Designing educational technologies in the age of AI: A learning sciences‐driven approach

Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of...

Full description

Saved in:
Bibliographic Details
Published in:British journal of educational technology Vol. 50; no. 6; pp. 2824 - 2838
Main Authors: Luckin, Rosemary, Cukurova, Mutlu
Format: Journal Article
Language:English
Published: Coventry Wiley-Blackwell 01.11.2019
Blackwell Publishing Ltd
Subjects:
ISSN:0007-1013, 1467-8535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter‐stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme. Practitioner Notes What is already known about this topic? The progress of AI Technology and learning analytics lags behind the adoption of these approaches and technologies in other fields such as medicine or finance. Data are central to the empirical work conducted in the learning sciences and to the development of machine learning Artificial Intelligence (AI). Education is full of doubts about the value that any technology can bring to the teaching and learning process. What this paper adds? We argue that the learning sciences have an important role to play in the design of educational AI, through their provision of theories that can be operationalised and advanced. Through case studies, we illustrate that the analysis of data appropriately informed by interdisciplinary learning sciences research can be used to power AI educational technology. We provide a framework for inter‐stakeholder, interdisciplinary partnerships that can help educators better understand AI, and AI developers better understand education. Implications for practice and/or policy? AI is here to stay and that it will have an increasing impact on the design of technology for use in education and training. Data, which is the power behind machine learning AI, can enable analysis that can vastly increase our understanding of when and how the teaching and learning process is progressing positively. Inter‐stakeholder, interdisciplinary partnerships must be used to make sure that AI provides some of the educational benefits its application in other areas promise us.
AbstractList Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter‐stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme.Practitioner NotesWhat is already known about this topic?The progress of AI Technology and learning analytics lags behind the adoption of these approaches and technologies in other fields such as medicine or finance.Data are central to the empirical work conducted in the learning sciences and to the development of machine learning Artificial Intelligence (AI).Education is full of doubts about the value that any technology can bring to the teaching and learning process.What this paper adds?We argue that the learning sciences have an important role to play in the design of educational AI, through their provision of theories that can be operationalised and advanced.Through case studies, we illustrate that the analysis of data appropriately informed by interdisciplinary learning sciences research can be used to power AI educational technology.We provide a framework for inter‐stakeholder, interdisciplinary partnerships that can help educators better understand AI, and AI developers better understand education.Implications for practice and/or policy?AI is here to stay and that it will have an increasing impact on the design of technology for use in education and training.Data, which is the power behind machine learning AI, can enable analysis that can vastly increase our understanding of when and how the teaching and learning process is progressing positively.Inter‐stakeholder, interdisciplinary partnerships must be used to make sure that AI provides some of the educational benefits its application in other areas promise us.
Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter-stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme.
Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an improved understanding about how best to teach and train people. This same body of research must now be used to better inform the development of Artificial Intelligence (AI) technologies for use in education and training. In this paper, we use three case studies to illustrate how learning sciences research can inform the judicious analysis, of rich, varied and multimodal data, so that it can be used to help us scaffold students and support teachers. Based on this increased understanding of how best to inform the analysis of data through the application of learning sciences research, we are better placed to design AI algorithms that can analyse rich educational data at speed. Such AI algorithms and technology can then help us to leverage faster, more nuanced and individualised scaffolding for learners. However, most commercial AI developers know little about learning sciences research, indeed they often know little about learning or teaching. We therefore argue that in order to ensure that AI technologies for use in education and training embody such judicious analysis and learn in a learning sciences informed manner, we must develop inter‐stakeholder partnerships between AI developers, educators and researchers. Here, we exemplify our approach to such partnerships through the EDUCATE Educational Technology (EdTech) programme. Practitioner Notes What is already known about this topic? The progress of AI Technology and learning analytics lags behind the adoption of these approaches and technologies in other fields such as medicine or finance. Data are central to the empirical work conducted in the learning sciences and to the development of machine learning Artificial Intelligence (AI). Education is full of doubts about the value that any technology can bring to the teaching and learning process. What this paper adds? We argue that the learning sciences have an important role to play in the design of educational AI, through their provision of theories that can be operationalised and advanced. Through case studies, we illustrate that the analysis of data appropriately informed by interdisciplinary learning sciences research can be used to power AI educational technology. We provide a framework for inter‐stakeholder, interdisciplinary partnerships that can help educators better understand AI, and AI developers better understand education. Implications for practice and/or policy? AI is here to stay and that it will have an increasing impact on the design of technology for use in education and training. Data, which is the power behind machine learning AI, can enable analysis that can vastly increase our understanding of when and how the teaching and learning process is progressing positively. Inter‐stakeholder, interdisciplinary partnerships must be used to make sure that AI provides some of the educational benefits its application in other areas promise us.
