Designing educational technologies in the age of AI: A learning sciences‐driven approach
Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of...
Saved in:
| Published in: | British journal of educational technology Vol. 50; no. 6; pp. 2824 - 2838 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Coventry
Wiley-Blackwell
01.11.2019
Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 0007-1013, 1467-8535 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter‐stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme.
Practitioner Notes
What is already known about this topic?
The progress of AI Technology and learning analytics lags behind the adoption of these approaches and technologies in other fields such as medicine or finance.
Data are central to the empirical work conducted in the learning sciences and to the development of machine learning Artificial Intelligence (AI).
Education is full of doubts about the value that any technology can bring to the teaching and learning process.
What this paper adds?
We argue that the learning sciences have an important role to play in the design of educational AI, through their provision of theories that can be operationalised and advanced.
Through case studies, we illustrate that the analysis of data appropriately informed by interdisciplinary learning sciences research can be used to power AI educational technology.
We provide a framework for inter‐stakeholder, interdisciplinary partnerships that can help educators better understand AI, and AI developers better understand education.
Implications for practice and/or policy?
AI is here to stay and that it will have an increasing impact on the design of technology for use in education and training.
Data, which is the power behind machine learning AI, can enable analysis that can vastly increase our understanding of when and how the teaching and learning process is progressing positively.
Inter‐stakeholder, interdisciplinary partnerships must be used to make sure that AI provides some of the educational benefits its application in other areas promise us. |
|---|---|
| AbstractList | Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter‐stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme.Practitioner NotesWhat is already known about this topic?The progress of AI Technology and learning analytics lags behind the adoption of these approaches and technologies in other fields such as medicine or finance.Data are central to the empirical work conducted in the learning sciences and to the development of machine learning Artificial Intelligence (AI).Education is full of doubts about the value that any technology can bring to the teaching and learning process.What this paper adds?We argue that the learning sciences have an important role to play in the design of educational AI, through their provision of theories that can be operationalised and advanced.Through case studies, we illustrate that the analysis of data appropriately informed by interdisciplinary learning sciences research can be used to power AI educational technology.We provide a framework for inter‐stakeholder, interdisciplinary partnerships that can help educators better understand AI, and AI developers better understand education.Implications for practice and/or policy?AI is here to stay and that it will have an increasing impact on the design of technology for use in education and training.Data, which is the power behind machine learning AI, can enable analysis that can vastly increase our understanding of when and how the teaching and learning process is progressing positively.Inter‐stakeholder, interdisciplinary partnerships must be used to make sure that AI provides some of the educational benefits its application in other areas promise us. Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter-stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme. Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter‐stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme. Practitioner Notes What is already known about this topic? The progress of AI Technology and learning analytics lags behind the adoption of these approaches and technologies in other fields such as medicine or finance. Data are central to the empirical work conducted in the learning sciences and to the development of machine learning Artificial Intelligence (AI). Education is full of doubts about the value that any technology can bring to the teaching and learning process. What this paper adds? We argue that the learning sciences have an important role to play in the design of educational AI, through their provision of theories that can be operationalised and advanced. Through case studies, we illustrate that the analysis of data appropriately informed by interdisciplinary learning sciences research can be used to power AI educational technology. We provide a framework for inter‐stakeholder, interdisciplinary partnerships that can help educators better understand AI, and AI developers better understand education. Implications for practice and/or policy? AI is here to stay and that it will have an increasing impact on the design of technology for use in education and training. Data, which is the power behind machine learning AI, can enable analysis that can vastly increase our understanding of when and how the teaching and learning process is progressing positively. Inter‐stakeholder, interdisciplinary partnerships must be used to make sure that AI provides some of the educational benefits its application in other areas promise us. |
| Author | Luckin, Rosemary Cukurova, Mutlu |
| Author_xml | – sequence: 1 givenname: Rosemary surname: Luckin fullname: Luckin, Rosemary email: r.luckin@ucl.ac.uk – sequence: 2 givenname: Mutlu orcidid: 0000-0001-5843-4854 surname: Cukurova fullname: Cukurova, Mutlu |
| BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1232150$$DView record in ERIC |
| BookMark | eNp9kLFOwzAQhi1UJNrCwo5kiQ0pxU6cOLCVUqBVJZZOLJZjX1JXwSl2CurGI_CMPAlJAwtCnIc7677_t_wPUM9WFhA6pWREm7rM1lCPaJgm9AD1KUt4kMZR3EN9QggPKKHRERp4v26uJIpZHz3dgjeFNbbAoLdK1qayssQ1qJWtyqow4LGxuF4BlgXgKsfj2TUe4xKk26u8MmAV-M_3D-3MK1gsNxtXSbU6Roe5LD2cfPchWt5Nl5OHYPF4P5uMF4FiYUwDyrJEqyTiLOdUZkxpmctMZzLiaaI5T0OuEy4hhWbOYpVySVjKcgZ5rq9YNETnnW3z6ssWfC3W1dY1n_AijAhvT0Ia6qyjwBklNs48S7cT0zkNo5DG7Z50e-Uq7x3kQpl6n0btpCkFJaINWLQBi33AjeTil-TH9k-YdvCbKWH3Dylu5tNlp_kCZ_6N9A |
| CitedBy_id | crossref_primary_10_3390_su13137092 crossref_primary_10_1007_s43545_024_01003_7 crossref_primary_10_1155_2021_9165733 crossref_primary_10_1177_02704676231224705 crossref_primary_10_32329_uad_1609305 crossref_primary_10_1177_20539517231219958 crossref_primary_10_1177_01626434241298954 crossref_primary_10_1177_15344843241273316 crossref_primary_10_1007_s10639_024_13112_0 crossref_primary_10_19126_suje_1446227 crossref_primary_10_1111_bjet_12880 crossref_primary_10_1177_00472395241312650 crossref_primary_10_31893_multiscience_2025605 crossref_primary_10_1080_2331186X_2023_2293454 crossref_primary_10_3233_JIFS_219299 crossref_primary_10_1038_s41598_024_74406_4 crossref_primary_10_1109_ACCESS_2021_3116664 crossref_primary_10_1080_0142159X_2025_2519639 crossref_primary_10_1111_bjet_12998 crossref_primary_10_1016_j_cexr_2022_100003 crossref_primary_10_1080_10494820_2025_2528096 crossref_primary_10_1111_bjet_12995 crossref_primary_10_1111_bjet_13325 crossref_primary_10_1007_s10639_025_13420_z crossref_primary_10_1111_bjet_12879 crossref_primary_10_1177_18369391211056668 crossref_primary_10_1111_bjet_12999 crossref_primary_10_1111_bjet_12917 crossref_primary_10_1111_ejed_12526 crossref_primary_10_1016_j_tsc_2023_101380 