 – ident: e_1_2_8_153_1 doi: 10.1002/fedr.19730840503 – ident: e_1_2_8_64_1 doi: 10.1071/SR9941231 – volume: 4 start-page: 45 year: 1990 ident: e_1_2_8_78_1 article-title: Evolutionary biology of metal resistance in Silene vulgaris publication-title: Evolutionary Trends in Plants – ident: e_1_2_8_214_1 doi: 10.1002/j.1537-2197.1940.tb13958.x – ident: e_1_2_8_171_1 doi: 10.1104/pp.104.044503 – ident: e_1_2_8_56_1 doi: 10.2136/sssaj1972.03615995003600020035x – volume-title: PhD thesis. year: 2004 ident: e_1_2_8_219_1 – ident: e_1_2_8_55_1 doi: 10.2136/sssaj1972.03615995003600020034x – ident: e_1_2_8_43_1 doi: 10.1007/BF00007879 – ident: e_1_2_8_4_1 doi: 10.1021/pr050361j – ident: e_1_2_8_22_1 doi: 10.1007/978-94-011-0878-2_2 – ident: e_1_2_8_61_1 doi: 10.1093/jxb/eri062 – ident: e_1_2_8_87_1 doi: 10.1046/j.1365-3040.2000.00590.x – ident: e_1_2_8_217_1 doi: 10.1111/j.1469-8137.1985.tb02837.x – ident: e_1_2_8_180_1 doi: 10.2307/1222140 – ident: e_1_2_8_119_1 doi: 10.1046/j.1432-1033.2002.02900.x – ident: e_1_2_8_71_1 doi: 10.1111/j.1365-313X.2004.02143.x – ident: e_1_2_8_99_1 doi: 10.1046/j.1469-8137.2002.00484.x – ident: e_1_2_8_160_1 doi: 10.1111/j.1469-8137.2004.01240.x – ident: e_1_2_8_245_1 doi: 10.2134/agronj1979.00021962007100010032x – ident: e_1_2_8_266_1 doi: 10.1079/SUM2005349 – ident: e_1_2_8_128_1 doi: 10.1016/j.tplants.2005.05.008 – ident: e_1_2_8_124_1 doi: 10.1600/036364404774195566 – ident: e_1_2_8_90_1 doi: 10.1016/j.scitotenv.2004.12.031 – ident: e_1_2_8_17_1 doi: 10.1111/j.1469-8137.1994.tb04259.x – ident: e_1_2_8_206_1 doi: 10.1111/j.1558-5646.1996.tb03576.x – ident: e_1_2_8_6_1 doi: 10.2307/2258352 – ident: e_1_2_8_147_1 doi: 10.1104/pp.126.4.1646 – ident: e_1_2_8_80_1 doi: 10.1046/j.1469-8137.2000.00599.x – ident: e_1_2_8_259_1 doi: 10.1093/pcp/pch055 – ident: e_1_2_8_7_1 doi: 10.1016/j.febslet.2004.05.036 – ident: e_1_2_8_111_1 doi: 10.1093/aob/mci255 – ident: e_1_2_8_232_1 doi: 10.1016/j.envpol.2004.06.021 – ident: e_1_2_8_238_1 doi: 10.1111/j.1469-8137.2004.01307.x – ident: e_1_2_8_35_1 doi: 10.1080/01904168109362830 – ident: e_1_2_8_69_1 doi: 10.1016/j.febslet.2005.06.046 – ident: e_1_2_8_112_1 doi: 10.1007/s11104-005-3937-1 – ident: e_1_2_8_199_1 doi: 10.1146/annurev.arplant.49.1.643 – ident: e_1_2_8_158_1 doi: 10.1007/s11103-004-1965-5 – ident: e_1_2_8_113_1 doi: 10.1080/00380768.1984.10434720 – ident: e_1_2_8_175_1 doi: 10.1073/pnas.171039798 – ident: e_1_2_8_65_1 doi: 10.1080/00103629309368925 – ident: e_1_2_8_139_1 doi: 10.1007/s00425-004-1392-5 – ident: e_1_2_8_41_1 doi: 