Author Luckin, Rosemary
Cukurova, Mutlu
Author_xml – sequence: 1
  givenname: Rosemary
  surname: Luckin
  fullname: Luckin, Rosemary
  email: r.luckin@ucl.ac.uk
– sequence: 2
  givenname: Mutlu
  orcidid: 0000-0001-5843-4854
  surname: Cukurova
  fullname: Cukurova, Mutlu
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1232150$$DView record in ERIC
BookMark eNp9kLFOwzAQhi1UJNrCwo5kiQ0pxU6cOLCVUqBVJZZOLJZjX1JXwSl2CurGI_CMPAlJAwtCnIc7677_t_wPUM9WFhA6pWREm7rM1lCPaJgm9AD1KUt4kMZR3EN9QggPKKHRERp4v26uJIpZHz3dgjeFNbbAoLdK1qayssQ1qJWtyqow4LGxuF4BlgXgKsfj2TUe4xKk26u8MmAV-M_3D-3MK1gsNxtXSbU6Roe5LD2cfPchWt5Nl5OHYPF4P5uMF4FiYUwDyrJEqyTiLOdUZkxpmctMZzLiaaI5T0OuEy4hhWbOYpVySVjKcgZ5rq9YNETnnW3z6ssWfC3W1dY1n_AijAhvT0Ia6qyjwBklNs48S7cT0zkNo5DG7Z50e-Uq7x3kQpl6n0btpCkFJaINWLQBi33AjeTil-TH9k-YdvCbKWH3Dylu5tNlp_kCZ_6N9A
CitedBy_id crossref_primary_10_3390_su13137092
crossref_primary_10_1007_s43545_024_01003_7
crossref_primary_10_1155_2021_9165733
crossref_primary_10_1177_02704676231224705
crossref_primary_10_32329_uad_1609305
crossref_primary_10_1177_20539517231219958
crossref_primary_10_1177_01626434241298954
crossref_primary_10_1177_15344843241273316
crossref_primary_10_1007_s10639_024_13112_0
crossref_primary_10_19126_suje_1446227
crossref_primary_10_1111_bjet_12880
crossref_primary_10_1177_00472395241312650
crossref_primary_10_31893_multiscience_2025605
crossref_primary_10_1080_2331186X_2023_2293454
crossref_primary_10_3233_JIFS_219299
crossref_primary_10_1038_s41598_024_74406_4
crossref_primary_10_1109_ACCESS_2021_3116664
crossref_primary_10_1080_0142159X_2025_2519639
crossref_primary_10_1111_bjet_12998
crossref_primary_10_1016_j_cexr_2022_100003
crossref_primary_10_1080_10494820_2025_2528096
crossref_primary_10_1111_bjet_12995
crossref_primary_10_1111_bjet_13325
crossref_primary_10_1007_s10639_025_13420_z
crossref_primary_10_1111_bjet_12879
crossref_primary_10_1177_18369391211056668
crossref_primary_10_1111_bjet_12999
crossref_primary_10_1111_bjet_12917
crossref_primary_10_1111_ejed_12526
crossref_primary_10_1016_j_tsc_2023_101380
crossref_primary_10_1186_s41239_022_00372_4
crossref_primary_10_1177_14782103241228900
crossref_primary_10_1111_bjet_13320
crossref_primary_10_1002_cae_22372
crossref_primary_10_59062_ijpes_1754540
crossref_primary_10_1007_s13132_022_00985_0
crossref_primary_10_1016_j_sftr_2025_101033
crossref_primary_10_1111_bjet_13514
crossref_primary_10_14324_RFA_09_1_07
crossref_primary_10_53444_deubefd_1611893
crossref_primary_10_1016_j_iheduc_2025_101000
crossref_primary_10_1007_s11423_022_10172_2
crossref_primary_10_1007_s44217_025_00593_5
crossref_primary_10_3390_educsci15020144
crossref_primary_10_1016_j_tate_2025_104952
crossref_primary_10_1111_jcal_13064
crossref_primary_10_3846_cs_2025_20230
crossref_primary_10_2478_ijtr_2020_0005
crossref_primary_10_1007_s10639_023_12128_2
crossref_primary_10_1002_berj_4200
crossref_primary_10_1155_2021_8812542
crossref_primary_10_1111_bjet_13110
crossref_primary_10_1111_bjet_13587
crossref_primary_10_1080_0163853X_2022_2050084
crossref_primary_10_3390_app14135651
crossref_primary_10_1002_cae_70074
crossref_primary_10_1007_s42979_022_01137_6
crossref_primary_10_29333_ejmste_13428
crossref_primary_10_1111_jcal_12996
crossref_primary_10_3390_iot4030019
crossref_primary_10_3390_educsci12100683
crossref_primary_10_3390_app15115896
crossref_primary_10_3390_educsci14010082
crossref_primary_10_59652_jetm_v3i1_476
crossref_primary_10_1007_s11191_024_00506_2
crossref_primary_10_1007_s40593_022_00315_0
crossref_primary_10_2478_cait_2024_0027
crossref_primary_10_1080_1350293X_2021_1968458
crossref_primary_10_1108_JIEB_06_2024_0071
crossref_primary_10_1016_j_chb_2022_107468
crossref_primary_10_1111_bjet_13015
crossref_primary_10_1007_s40670_024_02257_9
crossref_primary_10_3389_feduc_2025_1577285
crossref_primary_10_1080_09500693_2025_2524083
crossref_primary_10_1080_10494820_2025_2454442
crossref_primary_10_3390_info13010014
crossref_primary_10_12973_ijem_11_2_203
crossref_primary_10_1080_10494820_2023_2212712
crossref_primary_10_3390_info16090725
crossref_primary_10_1007_s10639_024_12545_x
crossref_primary_10_1007_s10639_021_10442_1
crossref_primary_10_3390_computers14060230
crossref_primary_10_1007_s12528_022_09340_3
crossref_primary_10_14324_LRE_19_1_01
crossref_primary_10_1016_j_heliyon_2024_e36393
crossref_primary_10_1007_s13132_023_01585_2
crossref_primary_10_1111_bjet_13525
crossref_primary_10_31637_epsir_2026_1620
crossref_primary_10_1016_j_ijhcs_2024_103431
crossref_primary_10_3390_electronics12234813
crossref_primary_10_1007_s10639_025_13463_2
crossref_primary_10_1080_10494820_2023_2172044
crossref_primary_10_1111_bjet_12959
crossref_primary_10_1007_s10639_024_13076_1
crossref_primary_10_1109_TLT_2023_3307211
crossref_primary_10_1007_s11423_025_10452_7
crossref_primary_10_3390_su17177958
crossref_primary_10_1016_j_heliyon_2024_e39630
crossref_primary_10_1007_s11528_022_00715_y
crossref_primary_10_1186_s40561_025_00395_0
crossref_primary_10_1111_bjet_12863
crossref_primary_10_1111_ejed_12599
crossref_primary_10_3233_IDT_230727
crossref_primary_10_47370_2078_1024_2024_16_2_98_109
crossref_primary_10_1016_j_heliyon_2024_e41559
crossref_primary_10_3389_fpsyg_2025_1628557
crossref_primary_10_1002_rev3_3433
crossref_primary_10_1186_s40468_024_00328_7
crossref_primary_10_3390_educsci13090910
crossref_primary_10_3390_ijerph191811183
crossref_primary_10_1080_17439884_2022_2152838
crossref_primary_10_1177_20965311251367053
crossref_primary_10_1016_j_tsc_2024_101598
crossref_primary_10_23951_1609_624X_2025_5_110_121
crossref_primary_10_1111_hequ_70054
crossref_primary_10_1080_00221309_2025_2541585
crossref_primary_10_1145_3768312
crossref_primary_10_70838_pemj_350509
crossref_primary_10_1007_s10209_022_00958_9
crossref_primary_10_1016_j_psicoe_2023_06_002
crossref_primary_10_1108_FS_09_2021_0181
crossref_primary_10_2139_ssrn_5385537
crossref_primary_10_1007_s10758_025_09897_9
crossref_primary_10_1177_00472395241231815
crossref_primary_10_1002_pits_23331
crossref_primary_10_1371_journal_pone_0323345
crossref_primary_10_33225_jbse_25_24_721
crossref_primary_10_1108_ITSE_02_2025_0036
crossref_primary_10_1016_j_chb_2023_107847
crossref_primary_10_1016_j_ijer_2024_102326
crossref_primary_10_1007_s10639_024_12573_7
crossref_primary_10_3389_feduc_2025_1560074
crossref_primary_10_3390_educsci13060580
crossref_primary_10_1080_03098265_2024_2403070
crossref_primary_10_3390_educsci15050522
Cites_doi 10.1145/2883851.2883943
10.3102/00028312038004813
10.1007/s11412-013-9181-4
10.1016/j.edurev.2014.06.001
10.1007/s40593-016-0105-0
10.1016/j.compedu.2013.06.010
10.1016/0883-0355(89)90013-X
10.2190/EC.43.4.d
10.1080/00131946.2013.866954
10.1007/978-0-387-73315-9_63
10.1016/j.chb.2014.05.038
10.1023/A:1007057414994
10.1037/0033-2909.132.3.354
10.1007/978-3-319-98572-5_22
10.1080/10508406.2018.1440353
10.1111/j.1551-6709.2012.01245.x
10.3102/0162373713507480
10.1111/bjet.12727
10.1504/IJTEL.2012.051816
10.1016/j.ijcci.2018.03.002
10.1016/j.jesp.2010.03.015
10.1016/j.compedu.2017.08.007
10.1057/9781137385451_14
10.5120/11648-7142
10.1145/2460296.2460316
10.1016/j.compedu.2007.12.006
10.1007/978-0-387-73315-9_65
10.1017/CBO9781139519526.016
10.1016/j.sbspro.2014.01.359
10.1007/978-90-481-3927-9_11
10.1521/soco.2011.29.1.1
10.5334/2008-14
10.1007/978-3-030-23207-8_9
ContentType Journal Article
Copyright 2019 British Educational Research Association
Copyright_xml – notice: 2019 British Educational Research Association
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
7SC
8FD
AHOVV
JQ2
L7M
L~C
L~D
DOI 10.1111/bjet.12861
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Computer and Information Systems Abstracts
Technology Research Database
Education Research Index
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ERIC
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
ERIC

DeliveryMethod fulltext_linktorsrc
Discipline Education
Mathematics
EISSN 1467-8535
ERIC EJ1232150
EndPage 2838
ExternalDocumentID EJ1232150
10_1111_bjet_12861
BJET12861
Genre article
GroupedDBID -W8
-~X
.3N
.GA
.GO
.Y3
05W
07C
0R~
10A
1OB
1OC
23N
31~
33P
3EH
4.4
41~
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A04
AABNI
AAESR
AAHHS
AAHQN
AAHSB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIVO
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHQT
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ACZ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMBU
DRSSH
DU5
EAD
EAP
EAS
EBS
EDJ
EJD
EMK
EST
ESX
F00
F01
F5P
FEDTE
FZ0
G-S
G.N
G50
GODZA
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM7
QN7
R.K
RIG
RIWAO
RJQFR
ROL
RPD
RX1
SAMSI
SUPJJ
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WGMDG
WH7
WIH
WII
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
XOL
ZCA
ZZTAW
~IA
~WP
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
7SC
8FD
AHOVV
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4251-14b6dc6374f71ab4cdafabdba3786d77827d67ae8e778b5c87a0484f4effd943
IEDL.DBID DRFUL
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491231200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1013
IngestDate Sat Aug 30 06:16:30 EDT 2025
Tue Dec 02 16:36:25 EST 2025
Sat Nov 29 07:01:54 EST 2025
Tue Nov 18 22:41:33 EST 2025
Wed Jan 22 16:38:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4251-14b6dc6374f71ab4cdafabdba3786d77827d67ae8e778b5c87a0484f4effd943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5843-4854
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bjet.12861
PQID 2307070760
PQPubID 47505
PageCount 15
ParticipantIDs proquest_journals_2307070760
eric_primary_EJ1232150
crossref_citationtrail_10_1111_bjet_12861
crossref_primary_10_1111_bjet_12861
wiley_primary_10_1111_bjet_12861_BJET12861
PublicationCentury 2000
PublicationDate November 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Coventry
PublicationPlace_xml – name: Coventry
PublicationTitle British journal of educational technology
PublicationYear 2019
Publisher Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References 2014; 116
2019; 50
2012
2011
2013; 68
2010
2000; 21
2008
2006; 132
2012; 36
2013; 8
2008; 51
2018; 27
2010; 43
2018; 17
2015; 47
2010; 46
2018; 116
2019
2018
2014; 36
2017
1999; 10
2016
2001; 38
2015
2014
2013
2018; 34
1989; 13
2012; 4
2014; 50
2016; 26
2011; 29
2014; 12
e_1_2_8_28_1
e_1_2_8_29_1
Luckin R. (e_1_2_8_32_1) 2018
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Seldon A. (e_1_2_8_41_1) 2018
e_1_2_8_4_1
e_1_2_8_7_1
Hoadley C. (e_1_2_8_21_1) 2012
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_42_1
e_1_2_8_22_1
Spikol D. (e_1_2_8_45_1) 2018; 34
e_1_2_8_23_1
e_1_2_8_44_1
Bienkowski M. (e_1_2_8_5_1) 2012
Coalition for Evidence‐Based Policy (e_1_2_8_8_1) 2013
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Kay J. (e_1_2_8_24_1) 2018
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Cukurova M. (e_1_2_8_15_1) 2017
Dillenbourg P. (e_1_2_8_17_1) 2011
Manches A. (e_1_2_8_34_1) 2010
e_1_2_8_10_1
e_1_2_8_31_1
Zohar A. (e_1_2_8_48_1) 2008
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
Mitrovic A. (e_1_2_8_36_1) 1999; 10
e_1_2_8_30_1
EEF Blog – Stringer E (e_1_2_8_18_1) 2019
References_xml – volume: 26
  start-page: 600
  issue: 2
  year: 2016
  end-page: 614
  article-title: Stupid tutoring systems, intelligent humans
  publication-title: International Journal of Artificial Intelligence in Education
– volume: 68
  start-page: 21
  issue: 14
  year: 2013
  end-page: 23
  article-title: Significance of big data and analytics in higher education
  publication-title: International Journal of Computer Applications
– volume: 50
  start-page: 490
  issue: 2
  year: 2019
  end-page: 504
  article-title: Creating the golden triangle of evidence‐ informed education technology with EDUCATE
  publication-title: British Journal of Educational Technology
– volume: 17
  start-page: 72
  year: 2018
  end-page: 82
  article-title: Physical computing with plug‐and‐play toolkits: Key recommendations for collaborative learning implementations
  publication-title: International Journal of Child‐Computer Interaction
– volume: 4
  start-page: 304
  issue: 5
  year: 2012
  end-page: 317
  article-title: Learning analytics: Drivers, developments and challenges
  publication-title: International Journal of Technology Enhanced Learning
– start-page: 1037
  year: 2008
  end-page: 1052
– start-page: 245
  year: 2015
  end-page: 255
– volume: 27
  start-page: 319
  issue: 2
  year: 2018
  end-page: 351
  article-title: What do we teach when we teach the learning sciences? A document analysis of 75 graduate programs
  publication-title: Journal of the Learning Sciences
– start-page: 253
  year: 2014
  end-page: 274
– volume: 132
  start-page: 354
  issue: 3
  year: 2006
  end-page: 380
  article-title: Distributed practice in verbal recall tasks: A review and quantitative synthesis
  publication-title: Psychological Bulletin
– volume: 8
  start-page: 375
  issue: 4
  year: 2013
  end-page: 397
  article-title: Real‐time mutual gaze perception enhances collaborative learning and collaboration quality
  publication-title: International Journal of Computer‐Supported Collaborative Learning
– volume: 43
  start-page: 489
  issue: 4
  year: 2010
  end-page: 510
  article-title: A quasi‐experimental evaluation of an on‐line formative assessment and tutoring system
  publication-title: Journal of Educational Computing Research
– volume: 68
  start-page: 495
  year: 2013
  end-page: 504
  article-title: The impact of a technology‐based mathematics after‐school program using ALEKS on student's knowledge and behaviors
  publication-title: Computers & Education
– start-page: 189
  year: 2011
  end-page: 203
– start-page: 636
  year: 2019
  end-page: 643
– volume: 29
  start-page: 1
  issue: 1
  year: 2011
  end-page: 14
  article-title: If they move in sync, they must feel in sync: Movement synchrony leads to attributions of rapport and entitativity
  publication-title: Social Cognition
– volume: 10
  start-page: 238
  year: 1999
  end-page: 256
  article-title: Evaluation of a constraint‐based tutor for a database language
  publication-title: International Journal of Artificial Intelligence in Education
– start-page: 245
  year: 2008
  end-page: 268
– start-page: 1
  year: 2018
  end-page: 4
– volume: 46
  start-page: 701
  issue: 5
  year: 2010
  end-page: 708
  article-title: Movement synchrony and perceived entitativity
  publication-title: Journal of Experimental Social Psychology
– year: 2018
– volume: 116
  start-page: 93
  year: 2018
  end-page: 109
  article-title: The NISPI framework: Analysing collaborative problem‐solving from students' physical interactions
  publication-title: Computers & Education
– volume: 36
  start-page: 757
  issue: 5
  year: 2012
  end-page: 798
  article-title: The Knowledge‐Learning‐Instruction framework: Bridging the science‐practice chasm to enhance robust student learning
  publication-title: Cognitive Science
– year: 2010
– start-page: 1
  year: 2012
  end-page: 65
– start-page: 291
  year: 2018
  end-page: 296
– volume: 21
  start-page: 75
  issue: 1
  year: 2000
  end-page: 99
  article-title: Effects of the child development project on students’ drug use and other problem behaviours
  publication-title: The Journal of Primary Prevention
– volume: 13
  start-page: 9
  year: 1989
  end-page: 19
  article-title: Critical distinctions among three approaches to peer education
  publication-title: International Journal of Educational Research
– start-page: 1003
  year: 2008
  end-page: 1015
– volume: 38
  start-page: 813
  issue: 4
  year: 2001
  end-page: 834
  article-title: High access and low use of technologies in high school classrooms: Explaining an apparent paradox
  publication-title: American Educational Research Journal
– start-page: 102
  year: 2013
  end-page: 106
– start-page: 143
  year: 2016
  end-page: 147
– volume: 116
  start-page: 1143
  year: 2014
  end-page: 1148
  article-title: Does teachers charisma can really induce students learning interest?
  publication-title: Procedia-Social and Behavioral Sciences
– volume: 47
  start-page: 157
  year: 2015
  end-page: 167
  article-title: In search for the most informative data for feedback generation: Learning Analytics in a data‐rich context
  publication-title: Computers in Human Behavior
– volume: 51
  start-page: 1321
  year: 2008
  end-page: 1341
  article-title: Interactive whiteboards: Real beauty or just lipstick?
  publication-title: Computers & Education
– volume: 34
  start-page: 1375
  issue: 9
  year: 2018
  end-page: 1386
  article-title: Supervised machine learning in multimodal learning analytics for estimating success in project‐based learning
  publication-title: Journal of Computer Assisted Learning
– volume: 36
  start-page: 127
  issue: 2
  year: 2014
  end-page: 144
  article-title: Effectiveness of cognitive tutor algebra I at scale
  publication-title: Educational Evaluation and Policy Analysis
– year: 2017
– year: 2019
– volume: 12
  start-page: 59
  year: 2014
  end-page: 76
  article-title: Teachers’ self-efficacy, personality, and teaching effectiveness: A metaanalysis
  publication-title: Educational Research Review
– volume: 50
  start-page: 36
  issue: 1
  year: 2014
  end-page: 64
  article-title: Teaching with social media: Disrupting present day public education
  publication-title: Educational Studies
– start-page: 510
  year: 2011
  end-page: 517
– year: 2013
– start-page: 53
  year: 2012
  end-page: 63
– year: 2008
  article-title: The open learning initiative: Measuring the effectiveness of the OLI statistics course in accelerating student learning
  publication-title: Journal of Interactive Media in Education
– ident: e_1_2_8_22_1
  doi: 10.1145/2883851.2883943
– volume-title: Teacher training—The challenge of change
  year: 2019
  ident: e_1_2_8_18_1
– ident: e_1_2_8_10_1
  doi: 10.3102/00028312038004813
– ident: e_1_2_8_40_1
  doi: 10.1007/s11412-013-9181-4
– start-page: 245
  volume-title: Argumentation in Science Education: Perspectives from Classroom-Based Research
  year: 2008
  ident: e_1_2_8_48_1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.edurev.2014.06.001
– start-page: 1
  volume-title: Proceedings of Conference on Advanced Technology for Education
  year: 2012
  ident: e_1_2_8_5_1
– ident: e_1_2_8_2_1
  doi: 10.1007/s40593-016-0105-0
– ident: e_1_2_8_9_1
  doi: 10.1016/j.compedu.2013.06.010
– ident: e_1_2_8_16_1
  doi: 10.1016/0883-0355(89)90013-X
– ident: e_1_2_8_27_1
  doi: 10.2190/EC.43.4.d
– ident: e_1_2_8_35_1
  doi: 10.1080/00131946.2013.866954
– ident: e_1_2_8_38_1
  doi: 10.1007/978-0-387-73315-9_63
– ident: e_1_2_8_33_1
– volume-title: CAPITAL‐curriculum and pedagogy in technology assisted learning
  year: 2010
  ident: e_1_2_8_34_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.chb.2014.05.038
– ident: e_1_2_8_4_1
  doi: 10.1023/A:1007057414994
– ident: e_1_2_8_7_1
  doi: 10.1037/0033-2909.132.3.354
– ident: e_1_2_8_11_1
  doi: 10.1007/978-3-319-98572-5_22
– ident: e_1_2_8_44_1
  doi: 10.1080/10508406.2018.1440353
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1551-6709.2012.01245.x
– ident: e_1_2_8_37_1
  doi: 10.3102/0162373713507480
– ident: e_1_2_8_13_1
  doi: 10.1111/bjet.12727
– volume-title: Evidence‐centered design and its application to collaborative problem solving in practice‐based learning environments
  year: 2017
  ident: e_1_2_8_15_1
– ident: e_1_2_8_20_1
  doi: 10.1504/IJTEL.2012.051816
– volume: 34
  start-page: 1375
  issue: 9
  year: 2018
  ident: e_1_2_8_45_1
  article-title: Supervised machine learning in multimodal learning analytics for estimating success in project‐based learning
  publication-title: Journal of Computer Assisted Learning
– start-page: 53
  volume-title: Trends and issues in instructional design and technology
  year: 2012
  ident: e_1_2_8_21_1
– volume-title: Machine learning and human intelligence
  year: 2018
  ident: e_1_2_8_32_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ijcci.2018.03.002
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jesp.2010.03.015
– ident: e_1_2_8_14_1
  doi: 10.1016/j.compedu.2017.08.007
– ident: e_1_2_8_42_1
  doi: 10.1057/9781137385451_14
– volume: 10
  start-page: 238
  year: 1999
  ident: e_1_2_8_36_1
  article-title: Evaluation of a constraint‐based tutor for a database language
  publication-title: International Journal of Artificial Intelligence in Education
– ident: e_1_2_8_47_1
  doi: 10.5120/11648-7142
– ident: e_1_2_8_6_1
  doi: 10.1145/2460296.2460316
– ident: e_1_2_8_43_1
  doi: 10.1016/j.compedu.2007.12.006
– ident: e_1_2_8_39_1
  doi: 10.1007/978-0-387-73315-9_65
– ident: e_1_2_8_3_1
  doi: 10.1017/CBO9781139519526.016
– ident: e_1_2_8_30_1
  doi: 10.1016/j.sbspro.2014.01.359
– volume-title: Randomized controlled trials commissioned by the institute of education sciences since 2002: How many found positive versus weak or no effects
  year: 2013
  ident: e_1_2_8_8_1
– ident: e_1_2_8_19_1
  doi: 10.1007/978-90-481-3927-9_11
– ident: e_1_2_8_29_1
  doi: 10.1521/soco.2011.29.1.1
– ident: e_1_2_8_31_1
  doi: 10.5334/2008-14
– ident: e_1_2_8_12_1
  doi: 10.1007/978-3-030-23207-8_9
– volume-title: The fourth education revolution: Will artificial intelligence liberate or infantilise humanity?
  year: 2018
  ident: e_1_2_8_41_1
– start-page: 510
  volume-title: International Conference on Computer Supported Collaborative Learning 2011
  year: 2011
  ident: e_1_2_8_17_1
– start-page: 1
  volume-title: 13th International Conference of the Learning Sciences (ICLS) Volume 1
  year: 2018
  ident: e_1_2_8_24_1
SSID ssj0000354
Score 2.6471393
Snippet Interdisciplinary research from the learning sciences has helped us understand a great deal about the way that humans learn, and as a result we now have an...
SourceID proquest
eric
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2824
SubjectTerms Algorithms
Artificial Intelligence
Case Studies
Data analysis
Education
Educational Benefits
Educational Research
Educational Technology
Empirical analysis
Instructional Design
Instructional scaffolding
Interdisciplinary Approach
Interdisciplinary aspects
Interdisciplinary studies
Learning Analytics
Learning Processes
Machine learning
Mathematics
Partnerships
Scaffolding
Teaching
Teaching Methods
Technology assessment
Technology Uses in Education
Theory Practice Relationship
Training
Title Designing educational technologies in the age of AI: A learning sciences‐driven approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjet.12861
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1232150
https://www.proquest.com/docview/2307070760
Volume 50
WOSCitedRecordID wos000491231200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000354
  issn: 0007-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA_D-eCL_4fTKQF9UahQmzWt-DLdhg4ZIhOGLyVpEplIJ2v12Y_gZ_STeNem-wMiiPQltJe2JPnd_S5c7gg5UsDZJZgiJwRUO8zlClqecvwzowX3eOyqIC82wfv9YDgM7yrkojwLU-SHmG64ITJyfY0AFzKdA7l81tkpaFf0fap4qgpcr2r7vvtwO9PEXrPIwoyJEIHr2PSkGMkz671gkBZjnpFszlPW3OZ01_73t-tk1XJN2ioWxwap6GQTyzTbkI4t8tjO4zfAelFd3oUOWbndDl40HSUUOCIFtUPHhrZuzmmL2lITT9Taz_Tr41NNUG_SMkf5Nhl0O4Ora8cWW3BigK3ruEz6KvY9zgx3hWSxEkZIJYXHA19xIBJc-VzoQENbNuOACwA_M0wbo0Lm1chSMk70DqFGBjLwXAFIN0wEvgQzrDjwrNBFb4jVyXE54FFsE5FjPYyXqHRIcLCifLDq5HAq-1qk3_hRqobzNpXo9JAowtfqpFHOZGSxmUYY-o6XD49P8jn75dXRZa8zyFu7fxHeIyvArMLi0GKDLGWTN71PluP3bJRODuw6_QZLeeu6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-yCfri_-F0akBfFCrUZk3r23Qb25xDZMLwpSRNIhPZZJs--xH8jH4S79p0f0AEkb6ENmnLJb-734XLHSEnCji7BFPkhIBqh7lcQctTjn9htOAej10VJMUmeKcT9HrhnY3NwbMwaX6I6YYbIiPR1whw3JCeQ7l81pNzUK_o_OSZ7_EgR_LV-_pDe6aKvXKahhkzIQLZsflJMZRnNnrBIi0GPSPbnOesidGpr__zdzfImmWbtJIuj02ypAdbWKjZBnVsk8dqEsEB9ovq7C4MmGQb7uBH0_6AAkukoHjo0NBK85JWqC028UStBR1_fXyqEWpOmmUp3yHdeq173XBsuQUnBuC6jsukr2KQIzPcFZLFShghlRQgWV9xoBJc-VzoQENbluOAC4A_M0wbo0LmFUhuMBzoXUKNDGTguQKwbpgIfAmGWHFgWqGL_hArktNM4lFsU5FjRYyXKHNJUFhRIqwiOZ72fU0TcPzYq4ATN-1RayFVhK8VSSmbysiicxxh8DtePjw-Sybtl1dHV61aN2nt_aXzEVlpdG_bUbvZudknq8CzwvQIY4nkJqM3fUCW4_dJfzw6tIv2G2mc76o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-yifji_-F0akBfFCrUpk3r23Qrbo4xZMLwpSRNIhPpxlZ99iP4Gf0kXtp0f0AEkb6E9tKWJL-734XLHUJnAjg7B1NkBYBqi9hUQMsRlnelJKMOjW3hZ8UmaLfrDwZBz8Tm6LMweX6I2YabRkamrzXA5VioBZTzF5legnrVzk-ZuIFLSqjceAgfO3NV7Lh5GmadCRHIjslPqkN55r2XLNJy0LNmm4ucNTM64eY_f3cLbRi2iev58thGKzLZ0YWaTVDHLnpqZBEcYL-wLO5Ch7TYcAc_Gg8TDCwRg-LBI4XrrWtcx6bYxDM2FnT69fEpJlpz4iJL-R7qh83-7Z1lyi1YMQDXtmzCPRF7DiWK2oyTWDDFuODMob4nKFAJKjzKpC-hzd3YpwzgTxSRSomAOBVUSkaJ3EdYcZ_7js0A64ow3-NgiAUFphXY2h8iVXRejHgUm1TkuiLGa1S4JHqwomywquh0JjvOE3D8KFXREzeTaLY1VYSvVVGtmMrIoHMa6eB3fXnw-CKbtF9eHd20m_2sdfAX4RO01muEUafVvT9E60CzgvwEYw2V0smbPEKr8Xs6nE6OzZr9Bg1N7yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Educational+Technologies+in+the+Age+of+AI%3A+A+Learning+Sciences-Driven+Approach&rft.jtitle=British+journal+of+educational+technology&rft.au=Luckin%2C+Rosemary&rft.au=Cukurova%2C+Mutlu&rft.date=2019-11-01&rft.pub=Wiley-Blackwell&rft.issn=0007-1013&rft.volume=50&rft.issue=6&rft.spage=2824&rft_id=info:doi/10.1111%2Fbjet.12861&rft.externalDocID=EJ1232150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1013&client=summon