crossref_primary_10_1186_s41239_022_00372_4 crossref_primary_10_1177_14782103241228900 crossref_primary_10_1111_bjet_13320 crossref_primary_10_1002_cae_22372 crossref_primary_10_59062_ijpes_1754540 crossref_primary_10_1007_s13132_022_00985_0 crossref_primary_10_1016_j_sftr_2025_101033 crossref_primary_10_1111_bjet_13514 crossref_primary_10_14324_RFA_09_1_07 crossref_primary_10_53444_deubefd_1611893 crossref_primary_10_1016_j_iheduc_2025_101000 crossref_primary_10_1007_s11423_022_10172_2 crossref_primary_10_1007_s44217_025_00593_5 crossref_primary_10_3390_educsci15020144 crossref_primary_10_1016_j_tate_2025_104952 crossref_primary_10_1111_jcal_13064 crossref_primary_10_3846_cs_2025_20230 crossref_primary_10_2478_ijtr_2020_0005 crossref_primary_10_1007_s10639_023_12128_2 crossref_primary_10_1002_berj_4200 crossref_primary_10_1155_2021_8812542 crossref_primary_10_1111_bjet_13110 crossref_primary_10_1111_bjet_13587 crossref_primary_10_1080_0163853X_2022_2050084 crossref_primary_10_3390_app14135651 crossref_primary_10_1002_cae_70074 crossref_primary_10_1007_s42979_022_01137_6 crossref_primary_10_29333_ejmste_13428 crossref_primary_10_1111_jcal_12996 crossref_primary_10_3390_iot4030019 crossref_primary_10_3390_educsci12100683 crossref_primary_10_3390_app15115896 crossref_primary_10_3390_educsci14010082 crossref_primary_10_59652_jetm_v3i1_476 crossref_primary_10_1007_s11191_024_00506_2 crossref_primary_10_1007_s40593_022_00315_0 crossref_primary_10_2478_cait_2024_0027 crossref_primary_10_1080_1350293X_2021_1968458 crossref_primary_10_1108_JIEB_06_2024_0071 crossref_primary_10_1016_j_chb_2022_107468 crossref_primary_10_1111_bjet_13015 crossref_primary_10_1007_s40670_024_02257_9 crossref_primary_10_3389_feduc_2025_1577285 crossref_primary_10_1080_09500693_2025_2524083 crossref_primary_10_1080_10494820_2025_2454442 crossref_primary_10_3390_info13010014 crossref_primary_10_12973_ijem_11_2_203 crossref_primary_10_1080_10494820_2023_2212712 crossref_primary_10_3390_info16090725 crossref_primary_10_1007_s10639_024_12545_x crossref_primary_10_1007_s10639_021_10442_1 crossref_primary_10_3390_computers14060230 crossref_primary_10_1007_s12528_022_09340_3 crossref_primary_10_14324_LRE_19_1_01 crossref_primary_10_1016_j_heliyon_2024_e36393 crossref_primary_10_1007_s13132_023_01585_2 crossref_primary_10_1111_bjet_13525 crossref_primary_10_31637_epsir_2026_1620 crossref_primary_10_1016_j_ijhcs_2024_103431 crossref_primary_10_3390_electronics12234813 crossref_primary_10_1007_s10639_025_13463_2 crossref_primary_10_1080_10494820_2023_2172044 crossref_primary_10_1111_bjet_12959 crossref_primary_10_1007_s10639_024_13076_1 crossref_primary_10_1109_TLT_2023_3307211 crossref_primary_10_1007_s11423_025_10452_7 crossref_primary_10_3390_su17177958 crossref_primary_10_1016_j_heliyon_2024_e39630 crossref_primary_10_1007_s11528_022_00715_y crossref_primary_10_1186_s40561_025_00395_0 crossref_primary_10_1111_bjet_12863 crossref_primary_10_1111_ejed_12599 crossref_primary_10_3233_IDT_230727 crossref_primary_10_47370_2078_1024_2024_16_2_98_109 crossref_primary_10_1016_j_heliyon_2024_e41559 crossref_primary_10_3389_fpsyg_2025_1628557 crossref_primary_10_1002_rev3_3433 crossref_primary_10_1186_s40468_024_00328_7 crossref_primary_10_3390_educsci13090910 crossref_primary_10_3390_ijerph191811183 crossref_primary_10_1080_17439884_2022_2152838 crossref_primary_10_1177_20965311251367053 crossref_primary_10_1016_j_tsc_2024_101598 crossref_primary_10_23951_1609_624X_2025_5_110_121 crossref_primary_10_1111_hequ_70054 crossref_primary_10_1080_00221309_2025_2541585 crossref_primary_10_1145_3768312 crossref_primary_10_70838_pemj_350509 crossref_primary_10_1007_s10209_022_00958_9 crossref_primary_10_1016_j_psicoe_2023_06_002 crossref_primary_10_1108_FS_09_2021_0181 crossref_primary_10_2139_ssrn_5385537 crossref_primary_10_1007_s10758_025_09897_9 crossref_primary_10_1177_00472395241231815 crossref_primary_10_1002_pits_23331 crossref_primary_10_1371_journal_pone_0323345 crossref_primary_10_33225_jbse_25_24_721 crossref_primary_10_1108_ITSE_02_2025_0036 crossref_primary_10_1016_j_chb_2023_107847 crossref_primary_10_1016_j_ijer_2024_102326 crossref_primary_10_1007_s10639_024_12573_7 crossref_primary_10_3389_feduc_2025_1560074 crossref_primary_10_3390_educsci13060580 crossref_primary_10_1080_03098265_2024_2403070 crossref_primary_10_3390_educsci15050522 |