10.1046/j.0028-646x.2001.00238.x – ident: e_1_2_8_97_1 doi: 10.1104/pp.125.1.456 – ident: e_1_2_8_37_1 doi: 10.1007/BF02370159 – ident: e_1_2_8_130_1 doi: 10.1104/pp.103.032953 – ident: e_1_2_8_179_1 doi: 10.5109/4658 – ident: e_1_2_8_207_1 doi: 10.1111/j.1399-3054.1965.tb06945.x – ident: e_1_2_8_73_1 doi: 10.1038/hdy.1990.86 – ident: e_1_2_8_126_1 doi: 10.1016/S0305-1978(98)00057-X – ident: e_1_2_8_168_1 doi: 10.1126/science.272.5259.223 – ident: e_1_2_8_75_1 doi: 10.1016/S0076-6879(05)01011-6 – ident: e_1_2_8_205_1 doi: 10.1046/j.1469-8137.1997.00756.x – ident: e_1_2_8_148_1 doi: 10.1111/j.1399-3054.1977.tb01509.x – ident: e_1_2_8_181_1 doi: 10.1111/j.1469-8137.1984.tb06108.x – ident: e_1_2_8_59_1 doi: 10.1007/s004250000458 – ident: e_1_2_8_191_1 doi: 10.1111/j.1469-8137.2006.01714.x – ident: e_1_2_8_101_1 doi: 10.1093/jxb/erg303 – ident: e_1_2_8_166_1 doi: 10.2307/2419713 – ident: e_1_2_8_157_1 doi: 10.1111/j.1365-313X.2006.02788.x – ident: e_1_2_8_184_1 doi: 10.1002/j.1537-2197.1983.tb07919.x – ident: e_1_2_8_96_1 doi: 10.1104/pp.125.1.164 – ident: e_1_2_8_34_1 doi: 10.1007/BF00018051 – ident: e_1_2_8_94_1 doi: 10.1111/j.1469-8137.1965.tb05381.x – ident: e_1_2_8_229_1 doi: 10.1016/S0176-1617(98)80064-3 – ident: e_1_2_8_248_1 doi: 10.1046/j.0028-646X.2001.00325.x – ident: e_1_2_8_51_1 doi: 10.1007/978-94-011-0878-2_10 – ident: e_1_2_8_104_1 doi: 10.1016/j.mib.2005.02.001 – ident: e_1_2_8_225_1 doi: 10.1016/j.pbi.2004.07.012 – ident: e_1_2_8_242_1 doi: 10.1093/jexbot/52.358.891 – ident: e_1_2_8_110_1 doi: 10.2307/2425864 – ident: e_1_2_8_76_1 doi: 10.1186/1471-2164-5-39 – ident: e_1_2_8_77_1 doi: 10.1104/pp.104.046292 – ident: e_1_2_8_45_1 doi: 10.1023/A:1021194511492 – ident: e_1_2_8_19_1 doi: 10.1007/978-94-011-0878-2_1 – ident: e_1_2_8_39_1 doi: 10.1093/jxb/erg143 – ident: e_1_2_8_49_1 doi: 10.1071/AR9680859 – ident: e_1_2_8_144_1 doi: 10.1016/j.jtemb.2005.02.003 – ident: e_1_2_8_174_1 doi: 10.1073/pnas.97.9.4956 – ident: e_1_2_8_70_1 doi: 10.1016/j.fcr.2005.03.005 – ident: e_1_2_8_85_1 doi: 10.1111/j.1469-8137.2004.01227.x – start-page: 265 volume-title: Plant nutritional genomics year: 2005 ident: e_1_2_8_95_1 – ident: e_1_2_8_185_1 doi: 10.1080/15226510108500054 – volume-title: PhD thesis. year: 1995 ident: e_1_2_8_136_1 – ident: e_1_2_8_151_1 doi: 10.1023/A:1022510130148 – ident: e_1_2_8_213_1 doi: 10.1046/j.1365-3040.1997.d01-134.x – ident: e_1_2_8_54_1 doi: 10.1093/jxb/23.2.552 – ident: e_1_2_8_30_1 doi: 10.1105/tpc.017541 – start-page: 193 volume-title: Phytoremediation of toxic metals: using plants to clean up the environment year: 2000 ident: e_1_2_8_182_1 – ident: e_1_2_8_237_1 doi: 10.1111/j.1365-3040.2005.01479.x – ident: e_1_2_8_53_1 doi: 10.1023/A:1007620627083 – volume: 74 start-page: 695 year: 1965 ident: e_1_2_8_167_1 article-title: Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District publication-title: Australia Transactions of the Institution of Mining and Metallurgy – ident: e_1_2_8_26_1 doi: 10.1016/j.febslet.2004.05.036 – ident: e_1_2_8_116_1 doi: 10.1111/j.1469-8137.1986.tb00812.x – ident: e_1_2_8_194_1 doi: 10.1007/s00425-005-0006-1 – ident: e_1_2_8_66_1 doi: 10.1007/s11104-005-0099-0 – ident: e_1_2_8_68_1 doi: 10.1007/s00122-006-0350-y – ident: e_1_2_8_258_1 doi: 10.1016/j.jmb.2004.01.015 – ident: e_1_2_8_38_1 doi: 10.1007/BF00011135 – ident: e_1_2_8_11_1 doi: 10.1111/j.1469-8137.2005.01631.x – ident: e_1_2_8_131_1 doi: 10.1104/pp.119.1.305 – ident: e_1_2_8_267_1 doi: 10.1093/jexbot/53.368.535 – ident: e_1_2_8_202_1 doi: 10.1046/j.1469-8137.2001.00034.x – start-page: 159 volume-title: Phytoremediation of contaminated soil and water. year: 2000 ident: e_1_2_8_133_1 – ident: e_1_2_8_91_1 doi: 10.1007/BF00012018 – ident: e_1_2_8_239_1 doi: 10.1093/jxb/erh064 |
| SSID | ssj0009562 |
| Score | 2.496453 |
| SecondaryResourceType | review_article |
| Snippet | Contents
Summary 677
I.
Physical and chemical properties of zinc 678
II.
Biochemical properties of zinc 678
III.
Proteins interacting with zinc 678
IV. ... Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the... ContentsSummary677I.Physical and chemical properties of zinc678II.Biochemical properties of zinc678III.Proteins interacting with zinc678IV.Zinc fluxes in the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 677 |
| SubjectTerms | analysis anatomy & histology Arabidopsis Arabidopsis halleri biofortification Biological Evolution Brassicaceae cadmium (Cd) chemistry Genechip genetic variation genetics humans hyperaccumulation hyperaccumulators ion transport Magnoliopsida Magnoliopsida - metabolism meta-analysis metabolism Noccaea caerulescens nutrient deficiencies physicochemical properties plant proteins plant response Plant Roots Plant Roots - anatomy & histology Plant Roots - metabolism Plant Shoots Plant Shoots - metabolism Plants Plants - genetics Plants - metabolism soil Soil - analysis surveys Thlaspi caerulescens toxicity transcriptomics uptake kinetics zinc Zinc - chemistry Zinc - metabolism Zinc - toxicity |