| Cites_doi | 10.1145/2883851.2883943 10.3102/00028312038004813 10.1007/s11412-013-9181-4 10.1016/j.edurev.2014.06.001 10.1007/s40593-016-0105-0 10.1016/j.compedu.2013.06.010 10.1016/0883-0355(89)90013-X 10.2190/EC.43.4.d 10.1080/00131946.2013.866954 10.1007/978-0-387-73315-9_63 10.1016/j.chb.2014.05.038 10.1023/A:1007057414994 10.1037/0033-2909.132.3.354 10.1007/978-3-319-98572-5_22 10.1080/10508406.2018.1440353 10.1111/j.1551-6709.2012.01245.x 10.3102/0162373713507480 10.1111/bjet.12727 10.1504/IJTEL.2012.051816 10.1016/j.ijcci.2018.03.002 10.1016/j.jesp.2010.03.015 10.1016/j.compedu.2017.08.007 10.1057/9781137385451_14 10.5120/11648-7142 10.1145/2460296.2460316 10.1016/j.compedu.2007.12.006 10.1007/978-0-387-73315-9_65 10.1017/CBO9781139519526.016 10.1016/j.sbspro.2014.01.359 10.1007/978-90-481-3927-9_11 10.1521/soco.2011.29.1.1 10.5334/2008-14 10.1007/978-3-030-23207-8_9 |
| ContentType | Journal Article |
| Copyright | 2019 British Educational Research Association |
| Copyright_xml | – notice: 2019 British Educational Research Association |
| DBID | AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 7SC 8FD AHOVV JQ2 L7M L~C L~D |
| DOI | 10.1111/bjet.12861 |
| DatabaseName | CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC Computer and Information Systems Abstracts Technology Research Database Education Research Index ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef ERIC Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts ERIC |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Education Mathematics |
| EISSN | 1467-8535 |
| ERIC | EJ1232150 |
| EndPage | 2838 |
| ExternalDocumentID | EJ1232150 10_1111_bjet_12861 BJET12861 |
| Genre | article |
| GroupedDBID | -W8 -~X .3N .GA .GO .Y3 05W 07C 0R~ 10A 1OB 1OC 23N 31~ 33P 3EH 4.4 41~ 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A04 AABNI AAESR AAHHS AAHQN AAHSB AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIVO ABJNI ABPVW ABSOO ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACHQT ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ACZ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AFZJQ AHBTC AHEFC AI. AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMBU DRSSH DU5 EAD EAP EAS EBS EDJ EJD EMK EST ESX F00 F01 F5P FEDTE FZ0 G-S G.N G50 GODZA HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OHT OIG P2P P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 QF4 QM7 QN7 R.K RIG RIWAO RJQFR ROL RPD RX1 SAMSI SUPJJ TUS UB1 V8K VH1 W8V W99 WBKPD WGMDG WH7 WIH WII WOHZO WQZ WRC WSUWO WXSBR XG1 XOL ZCA ZZTAW ~IA ~WP AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 7SC 8FD AHOVV JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4251-14b6dc6374f71ab4cdafabdba3786d77827d67ae8e778b5c87a0484f4effd943 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491231200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0007-1013 |
| IngestDate | Sat Aug 30 06:16:30 EDT 2025 Tue Dec 02 16:36:25 EST 2025 Sat Nov 29 07:01:54 EST 2025 Tue Nov 18 22:41:33 EST 2025 Wed Jan 22 16:38:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4251-14b6dc6374f71ab4cdafabdba3786d77827d67ae8e778b5c87a0484f4effd943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5843-4854 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bjet.12861 |
| PQID | 2307070760 |
| PQPubID | 47505 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2307070760 eric_primary_EJ1232150 crossref_citationtrail_10_1111_bjet_12861 crossref_primary_10_1111_bjet_12861 wiley_primary_10_1111_bjet_12861_BJET12861 |
| PublicationCentury | 2000 |
| PublicationDate | November 2019 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Coventry |
| PublicationPlace_xml | – name: Coventry |
| PublicationTitle | British journal of educational technology |
| PublicationYear | 2019 |
| Publisher | Wiley-Blackwell Blackwell Publishing Ltd |
| Publisher_xml | – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
| References | 2014; 116 2019; 50 2012 2011 2013; 68 2010 2000; 21 2008 2006; 132 2012; 36 2013; 8 2008; 51 2018; 27 2010; 43 2018; 17 2015; 47 2010; 46 2018; 116 2019 2018 2014; 36 2017 1999; 10 2016 2001; 38 2015 2014 2013 2018; 34 1989; 13 2012; 4 2014; 50 2016; 26 2011; 29 2014; 12 e_1_2_8_28_1 e_1_2_8_29_1 Luckin R. (e_1_2_8_32_1) 2018 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Seldon A. (e_1_2_8_41_1) 2018 e_1_2_8_4_1 e_1_2_8_7_1 Hoadley C. (e_1_2_8_21_1) 2012 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_42_1 e_1_2_8_22_1 Spikol D. (e_1_2_8_45_1) 2018; 34 e_1_2_8_23_1 e_1_2_8_44_1 Bienkowski M. (e_1_2_8_5_1) 2012 Coalition for Evidence‐Based Policy (e_1_2_8_8_1) 2013 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Kay J. (e_1_2_8_24_1) 2018 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Cukurova M. (e_1_2_8_15_1) 2017 Dillenbourg P. (e_1_2_8_17_1) 2011 Manches A. (e_1_2_8_34_1) 2010 e_1_2_8_10_1 e_1_2_8_31_1 Zohar A. (e_1_2_8_48_1) 2008 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 Mitrovic A. (e_1_2_8_36_1) 1999; 10 e_1_2_8_30_1 EEF Blog – Stringer E (e_1_2_8_18_1) 2019 |
| References_xml | – volume: 26 start-page: 600 issue: 2 year: 2016 end-page: 614 article-title: Stupid tutoring systems, intelligent humans publication-title: International Journal of Artificial Intelligence in Education – volume: 68 start-page: 21 issue: 14 year: 2013 end-page: 23 article-title: Significance of big data and analytics in higher education publication-title: International Journal of Computer Applications – volume: 50 start-page: 490 issue: 2 year: 2019 end-page: 504 article-title: Creating the golden triangle of evidence‐ informed education technology with EDUCATE publication-title: British Journal of Educational Technology – volume: 17 start-page: 72 year: 2018 end-page: 82 article-title: Physical computing with plug‐and‐play toolkits: Key recommendations for collaborative learning implementations publication-title: International Journal of Child‐Computer Interaction – volume: 4 start-page: 304 issue: 5 year: 2012 end-page: 317 article-title: Learning analytics: Drivers, developments and challenges publication-title: International Journal of Technology Enhanced Learning – start-page: 1037 year: 2008 end-page: 1052 – start-page: 245 year: 2015 end-page: 255 – volume: 27 start-page: 319 issue: 2 year: 2018 end-page: 351 article-title: What do we teach when we teach the learning sciences? A document analysis of 75 graduate programs publication-title: Journal of the Learning Sciences – start-page: 253 year: 2014 end-page: 274 – volume: 132 start-page: 354 issue: 3 year: 2006 end-page: 380 article-title: Distributed practice in verbal recall tasks: A review and quantitative synthesis publication-title: Psychological Bulletin – volume: 8 start-page: 375 issue: 4 year: 2013 end-page: 397 article-title: Real‐time mutual gaze perception enhances collaborative learning and collaboration quality publication-title: International Journal of Computer‐Supported Collaborative Learning – volume: 43 start-page: 489 issue: 4 year: 2010 end-page: 510 article-title: A quasi‐experimental evaluation of an on‐line formative assessment and tutoring system publication-title: Journal of Educational Computing Research – volume: 68 start-page: 495 year: 2013 end-page: 504 article-title: The impact of a technology‐based mathematics after‐school program using ALEKS on student's knowledge and behaviors publication-title: Computers & Education – start-page: 189 year: 2011 end-page: 203 – start-page: 636 year: 2019 end-page: 643 – volume: 29 start-page: 1 issue: 1 year: 2011 end-page: 14 article-title: If they move in sync, they must feel in sync: Movement synchrony leads to attributions of rapport and entitativity publication-title: Social Cognition – volume: 10 start-page: 238 year: 1999 end-page: 256 article-title: Evaluation of a constraint‐based tutor for a database language publication-title: International Journal of Artificial Intelligence in Education – start-page: 245 year: 2008 end-page: 268 – start-page: 1 year: 2018 end-page: 4 – volume: 46 start-page: 701 issue: 5 year: 2010 end-page: 708 article-title: Movement synchrony and perceived entitativity publication-title: Journal of Experimental Social Psychology – year: 2018 – volume: 116 start-page: 93 year: 2018 end-page: 109 article-title: The NISPI framework: Analysing collaborative problem‐solving from students' physical interactions publication-title: Computers & Education – volume: 36 start-page: 757 issue: 5 year: 2012 end-page: 798 article-title: The Knowledge‐Learning‐Instruction framework: Bridging the science‐practice chasm to enhance robust student learning publication-title: Cognitive Science – year: 2010 – start-page: 1 year: 2012 end-page: 65 – start-page: 291 year: 2018 end-page: 296 – volume: 21 start-page: 75 issue: 1 year: 2000 end-page: 99 article-title: Effects of the child development project on students’ drug use and other problem behaviours publication-title: The Journal of Primary Prevention – volume: 13 start-page: 9 year: 1989 end-page: 19 article-title: Critical distinctions among three approaches to peer education publication-title: International Journal of Educational Research – start-page: 1003 year: 2008 end-page: 1015 – volume: 38 start-page: 813 issue: 4 year: 2001 end-page: 834 article-title: High access and low use of technologies in high school classrooms: Explaining an apparent paradox publication-title: American Educational Research Journal – start-page: 102 year: 2013 end-page: 106 – start-page: 143 year: 2016 end-page: 147 – volume: 116 start-page: 1143 year: 2014 end-page: 1148 article-title: Does teachers charisma can really induce students learning interest? publication-title: Procedia-Social and Behavioral Sciences – volume: 47 start-page: 157 year: 2015 end-page: 167 article-title: In search for the most informative data for feedback generation: Learning Analytics in a data‐rich context publication-title: Computers in Human Behavior – volume: 51 start-page: 1321 year: 2008 end-page: 1341 article-title: Interactive whiteboards: Real beauty or just lipstick? publication-title: Computers & Education – volume: 34 start-page: 1375 issue: 9 year: 2018 end-page: 1386 article-title: Supervised machine learning in multimodal learning analytics for estimating success in project‐based learning publication-title: Journal of Computer Assisted Learning – volume: 36 start-page: 127 issue: 2 year: 2014 end-page: 144 article-title: Effectiveness of cognitive tutor algebra I at scale publication-title: Educational Evaluation and Policy Analysis – year: 2017 – year: 2019 – volume: 12 start-page: 59 year: 2014 end-page: 76 article-title: Teachers’ self-efficacy, personality, and teaching effectiveness: A metaanalysis publication-title: Educational Research Review – volume: 50 start-page: 36 issue: 1 year: 2014 end-page: 64 article-title: Teaching with social media: Disrupting present day public education publication-title: Educational Studies – start-page: 510 year: 2011 end-page: 517 – year: 2013 – start-page: 53 year: 2012 end-page: 63 – year: 2008 article-title: The open learning initiative: Measuring the effectiveness of the OLI statistics course in accelerating student learning publication-title: Journal of Interactive Media in Education – ident: e_1_2_8_22_1 doi: 10.1145/2883851.2883943 – volume-title: Teacher training—The challenge of change year: 2019 ident: e_1_2_8_18_1 – ident: e_1_2_8_10_1 doi: 10.3102/00028312038004813 – ident: e_1_2_8_40_1 doi: 10.1007/s11412-013-9181-4 – start-page: 245 volume-title: Argumentation in Science Education: Perspectives from Classroom-Based Research year: 2008 ident: e_1_2_8_48_1 – ident: e_1_2_8_25_1 doi: 10.1016/j.edurev.2014.06.001 – start-page: 1 volume-title: Proceedings of Conference on Advanced Technology for Education year: 2012 ident: e_1_2_8_5_1 – ident: e_1_2_8_2_1 doi: 10.1007/s40593-016-0105-0 – ident: e_1_2_8_9_1 doi: 10.1016/j.compedu.2013.06.010 – ident: e_1_2_8_16_1 doi: 10.1016/0883-0355(89)90013-X – ident: e_1_2_8_27_1 doi: 10.2190/EC.43.4.d – ident: e_1_2_8_35_1 doi: 10.1080/00131946.2013.866954 – ident: e_1_2_8_38_1 doi: 10.1007/978-0-387-73315-9_63 – ident: e_1_2_8_33_1 – volume-title: CAPITAL‐curriculum and pedagogy in technology assisted learning year: 2010 ident: e_1_2_8_34_1 – ident: e_1_2_8_46_1 doi: 10.1016/j.chb.2014.05.038 – ident: e_1_2_8_4_1 doi: 10.1023/A:1007057414994 – ident: e_1_2_8_7_1 doi: 10.1037/0033-2909.132.3.354 – ident: e_1_2_8_11_1 doi: 10.1007/978-3-319-98572-5_22 – ident: e_1_2_8_44_1 doi: 10.1080/10508406.2018.1440353 – ident: e_1_2_8_26_1 doi: 10.1111/j.1551-6709.2012.01245.x – ident: e_1_2_8_37_1 doi: 10.3102/0162373713507480 – ident: e_1_2_8_13_1 doi: 10.1111/bjet.12727 – volume-title: Evidence‐centered design and its application to collaborative problem solving in practice‐based learning environments year: 2017 ident: e_1_2_8_15_1 – ident: e_1_2_8_20_1 doi: 10.1504/IJTEL.2012.051816 – volume: 34 start-page: 1375 issue: 9 year: 2018 ident: e_1_2_8_45_1 article-title: Supervised machine learning in multimodal learning analytics for estimating success in project‐based learning publication-title: Journal of Computer Assisted Learning – start-page: 53 volume-title: Trends and issues in instructional design and technology year: 2012 ident: e_1_2_8_21_1 – volume-title: Machine learning and human intelligence year: 2018 ident: e_1_2_8_32_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.ijcci.2018.03.002 – ident: e_1_2_8_28_1 doi: 10.1016/j.jesp.2010.03.015 – ident: e_1_2_8_14_1 doi: 10.1016/j.compedu.2017.08.007 – ident: e_1_2_8_42_1 doi: 10.1057/9781137385451_14 – volume: 10 start-page: 238 year: 1999 ident: e_1_2_8_36_1 article-title: Evaluation of a constraint‐based tutor for a database language publication-title: International Journal of Artificial Intelligence in Education – ident: e_1_2_8_47_1 doi: 10.5120/11648-7142 – ident: e_1_2_8_6_1 doi: 10.1145/2460296.2460316 – ident: e_1_2_8_43_1 doi: 10.1016/j.compedu.2007.12.006 – ident: e_1_2_8_39_1 doi: 10.1007/978-0-387-73315-9_65 – ident: e_1_2_8_3_1 doi: 10.1017/CBO9781139519526.016 – ident: e_1_2_8_30_1 doi: 10.1016/j.sbspro.2014.01.359 – volume-title: Randomized controlled trials commissioned by the institute of education sciences since 2002: How many found positive versus weak or no effects year: 2013 ident: e_1_2_8_8_1 – ident: e_1_2_8_19_1 doi: 10.1007/978-90-481-3927-9_11 – ident: e_1_2_8_29_1 doi: 10.1521/soco.2011.29.1.1 – ident: e_1_2_8_31_1 doi: 10.5334/2008-14 – ident: e_1_2_8_12_1 doi: 10.1007/978-3-030-23207-8_9 – volume-title: The fourth education revolution: Will artificial intelligence liberate or infantilise humanity? year: 2018 ident: e_1_2_8_41_1 – start-page: 510 volume-title: International Conference on Computer Supported Collaborative Learning 2011 year: 2011 ident: e_1_2_8_17_1 – start-page: 1 volume-title: 13th International Conference of the Learning Sciences (ICLS) Volume 1 year: 2018 ident: e_1_2_8_24_1 |
| SSID | ssj0000354 |
| Score | 2.6471393 |
| Snippet | Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an... |
| SourceID | proquest eric crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2824 |
| SubjectTerms | Algorithms Artificial Intelligence Case Studies Data analysis Education Educational Benefits Educational Research Educational Technology Empirical analysis Instructional Design Instructional scaffolding Interdisciplinary Approach Interdisciplinary aspects Interdisciplinary studies Learning Analytics Learning Processes Machine learning Mathematics Partnerships Scaffolding Teaching Teaching Methods Technology assessment Technology Uses in Education Theory Practice Relationship Training |
| Title | Designing educational technologies in the age of AI: A learning sciences‐driven approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjet.12861 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1232150 https://www.proquest.com/docview/2307070760 |
| Volume | 50 |
| WOSCitedRecordID | wos000491231200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000354 issn: 0007-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA_D-eCL_4fTKQF9UahQmzWt-DLdhg4ZIhOGLyVpEplIJ2v12Y_gZ_STeNem-wMiiPQltJe2JPnd_S5c7gg5UsDZJZgiJwRUO8zlClqecvwzowX3eOyqIC82wfv9YDgM7yrkojwLU-SHmG64ITJyfY0AFzKdA7l81tkpaFf0fap4qgpcr2r7vvtwO9PEXrPIwoyJEIHr2PSkGMkz671gkBZjnpFszlPW3OZ01_73t-tk1XJN2ioWxwap6GQTyzTbkI4t8tjO4zfAelFd3oUOWbndDl40HSUUOCIFtUPHhrZuzmmL2lITT9Taz_Tr41NNUG_SMkf5Nhl0O4Ora8cWW3BigK3ruEz6KvY9zgx3hWSxEkZIJYXHA19xIBJc-VzoQENbNuOACwA_M0wbo0Lm1chSMk70DqFGBjLwXAFIN0wEvgQzrDjwrNBFb4jVyXE54FFsE5FjPYyXqHRIcLCifLDq5HAq-1qk3_hRqobzNpXo9JAowtfqpFHOZGSxmUYY-o6XD49P8jn75dXRZa8zyFu7fxHeIyvArMLi0GKDLGWTN71PluP3bJRODuw6_QZLeeu6 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-yCfri_-F0akBfFCrUZk3r23Qb25xDZMLwpSRNIhPZZJs--xH8jH4S79p0f0AEkb6ENmnLJb-734XLHSEnCji7BFPkhIBqh7lcQctTjn9htOAej10VJMUmeKcT9HrhnY3NwbMwaX6I6YYbIiPR1whw3JCeQ7l81pNzUK_o_OSZ7_EgR_LV-_pDe6aKvXKahhkzIQLZsflJMZRnNnrBIi0GPSPbnOesidGpr__zdzfImmWbtJIuj02ypAdbWKjZBnVsk8dqEsEB9ovq7C4MmGQb7uBH0_6AAkukoHjo0NBK85JWqC028UStBR1_fXyqEWpOmmUp3yHdeq173XBsuQUnBuC6jsukr2KQIzPcFZLFShghlRQgWV9xoBJc-VzoQENbluOAC4A_M0wbo0LmFUhuMBzoXUKNDGTguQKwbpgIfAmGWHFgWqGL_hArktNM4lFsU5FjRYyXKHNJUFhRIqwiOZ72fU0TcPzYq4ATN-1RayFVhK8VSSmbysiicxxh8DtePjw-Sybtl1dHV61aN2nt_aXzEVlpdG_bUbvZudknq8CzwvQIY4nkJqM3fUCW4_dJfzw6tIv2G2mc76o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-yifji_-F0akBfFCrUpk3r23Qrbo4xZMLwpSRNIhPpxlZ99iP4Gf0kXtp0f0AEkb6E9tKWJL-734XLHUJnAjg7B1NkBYBqi9hUQMsRlnelJKMOjW3hZ8UmaLfrDwZBz8Tm6LMweX6I2YabRkamrzXA5VioBZTzF5legnrVzk-ZuIFLSqjceAgfO3NV7Lh5GmadCRHIjslPqkN55r2XLNJy0LNmm4ucNTM64eY_f3cLbRi2iev58thGKzLZ0YWaTVDHLnpqZBEcYL-wLO5Ch7TYcAc_Gg8TDCwRg-LBI4XrrWtcx6bYxDM2FnT69fEpJlpz4iJL-R7qh83-7Z1lyi1YMQDXtmzCPRF7DiWK2oyTWDDFuODMob4nKFAJKjzKpC-hzd3YpwzgTxSRSomAOBVUSkaJ3EdYcZ_7js0A64ow3-NgiAUFphXY2h8iVXRejHgUm1TkuiLGa1S4JHqwomywquh0JjvOE3D8KFXREzeTaLY1VYSvVVGtmMrIoHMa6eB3fXnw-CKbtF9eHd20m_2sdfAX4RO01muEUafVvT9E60CzgvwEYw2V0smbPEKr8Xs6nE6OzZr9Bg1N7yU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Educational+Technologies+in+the+Age+of+AI%3A+A+Learning+Sciences-Driven+Approach&rft.jtitle=British+journal+of+educational+technology&rft.au=Luckin%2C+Rosemary&rft.au=Cukurova%2C+Mutlu&rft.date=2019-11-01&rft.pub=Wiley-Blackwell&rft.issn=0007-1013&rft.volume=50&rft.issue=6&rft.spage=2824&rft_id=info:doi/10.1111%2Fbjet.12861&rft.externalDocID=EJ1232150 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1013&client=summon |