| Title | Zinc in plants |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2007.01996.x https://www.ncbi.nlm.nih.gov/pubmed/17286818 https://www.proquest.com/docview/20463663 https://www.proquest.com/docview/47253209 https://www.proquest.com/docview/68992521 |
| Volume | 173 |
| WOSCitedRecordID | wos000244060200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-8137 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1B6YED-xaWkgPXoKxejmxVkaqoQhQiLpFjO1KlKq26IPh77CQtBKhUIS5RDuPIzvh5np3JG4AL12aSq7BhIRIIyxccWdRLhcVZgplAnIo8N-epjcOQRBHtlPlP-l-YQh9ifuCmkZGv1xrgLBl_B7k-wvJwqUSoE2ovNZ90_Byjz_fhF_1d5M4EmZGPompSz68PqkaqH_SzymbzcNTc-s-BbMNmSUrNq2IW7cCKzHahfj1QxPF9DzZeehk3e5k57OukmX3oNu8eb1pWWUbB4gqQSF2FQh0TTKpNpxRU2FwSItM0cCTP9fElQ77kacAxSVX4F56K8pL41E0FsZl3ALVskMkjMJmiG1StCtyWyE-ZR1yaYOwEAiUk8dPEADx7ZTEvNcZ1qYt-XNlr0FgPVlfAxHE-2PjNAGfecljobCzR5nzmlViBQn_pYJkcTMfKSuugIW-xhY9dXRKDLrZAaifqKnJjwGHh8M9-YZcgRXQMQLlfl-5wHHZa-u74rw1PYL04W9Y5cKdQm4ym8gzq_HXSG48asIoj0oC124dmt93I5_8HsN_9Lw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kFvTg-xVfzcFrJE02-ziqWCrW0EPV4iVsdjdQKGnpQ_Tfu5uk1aiFIl5CDjNhN7Oz8-1k8g3AhedyJXTYcDANpIOkwA7zE-kIHhMusWAyq815apEwpN0uaxftgMy_MDk_xDzhZjwj26-Ng5uE9HcvNzksnxRUhKai9lIDylWEETNE-s934RcGXuzNKJkxwt1yWc-vTyrHqh8AtIxns4DU2PrXqWzDZoFL7at8Ie3Aikp3oXo90NjxfQ82XnqpsHupPeybupl9eGzcdm6aTtFJwRHaJ7G-Su14XHKlz51KMukKRalKkqCuREaRrzhGSiSBIDTRCED6OtAripiXSOpy_wAq6SBVR2BzjTiY3hiEqzBKuE89FhNSDySOaYyS2AIye2eRKGjGTbeLflQ6brDITNY0wSRRNtnozYL6XHOYU20soVObmSXSfmE-dvBUDaZjLWWo0LC_WAIRz3TFYIslsD6MehrfWHCYW_xzXMSjWGMdC3Bm2KUHHIXtprk7_qtiDdaanYdW1LoL709gPU81m5K4U6hMRlN1BlXxOumNR-fZ8v8A5Mf-0g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB6kivjgfcWrffA10ubY49GrtFhCH1SKL2GzBxRKWnqI_ntnk7RatVDEl5CHmbCb3dn5Znf2G4BLryq0RLfhEhYqN1CSuNw3ypUioUIRyVWWm_PcolHEOh3eLsoB2bswOT_EbMPNWka2XlsD1wNlvlu53cPyaUFFaDNqrxBQrgYEZ7K9XtKMvjDwEm9KyUwC0plP6_n1S_O-6gcAncezmUOqb_9rV3Zgq8Cllet8Iu3Cik73YO2mj9jxfR82X7qprHTTyqBn82YO4Kl-_3jbcItKCq5EmyT4VGh4QgmNcadWXFWlZkwbE9a0zCjytSCBliaUlBlEAMpHR69ZwD2jWFX4h1BK-6k-hopAxMFxYZBVTQIjfObxhNJaqEjCksAkDtDpP4tlQTNuq1304rlwg8e2s7YIJo2zzsZvDtRmmoOcamMJnfJ0WGK0C3vYIVLdn4xQylKhEX-xREA9WxWDL5YgGIx6iG8cOMpH_LNd1GMEsY4DJBvYpRscR-2GfTv5q2IZ1tt39bjVjB5OYSPfabYZcWdQGg8n-hzW5Ou4OxpeZLP_A1Kv_kQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zinc+in+plants&rft.jtitle=The+New+phytologist&rft.au=Broadley%2C+Martin+R&rft.au=White%2C+Philip+J&rft.au=Hammond%2C+John+P&rft.au=Zelko%2C+Ivan&rft.date=2007-03-01&rft.issn=0028-646X&rft.volume=173&rft.issue=4+p.677-702&rft.spage=677&rft.epage=702&rft_id=info:doi/10.1111%2Fj.1469-8137.2007.01996.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |