Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine monopile foundations using wave episodes and targeted CFD simulations through active sampling

Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationall...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wind energy (Chichester, England) Ročník 27; číslo 1; s. 75 - 100
Hlavní autoři: Guth, Stephen, Katsidoniotaki, Eirini, Sapsis, Themistoklis P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis John Wiley & Sons, Inc 01.01.2024
Wiley
Témata:
ISSN:1095-4244, 1099-1824, 1099-1824
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationally intensive simulations. Furthermore, the estimation of statistics using current practices is subject to ongoing discussion due to the inherent uncertainty involved. To address these challenges, we present a novel machine learning framework that leverages data‐driven surrogate modeling to predict hydrodynamic loads on monopile foundations while reducing reliance on costly simulations and facilitate the load statistics reconstruction. The primary advantage of our approach is the significant reduction in evaluation time compared to traditional modeling methods. The novelty of our framework lies in its efficient construction of the surrogate model, utilizing the Gaussian process regression machine learning technique and a Bayesian active learning method to sequentially sample wave episodes that contribute to accurate predictions of extreme hydrodynamic forces. Additionally, a spectrum transfer technique combines computational fluid dynamics (CFD) results from both quiescent and extreme waves, further reducing data requirements. This study focuses on reducing the dimensionality of stochastic irregular wave episodes and their associated hydrodynamic force time series. Although the dimensionality reduction is linear, Gaussian process regression successfully captures high‐order correlations. Furthermore, our framework incorporates built‐in uncertainty quantification capabilities, facilitating efficient parameter sampling using traditional CFD tools. This paper provides comprehensive implementation details and demonstrates the effectiveness of our approach in delivering reliable statistics for hydrodynamic loads while overcoming the computational cost constraints associated with classical modeling methods.
AbstractList Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationally intensive simulations. Furthermore, the estimation of statistics using current practices is subject to ongoing discussion due to the inherent uncertainty involved. To address these challenges, we present a novel machine learning framework that leverages data‐driven surrogate modeling to predict hydrodynamic loads on monopile foundations while reducing reliance on costly simulations and facilitate the load statistics reconstruction. The primary advantage of our approach is the significant reduction in evaluation time compared to traditional modeling methods. The novelty of our framework lies in its efficient construction of the surrogate model, utilizing the Gaussian process regression machine learning technique and a Bayesian active learning method to sequentially sample wave episodes that contribute to accurate predictions of extreme hydrodynamic forces. Additionally, a spectrum transfer technique combines computational fluid dynamics (CFD) results from both quiescent and extreme waves, further reducing data requirements. This study focuses on reducing the dimensionality of stochastic irregular wave episodes and their associated hydrodynamic force time series. Although the dimensionality reduction is linear, Gaussian process regression successfully captures high‐order correlations. Furthermore, our framework incorporates built‐in uncertainty quantification capabilities, facilitating efficient parameter sampling using traditional CFD tools. This paper provides comprehensive implementation details and demonstrates the effectiveness of our approach in delivering reliable statistics for hydrodynamic loads while overcoming the computational cost constraints associated with classical modeling methods.
Abstract Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationally intensive simulations. Furthermore, the estimation of statistics using current practices is subject to ongoing discussion due to the inherent uncertainty involved. To address these challenges, we present a novel machine learning framework that leverages data‐driven surrogate modeling to predict hydrodynamic loads on monopile foundations while reducing reliance on costly simulations and facilitate the load statistics reconstruction. The primary advantage of our approach is the significant reduction in evaluation time compared to traditional modeling methods. The novelty of our framework lies in its efficient construction of the surrogate model, utilizing the Gaussian process regression machine learning technique and a Bayesian active learning method to sequentially sample wave episodes that contribute to accurate predictions of extreme hydrodynamic forces. Additionally, a spectrum transfer technique combines computational fluid dynamics (CFD) results from both quiescent and extreme waves, further reducing data requirements. This study focuses on reducing the dimensionality of stochastic irregular wave episodes and their associated hydrodynamic force time series. Although the dimensionality reduction is linear, Gaussian process regression successfully captures high‐order correlations. Furthermore, our framework incorporates built‐in uncertainty quantification capabilities, facilitating efficient parameter sampling using traditional CFD tools. This paper provides comprehensive implementation details and demonstrates the effectiveness of our approach in delivering reliable statistics for hydrodynamic loads while overcoming the computational cost constraints associated with classical modeling methods.
Author Sapsis, Themistoklis P.
Guth, Stephen
Katsidoniotaki, Eirini
Author_xml – sequence: 1
  givenname: Stephen
  orcidid: 0000-0002-7434-5031
  surname: Guth
  fullname: Guth, Stephen
  email: sguth@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Eirini
  orcidid: 0000-0001-5096-3559
  surname: Katsidoniotaki
  fullname: Katsidoniotaki, Eirini
  organization: Centre of Natural Hazards and Disaster Science (CNDS)
– sequence: 3
  givenname: Themistoklis P.
  orcidid: 0000-0003-0302-0691
  surname: Sapsis
  fullname: Sapsis, Themistoklis P.
  organization: Massachusetts Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-523227$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp1ks1u1DAQgCNUJNqCeAVLHDhAiu3YSXysti1UqsSBv6M1iSe7XmXjYMdEeSzeEGe3QgLBydbom2_G47nIzgY3YJa9ZPSKUcrfzXjF65o-yc4ZVSpnNRdnx7vMBRfiWXYRwp5SRhmrz7OfnyaYbJhsCz05OIO9HbbEdaSLfb-Q5E4BBE92i_HOLAMcbEt6ByYQNySwCzvnkcx2MGSKvkl08gxutD2SzsXBJL8bAolhNc_wAwmONqRSgcCaBH6LExqyubshwR5i_5gw7byL2x2BdrIpKcBhXJt7nj3toA_44vG8zL7c3X7efMgfPr6_31w_5K3gkuasMiVgwRlUTa0YKABVIjZclTV00jRcFoVCyYELaroWjOSVASYk7UpRVsVldn_yGgd7PXp7AL9oB1YfA85vNfg0tx51o2RbqqauQFFRCtbISiqBDaKhRhiVXG9PrjDjGJs_bDf26_XRFqOWvOB8Lf3qhI_efY8YJr130Q_ptZorWvCqLlSZqNcnqvUuBI_dby2jel0FPaNeVyGR-V9ka6fjlCcPtv8H_-bEz-kTl_9p9bfbI_0LSJXJ9g
CitedBy_id crossref_primary_10_1007_s11071_025_11825_6
crossref_primary_10_3390_jmse13050941
crossref_primary_10_3390_jmse12071107
crossref_primary_10_1016_j_oceaneng_2024_119328
crossref_primary_10_1016_j_oceaneng_2024_118768
crossref_primary_10_3390_jmse12112068
crossref_primary_10_1016_j_oceaneng_2025_120391
Cites_doi 10.1017/S0022112005006774
10.1115/OMAE2020-18639
10.1016/j.oceaneng.2022.112633
10.1016/j.coastaleng.2012.07.002
10.1098/rsta.2014.0104
10.3390/jmse9030345
10.1016/j.probengmech.2015.12.009
10.1007/BF01449156
10.1017/jfm.2016.13
10.5194/wes-3-149-2018
10.1115/1.4043278
10.1007/BF02546511
10.1142/7425
10.1016/j.renene.2013.03.003
10.1016/j.marstruc.2020.102922
10.1016/j.scriptamat.2005.07.015
10.1115/OMAE2009-79444
10.1016/j.renene.2022.04.133
10.1201/9781003216599-12
10.1002/9780470770801.ch3
10.1073/pnas.1813263115
10.1016/0031-3203(81)90082-0
10.5194/wes-3-475-2018
10.1115/OMAE2007-29235
10.3390/jmse9010096
10.1016/j.apor.2019.06.003
10.1016/j.renene.2021.05.009
10.5194/wes-3-767-2018
10.1002/we.1861
10.1016/j.jcp.2012.08.013
10.1146/annurev-fluid-030420-032810
10.1016/j.oceaneng.2019.106213
10.1016/j.nexus.2021.100011
10.1177/0309524X20936201
10.1002/we.303
10.1142/p191
10.1016/j.renene.2016.08.056
10.1016/j.wse.2021.12.010
10.1016/j.oceaneng.2021.110374
10.1016/j.coastaleng.2018.10.002
10.1016/j.oceaneng.2016.10.025
10.1016/j.jcp.2020.109901
10.1016/j.jcp.2017.03.054
10.1098/rspa.2021.0781
10.1098/rspa.2012.0063
10.1016/j.probengmech.2021.103162
10.1061/(ASCE)0733-950X(2000)126:2(88)
10.1137/20M1347486
10.1002/we.80
10.1111/itor.12292
10.1214/ss/1177009939
10.1175/1520-0485(1993)023<0992:ESOEWI>2.0.CO;2
10.1016/j.oceaneng.2016.04.018
10.1098/rspa.2019.0834
10.1016/j.oceaneng.2022.113320
10.1088/1742-6596/753/9/092004
10.1038/s41598-023-28703-z
10.3390/jmse8040289
10.1038/s43588-022-00376-0
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1002/we.2880
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef

ProQuest Central Student


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1099-1824
EndPage 100
ExternalDocumentID oai_doaj_org_article_b95c69b87a904641b57594ebeed0d4d9
oai_DiVA_org_uu_523227
10_1002_we_2880
WE2880
Genre article
GrantInformation_xml – fundername: Anna‐Maria Lundins Scholarship
  funderid: AMh2021‐0023
– fundername: Liljewalch Scholarship
– fundername: Swedish National Infrastructure for Computing
– fundername: Office of Naval Research
  funderid: N00014‐20‐1‐2366; N00014‐21‐1‐2357
– fundername: Onassis Foundation
  funderid: FZP 021‐1/2019‐2020
– fundername: Swedish Centre of Natural Hazards and Disaster Science (CNDS)
GroupedDBID 05W
0R~
123
1OC
24P
31~
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANHP
AAONW
AAZKR
ABCUV
ABIJN
ABJCF
ACBWZ
ACCFJ
ACCMX
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HVGLF
HZ~
I-F
IAO
ITC
IX1
LATKE
LAW
LITHE
LOXES
LUTES
LYRES
M7S
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P4E
PATMY
PCBAR
PTHSS
PYCSY
QRW
R.K
ROL
RX1
RYL
SUPJJ
UCJ
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WYISQ
WYJ
XPP
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
BANNL
CITATION
IVC
O8X
PHGZM
PHGZT
PQGLB
WIN
7ST
8FE
8FG
AZQEC
C1K
DWQXO
GNUQQ
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
SOI
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c4250-17d6ae321a7b891a9aa96eeb2968af5db25339e52a240dfcad527da1450f64673
IEDL.DBID 24P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001102026400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1095-4244
1099-1824
IngestDate Mon Nov 10 04:30:57 EST 2025
Tue Nov 04 16:57:48 EST 2025
Sat Aug 23 14:58:03 EDT 2025
Sat Nov 29 03:19:04 EST 2025
Tue Nov 18 22:30:12 EST 2025
Wed Jan 22 16:16:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4250-17d6ae321a7b891a9aa96eeb2968af5db25339e52a240dfcad527da1450f64673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0302-0691
0000-0002-7434-5031
0000-0001-5096-3559
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2880
PQID 2903278396
PQPubID 1006436
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_b95c69b87a904641b57594ebeed0d4d9
swepub_primary_oai_DiVA_org_uu_523227
proquest_journals_2903278396
crossref_primary_10_1002_we_2880
crossref_citationtrail_10_1002_we_2880
wiley_primary_10_1002_we_2880_WE2880
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
2024
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Wind energy (Chichester, England)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 90
2021; 66
1934; 109
1930; 55
2013; 71
2023; 268
2020; 8
2018; 3
2021; 76
2020; 173
2000
2013; 57
2000; 126
2003; 6
2005; 545
2015; 373
2013; 232
1948
2016; 790
2022; 245
2016; 44
2021; 9
2023; 13
2021; 45
2016; 19
2021; 2
2022; 192
2010
2021; 425
2017; 24
1995; 10
2009
2008
2007
2006
2016; 128
2008; 11
2002
2019; 141
2012; 468
2011; 5
2016; 120
1947; 1947
2022; 478
2019; 143
2019; 187
2022; 266
2012; 2
2021; 53
2022
2021
2020
2018; 115
1981; 14
2019
2005; 53
2018
2016
2021; 175
2017; 340
2020; 476
2013
2017; 101
1992; 23
1973; 8
1989; 19
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Windt C (e_1_2_9_69_1) 2020; 173
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Loève M (e_1_2_9_64_1) 1948
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
Fogle J (e_1_2_9_15_1) 2008; 11
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Cheng PW (e_1_2_9_16_1) 2003; 6
Elangovan M (e_1_2_9_68_1) 2011; 5
e_1_2_9_70_1
Sapsis TP (e_1_2_9_43_1) 2020; 476
Hasselmann K (e_1_2_9_62_1) 1973; 8
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
Rasmussen CE (e_1_2_9_36_1) 2006
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
Karhunen K (e_1_2_9_63_1) 1947; 1947
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Naess A (e_1_2_9_74_1) 2013
Boccotti P (e_1_2_9_46_1) 1989; 19
e_1_2_9_9_1
e_1_2_9_25_1
Yang Y (e_1_2_9_67_1) 2022; 478
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 141
  issue: 4
  year: 2019
  article-title: Numerical simulations of breaking waves and steep waves past a vertical cylinder at different Keulegan–Carpenter numbers
  publication-title: J Offshore Mech Arctic Eng
– volume: 8
  start-page: 1
  year: 1973
  end-page: 95
  article-title: Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Deut Hydrogr Z
– volume: 24
  start-page: 393
  issue: 3
  year: 2017
  end-page: 424
  article-title: Surrogate‐based methods for black‐box optimization
  publication-title: Int Trans Oper Res
– volume: 11
  start-page: 613
  issue: 6
  year: 2008
  end-page: 635
  article-title: Towards an improved understanding of statistical extrapolation for wind turbine extreme loads
  publication-title: Wind Energy: An Int J Progr Appl Wind Power Convers Technol
– volume: 115
  start-page: 11138
  issue: 44
  year: 2018
  end-page: 11143
  article-title: Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems
  publication-title: Proc Natl Acad Sci
– volume: 2
  year: 2021
  article-title: Application of machine learning for wind energy from design to energy‐water nexus: a survey
  publication-title: Energy Nexus
– volume: 173
  start-page: 144
  issue: 3
  year: 2020
  end-page: 158
  article-title: Wave–structure interaction of wave energy converters: A sensitivity analysis
  publication-title: Proc Inst Civil Eng‐Eng Comput Mech
– volume: 55
  start-page: 117
  issue: none
  year: 1930
  end-page: 258
  article-title: Generalized harmonic analysis
  publication-title: Acta Math
– year: 2021
– volume: 232
  start-page: 288
  year: 2013
  end-page: 317
  article-title: Simulation‐based optimal Bayesian experimental design for nonlinear systems
  publication-title: J Comput Phys
– volume: 8
  issue: 4
  year: 2020
  article-title: Characterization of extreme wave conditions for wave energy converter design and project risk assessment
  publication-title: J Marine Sci Eng
– volume: 3
  start-page: 767
  issue: 2
  year: 2018
  end-page: 790
  article-title: From wind to loads: wind turbine site‐specific load estimation with surrogate models trained on high‐fidelity load databases
  publication-title: Wind Energy Sci
– volume: 19
  start-page: 110
  year: 1989
  end-page: 170
  article-title: On mechanics of irregular gravity waves
  publication-title: Atti della Accademia Nazionale dei Lincei
– year: 2018
– volume: 9
  start-page: 345
  issue: 3
  year: 2021
  article-title: Response of point‐absorbing wave energy conversion system in 50‐years return period extreme focused waves
  publication-title: J Marine Sci Eng
– volume: 266
  year: 2022
  article-title: Wave episode based Gaussian process regression for extreme event statistics in ship dynamics: Between the Scylla of Karhunen–Loève convergence and the Charybdis of transient features
  publication-title: Ocean Eng
– volume: 478
  issue: 2260
  year: 2022
  article-title: Output‐weighted sampling for multi‐armed bandits with extreme payoffs
  publication-title: Proc R Soc A: Math, Phys Eng Sci
– volume: 790
  start-page: 368
  year: 2016
  end-page: 388
  article-title: Reduced order precursors of rare events in unidirectional nonlinear water waves
  publication-title: J Fluid Mech
– volume: 192
  start-page: 472
  year: 2022
  end-page: 484
  article-title: National offshore wind strategy for late‐mover countries
  publication-title: Renew Energy
– volume: 175
  start-page: 501
  year: 2021
  end-page: 519
  article-title: Numerical and experimental investigation of breaking wave forces on a monopile‐type offshore wind turbine
  publication-title: Renew Energy
– volume: 10
  start-page: 273
  issue: 3
  year: 1995
  end-page: 304
  article-title: Bayesian experimental design: A review
  publication-title: Stat Sci
– volume: 5
  start-page: 1379
  issue: 7
  year: 2011
  end-page: 1383
  article-title: Simulation of irregular waves by CFD
  publication-title: Int J Mech Mechatron Eng
– volume: 76
  year: 2021
  article-title: Ultimate load analysis of a 10 MW offshore monopile wind turbine incorporating fully nonlinear irregular wave kinematics
  publication-title: Marine Struct
– year: 2022
– volume: 268
  year: 2023
  article-title: Validation of a CFD model for wave energy system dynamics in extreme waves
  publication-title: Ocean Eng
– volume: 128
  start-page: 105
  year: 2016
  end-page: 115
  article-title: Breaking wave interaction with a vertical cylinder and the effect of breaker location
  publication-title: Ocean Eng
– volume: 126
  start-page: 88
  issue: 2
  year: 2000
  end-page: 97
  article-title: Review of multidirectional active wave absorption methods
  publication-title: J Waterway, Port, Coastal, Ocean Eng
– volume: 373
  issue: 2033
  year: 2015
  article-title: Numerical investigation of flow and scour around a vertical circular cylinder
  publication-title: Phil Trans R Soc A: Math, Phys Eng Sci
– volume: 545
  start-page: 291
  year: 2005
  end-page: 328
  article-title: Three‐dimensional vortex structures under breaking waves
  publication-title: J Fluid Mech
– volume: 101
  start-page: 126
  year: 2017
  end-page: 143
  article-title: Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation
  publication-title: Renew Energy
– volume: 425
  year: 2021
  article-title: Bayesian optimization with output‐weighted optimal sampling
  publication-title: J Comput Phys
– volume: 45
  start-page: 921
  issue: 4
  year: 2021
  end-page: 938
  article-title: Statistical extrapolation methods for estimating extreme loads on wind turbine blades under turbulent wind conditions and stochastic material properties
  publication-title: Wind Eng
– volume: 3
  start-page: 149
  issue: 1
  year: 2018
  end-page: 162
  article-title: Application of a monte carlo procedure for probabilistic fatigue design of floating offshore wind turbines
  publication-title: Wind Energy Sci
– year: 2019
– volume: 71
  start-page: 102
  year: 2013
  end-page: 118
  article-title: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®
  publication-title: Coastal Eng
– volume: 9
  issue: 1
  year: 2021
  article-title: Comparative analysis of environmental contour approaches to estimating extreme waves for offshore installations for the baltic sea and the north sea
  publication-title: J Marine Sci Eng
– volume: 2
  start-page: 823
  year: 2012
  end-page: 833
  article-title: Discovering and forecasting extreme events via active learning in neural operators
  publication-title: Nature Comput Sci
– volume: 44
  start-page: 18
  year: 2016
  end-page: 27
  article-title: Towards an improved critical wave groups method for the probabilistic assessment of large ship motions in irregular seas
  publication-title: Probab Eng Mech
– volume: 53
  start-page: 1193
  issue: 1
  year: 2005
  end-page: 1196
  article-title: A hysteretic cohesive‐law model of fatigue‐crack nucleation
  publication-title: Scripta Materialia
– volume: 1947
  start-page: 79
  issue: 37
  year: 1947
  article-title: Über lineare Methoden in der Wahrscheinlichkeitsrechnung
  publication-title: Ann Acad Sci Fennicae Ser A I Math‐Phys
– volume: 109
  start-page: 604
  issue: 1
  year: 1934
  end-page: 615
  article-title: Korrelationstheorie der stationren stochastischen Prozesse
  publication-title: Mathematische Annalen
– start-page: 479
  year: 2009
  end-page: 485
– volume: 340
  start-page: 418
  year: 2017
  end-page: 434
  article-title: Reduced‐order prediction of rogue waves in two‐dimensional deep‐water waves
  publication-title: J Comput Phys
– volume: 245
  year: 2022
  article-title: Quantitative comparison of environmental contour approaches
  publication-title: Ocean Eng
– year: 1948
– year: 2000
– volume: 6
  start-page: 1
  issue: 1
  year: 2003
  end-page: 22
  article-title: Reliability‐based design methods to determine the extreme response distribution of offshore wind turbines
  publication-title: Wind Energy: An Int J Progress Appl Wind Power Convers Technol
– volume: 90
  year: 2019
  article-title: Characteristics of breaking irregular wave forces on a monopile
  publication-title: Appl Ocean Res
– volume: 476
  issue: 2234
  year: 2020
  article-title: Output‐weighted optimal sampling for Bayesian regression and rare event statistics using few samples
  publication-title: Proc R Soc A: Math, Phys Eng Sci
– start-page: 183
  year: 2007
  end-page: 191
– year: 2016
– volume: 53
  start-page: 85
  issue: 1
  year: 2021
  end-page: 111
  article-title: Statistics of extreme events in fluid flows and waves
  publication-title: Ann Rev Fluid Mech
– volume: 143
  start-page: 76
  year: 2019
  end-page: 95
  article-title: Probability of wave slamming and the magnitude of slamming loads on offshore wind turbine foundations
  publication-title: Coastal Eng
– volume: 23
  start-page: 992
  year: 1992
  end-page: 1000
  article-title: Expected structure of extreme waves in a gaussian sea. Part I: Theory and SWADE buoy measurements
  publication-title: J Phys Oceanography
– year: 2010
– volume: 14
  start-page: 375
  issue: 1
  year: 1981
  end-page: 381
  article-title: On the relationships between SVD, KLT and PCA
  publication-title: Pattern Recog
– volume: 187
  year: 2019
  article-title: Evaluation of the critical wave groups method in calculating the probability of ship capsize in beam seas
  publication-title: Ocean Eng
– volume: 9
  start-page: 564
  year: 2021
  article-title: Output‐Weighted Optimal Sampling for Bayesian Experimental Design and Uncertainty Quantification
  publication-title: SIAM ASA J of Uncertainty Quant
– volume: 3
  start-page: 475
  issue: 2
  year: 2018
  end-page: 487
  article-title: Adaptive stratified importance sampling: hybridization of extrapolation and importance sampling monte carlo methods for estimation of wind turbine extreme loads
  publication-title: Wind Energy Sci
– year: 2002
– volume: 57
  start-page: 606
  year: 2013
  end-page: 619
  article-title: Establishing robust short‐term distributions of load extremes of offshore wind turbines
  publication-title: Renew Energy
– year: 2006
– year: 2020
– volume: 13
  start-page: 1499
  issue: 1
  year: 2023
  article-title: A regressive machine‐learning approach to the non‐linear complex fast model for hybrid floating offshore wind turbines with integrated oscillating water columns
  publication-title: Sci Rep
– volume: 19
  start-page: 717
  issue: 4
  year: 2016
  end-page: 737
  article-title: Comparative analysis of methods for modelling the short‐term probability distribution of extreme wind turbine loads
  publication-title: Wind Energy
– start-page: 101
  year: 2021
  end-page: 110
– start-page: 77
  year: 2008
  end-page: 107
– volume: 120
  start-page: 256
  year: 2016
  end-page: 263
  article-title: Ship dynamic stability assessment based on realistic wave group excitations
  publication-title: Ocean Eng
– volume: 66
  year: 2021
  article-title: Probabilistic characterization of the effect of transient stochastic loads on the fatigue‐crack nucleation time
  publication-title: Probab Eng Mech
– volume: 468
  start-page: 2574
  issue: 2145
  year: 2012
  end-page: 2594
  article-title: Karhunen–Loève representation of stochastic ocean waves
  publication-title: Proc R Soc A
– year: 2013
– ident: e_1_2_9_31_1
  doi: 10.1017/S0022112005006774
– ident: e_1_2_9_52_1
  doi: 10.1115/OMAE2020-18639
– ident: e_1_2_9_55_1
  doi: 10.1016/j.oceaneng.2022.112633
– ident: e_1_2_9_3_1
– ident: e_1_2_9_78_1
  doi: 10.1016/j.coastaleng.2012.07.002
– ident: e_1_2_9_29_1
  doi: 10.1098/rsta.2014.0104
– ident: e_1_2_9_70_1
  doi: 10.3390/jmse9030345
– ident: e_1_2_9_49_1
  doi: 10.1016/j.probengmech.2015.12.009
– ident: e_1_2_9_73_1
  doi: 10.1007/BF01449156
– ident: e_1_2_9_53_1
  doi: 10.1017/jfm.2016.13
– ident: e_1_2_9_20_1
  doi: 10.5194/wes-3-149-2018
– ident: e_1_2_9_75_1
  doi: 10.1115/1.4043278
– ident: e_1_2_9_72_1
  doi: 10.1007/BF02546511
– ident: e_1_2_9_66_1
  doi: 10.1142/7425
– ident: e_1_2_9_17_1
  doi: 10.1016/j.renene.2013.03.003
– ident: e_1_2_9_23_1
  doi: 10.1016/j.marstruc.2020.102922
– ident: e_1_2_9_5_1
  doi: 10.1016/j.scriptamat.2005.07.015
– ident: e_1_2_9_7_1
  doi: 10.1115/OMAE2009-79444
– ident: e_1_2_9_2_1
– ident: e_1_2_9_4_1
  doi: 10.1016/j.renene.2022.04.133
– ident: e_1_2_9_32_1
  doi: 10.1201/9781003216599-12
– ident: e_1_2_9_35_1
– ident: e_1_2_9_33_1
  doi: 10.1002/9780470770801.ch3
– ident: e_1_2_9_41_1
  doi: 10.1073/pnas.1813263115
– ident: e_1_2_9_8_1
– ident: e_1_2_9_65_1
  doi: 10.1016/0031-3203(81)90082-0
– ident: e_1_2_9_21_1
  doi: 10.5194/wes-3-475-2018
– ident: e_1_2_9_6_1
  doi: 10.1115/OMAE2007-29235
– volume: 5
  start-page: 1379
  issue: 7
  year: 2011
  ident: e_1_2_9_68_1
  article-title: Simulation of irregular waves by CFD
  publication-title: Int J Mech Mechatron Eng
– volume-title: Stochastic dynamics of marine structures
  year: 2013
  ident: e_1_2_9_74_1
– ident: e_1_2_9_60_1
  doi: 10.3390/jmse9010096
– ident: e_1_2_9_25_1
  doi: 10.1016/j.apor.2019.06.003
– ident: e_1_2_9_11_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.renene.2021.05.009
– ident: e_1_2_9_56_1
  doi: 10.5194/wes-3-767-2018
– ident: e_1_2_9_18_1
  doi: 10.1002/we.1861
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jcp.2012.08.013
– ident: e_1_2_9_45_1
  doi: 10.1146/annurev-fluid-030420-032810
– ident: e_1_2_9_51_1
  doi: 10.1016/j.oceaneng.2019.106213
– ident: e_1_2_9_57_1
  doi: 10.1016/j.nexus.2021.100011
– ident: e_1_2_9_19_1
  doi: 10.1177/0309524X20936201
– ident: e_1_2_9_76_1
– volume: 11
  start-page: 613
  issue: 6
  year: 2008
  ident: e_1_2_9_15_1
  article-title: Towards an improved understanding of statistical extrapolation for wind turbine extreme loads
  publication-title: Wind Energy: An Int J Progr Appl Wind Power Convers Technol
  doi: 10.1002/we.303
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_2_9_36_1
– volume: 8
  start-page: 1
  year: 1973
  ident: e_1_2_9_62_1
  article-title: Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Deut Hydrogr Z
– ident: e_1_2_9_14_1
  doi: 10.1142/p191
– ident: e_1_2_9_22_1
  doi: 10.1016/j.renene.2016.08.056
– ident: e_1_2_9_30_1
  doi: 10.1016/j.wse.2021.12.010
– ident: e_1_2_9_61_1
  doi: 10.1016/j.oceaneng.2021.110374
– volume: 173
  start-page: 144
  issue: 3
  year: 2020
  ident: e_1_2_9_69_1
  article-title: Wave–structure interaction of wave energy converters: A sensitivity analysis
  publication-title: Proc Inst Civil Eng‐Eng Comput Mech
– ident: e_1_2_9_28_1
  doi: 10.1016/j.coastaleng.2018.10.002
– ident: e_1_2_9_24_1
  doi: 10.1016/j.oceaneng.2016.10.025
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jcp.2020.109901
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jcp.2017.03.054
– ident: e_1_2_9_13_1
– volume: 478
  issue: 2260
  year: 2022
  ident: e_1_2_9_67_1
  article-title: Output‐weighted sampling for multi‐armed bandits with extreme payoffs
  publication-title: Proc R Soc A: Math, Phys Eng Sci
  doi: 10.1098/rspa.2021.0781
– ident: e_1_2_9_77_1
– ident: e_1_2_9_48_1
  doi: 10.1098/rspa.2012.0063
– volume: 1947
  start-page: 79
  issue: 37
  year: 1947
  ident: e_1_2_9_63_1
  article-title: Über lineare Methoden in der Wahrscheinlichkeitsrechnung
  publication-title: Ann Acad Sci Fennicae Ser A I Math‐Phys
– volume: 19
  start-page: 110
  year: 1989
  ident: e_1_2_9_46_1
  article-title: On mechanics of irregular gravity waves
  publication-title: Atti della Accademia Nazionale dei Lincei
– ident: e_1_2_9_10_1
  doi: 10.1016/j.probengmech.2021.103162
– volume-title: Processus stochastiques et mouvement brownien
  year: 1948
  ident: e_1_2_9_64_1
– ident: e_1_2_9_79_1
  doi: 10.1061/(ASCE)0733-950X(2000)126:2(88)
– ident: e_1_2_9_42_1
  doi: 10.1137/20M1347486
– volume: 6
  start-page: 1
  issue: 1
  year: 2003
  ident: e_1_2_9_16_1
  article-title: Reliability‐based design methods to determine the extreme response distribution of offshore wind turbines
  publication-title: Wind Energy: An Int J Progress Appl Wind Power Convers Technol
  doi: 10.1002/we.80
– ident: e_1_2_9_12_1
– ident: e_1_2_9_34_1
  doi: 10.1111/itor.12292
– ident: e_1_2_9_38_1
  doi: 10.1214/ss/1177009939
– ident: e_1_2_9_47_1
  doi: 10.1175/1520-0485(1993)023<0992:ESOEWI>2.0.CO;2
– ident: e_1_2_9_50_1
  doi: 10.1016/j.oceaneng.2016.04.018
– volume: 476
  issue: 2234
  year: 2020
  ident: e_1_2_9_43_1
  article-title: Output‐weighted optimal sampling for Bayesian regression and rare event statistics using few samples
  publication-title: Proc R Soc A: Math, Phys Eng Sci
  doi: 10.1098/rspa.2019.0834
– ident: e_1_2_9_71_1
  doi: 10.1016/j.oceaneng.2022.113320
– ident: e_1_2_9_37_1
– ident: e_1_2_9_27_1
  doi: 10.1088/1742-6596/753/9/092004
– ident: e_1_2_9_58_1
  doi: 10.1038/s41598-023-28703-z
– ident: e_1_2_9_59_1
  doi: 10.3390/jmse8040289
– ident: e_1_2_9_9_1
– ident: e_1_2_9_40_1
  doi: 10.1038/s43588-022-00376-0
SSID ssj0010118
Score 2.427147
Snippet Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due...
Abstract Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine...
SourceID doaj
swepub
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms active sampling
Bayesian analysis
Computational fluid dynamics
Computer applications
Computing costs
Constraint modelling
Data reduction
Fluid dynamics
Foundations
Gaussian process
heavy tails and extreme events
Hydrodynamics
Learning algorithms
Machine learning
Mathematical models
Offshore
Offshore engineering
Offshore structures
optimal experimental design
reduced order modeling
Sampling
Simulation
Statistical analysis
Statistical models
Statistics
Turbines
Uncertainty
wave episodes
Wind power
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ1QMcUPkSgVLNoXALdZwv-1jarjigigOU3iw7ttuVSrJas131Z_UfMrazq11VFRdOkRIn48Rj-43jeY-QQ86N6MqK51wznVedozmvjM0rTk1dKt3SyLN98a09P-eXl-L7htRX2BOW6IHThzvSou4aoXmrRPgLV-igKFmhaWuoqUxM3UPUswqmVtoFRZGS4ESdh1SulC4b6EaPlvYz44EFcmMeinT92xgz8YZuQ9Y450z2yPMRLMJxquQL8sT2L8mzDQrBV-Q-oMVItowFo6wNnobBQVhXv4M-MWGoOVzfGRwrk_483AzKeBh6LOj89TC3sMTYHHD6wUDZ4nP6YYYVArcWXfIQdshfwVLdWrCzqUdTHlS4Ke4ltwZOJqfgp79HPTAPowQQqDikgldh83p_9Zr8nJz9OPmajzIMeYcdmuZFaxplS1aoVnNRKKGUaCxG5KLhytVGM4SMwtZMITowrlOmZq1RRVVT1-A4XL4hO_i29i2BkhmEKxgJNw5nz0Jr4TDcYVQZjCsdoxn5tGoU2Y0c5UEq40YmdmUml1aG1ssIrAvOEi3HwyJfQquuLwce7XgCvUuO3iX_5V0Z2V_5hBw7t5dM0DIIlIgmIx-Tn2xZOZ1eHEcri4XEOJ-xNiOH0Y0eq6v8dRYO7_5Hld-TpwyBV1om2ic7f-YL-4HsdrfojPOD2E3-AgJFGmQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy6EceBQQgYLmULiFJs7LPqE-dsUBrSoEpbfIiZ3tSiVZErar_iz-ITO2d-kKwYVTlMSObWU8_saP72PsQAgt6yQVoah4FaZ1E4Ui1SZMRaSzRFVFZHm2zz8W06m4uJBnfsJt8Nsq1z7ROmrd1TRHfshllJAqhMzfL76HpBpFq6teQuMu2yGmsnTEdo7H07NPm3UEOldp1ztlFtKRLndslmhHD1fmHRfEBnlrPLK0_dtY0_GHbkNXO_ZMHv5vrR-xBx51wpEzk8fsjmn32P1bXIR7bJdgp2NtfsJ-bm4wlxXLwTTQNUCz9TfQOn4N1cPljUYP7FTt4apTeoCuxYTNcNn1BlYY8QMOahh-G_xO2y2wedBspJwGoH33M1ipawNmMR-wqAEUZbI71I2Gk8kpDPNvXmVsAC8sBMo6ahgUbYlvZ0_Zl8n488mH0Is7hDW6iSiMC50rk_BYFZWQsZJKydxgnC9zoZpMVxyBqDQZV4g5dFMrnfFCqzjNoiZH7548YyNsrXnOIOEaQRDG13mDY3JcVbLBIIpHSmO02vAoYG_Xv7isPfM5CXBclY6zmZcrU5ItBAw2CReO7OPPJMdkI5vXxM5tH3T9rPSdvaxkVueyEoWStHIcV6SCmmJ3MTrSqZYB219bS-ldxlD-NpWAvXFWt1XK6fz8yJayXJYZ4mBeBOzAGuXf6lp-HdPlxb9Le8l2OQI1N620z0Y_-qV5xe7V12hm_WvfoX4BzwAt6Q
  priority: 102
  providerName: ProQuest
Title Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine monopile foundations using wave episodes and targeted CFD simulations through active sampling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2880
https://www.proquest.com/docview/2903278396
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-523227
https://doaj.org/article/b95c69b87a904641b57594ebeed0d4d9
Volume 27
WOSCitedRecordID wos001102026400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: PCBAR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: PATMY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: WIN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1099-1824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010118
  issn: 1099-1824
  databaseCode: 24P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKSzWHhVvYxHnZxz4F0qqKFvYhLpEdO91KS1MldKv9WfxDZpxs2QohIXFpVXccO_LMeMaP72PsUAgjizASntBce1FR-p6IjPUi4Zs4VDr1Hc722XE6m4mLC5ndofpq8SG2C25kGc5fk4Er3Rz9Bg3d2I8cle8-2w-CUBBrA4-y7QYCXah0G50y9uguV3tflqoedRV3JiKH178bZLbAobsxq5t0pk_-o7tP2eMu0oRBqxrP2D27fM4e3cEffMF-UqjpkJpR0HHiYDFUJdCi_A0s23ZVDZc3Bh1tS14PV5UyDVRLFCyby6q2sMHEHnDuwizb4nOW1Qq7COWWsakBOl4_h426tmBXiwabakBRJXcQ3RoYTcfQLL53ZGINdPxBoJw_hkbRyffl_CU7nU6-jj55HYeDV6A38L0gNYmyIQ9UqoUMlFRKJhbTeZkIVcZGc4w3pY25wtDClIUyMU-NCqLYLxN04uErtodva18zCLnBWAfT6KTEqTfQWpaYK3FfGUxKS-732IfbAc2LDuCceDau8haamecbm9MY9BhsBVctpsefIkPSiO3fBMLtCqp6nnc2nWsZF4nUIlWSNogDTWSnEVqFNb6JjOyxg1t9yjvP0ORc-iGxm8ikx963OrbTynhxNnCtrNd5jOEuT3vs0CnW3_qan0_o682_ib1lDznGZe0q0gHb-1Gv7Tv2oLhGdav7zoj6bH84mWUnfbdAgb_GJ9PT4z4di_2Cn1n8Dcuy0XBAEuefZ78APbIr7A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pKTOUA48CQ6CADm1vprb8kg4cQtNMO00zPZRSTkKy5DQzrR1i0kz-FDP8Q1ayE5ph4NYDJ4_ttWXLq92VV_t9ANuMaZ6FEfOYosqLstz3WKSNFzFfx6FUqe9wts_76WDALi746Rr8WNTC2GWVC5voDLUuM_uPfI9yP7SsEDxpVlAem_kM52fVh6MufswdSnsHZ_uHXkMh4GWojL4XpDqRJqSBTBXjgeRS8sTgbJInTOaxVhTDHW5iKtGz6TyTOqaplkEU-3mCNiTE--6Ov3mWpcpmcxvKjnuwzhKe0Basn3bOTr4s8xa2jtPlV3ns2RKyukzXwpzuzcx7yiz65C3_52gCVmPbGq90NVR2vq73-H_rpSfwqImqSaceBk9hzRSb8PAW1uImbNiwukalfgY_lzt4lSMDQhlS5sRmI-akqPFD5IRczjV6mHkhr0cZuSqlrkhZoGBeXZYTQ2ajQhN02gql8T5FOcbuJPmSqqoitq5gSGbyxhAzHlXYVEWkvcitwDea7Pe6pBpdNyxqFWmIk4h0johU0i75L4bP4dOd9OkLaOHbmpdAQqoxyPNpmuQYcwRK8RwnidSXGmfjOfXbsLtQKZE1yO6WYORK1JjUVMyMsLrXBrIUHNdgJn-KfLQ6uTxt0cfdgXIyFI0xE4rHWcIVSyW3mfFAWZbXCM2B0b6ONG_D1kI7RWMSK_FbNduwU2v5Sivd0XnHtTKdihjjfJq2YdsNgr89q_h8YDev_t3aO3hweHbSF_2jwfFr2KAYlNa_0Lag9X0yNW_gfnaDKjd52wxmAl_verD8AjMyim0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagQwgeuCMCA87D4C0scW7241gXgaiqCbGxN8uJ7a7SSKqErtrP4h9ybGeBCiEh8VQpPa5d5Zzj7_jyfYTsMaZ4naQsZBWtwrQ2UchSpcOURSpLZFVEjmf7dFbM5-zsjB8PpyrtXRjPDzEuuNnIcPnaBrheKbP_izV0o99R9L6bZCe1EjITsjP9XJ7Mxj0Ee6fS7XXyLLTXufyVWdt4f2i6NRc5yv5tnOm5Q7dhq5t3yvv_M-IH5N6ANuHAu8dDckM3j8jd3zgIH5MfFm46tmY0dLo4-BhaA3Zh_goa37Hs4PxKYbL1AvZw0UrVQ9ugoenP207DBot7wPkLK22Nv9O0KxwjmFG1qQd7xH4BG3mpQa-WPXbVg7SN3GF0reCwnEK__DYIivUwaAiBdDkZemlPvzeLJ-SkPPpy-CEcdBzCGjNCFMaFyqVOaCyLivFYcil5rrGk5zmTJlMVRczJdUYlwgtlaqkyWigZp1lkckzkyVMywX-rnxFIqEK8g6V0bnD6jauKG6yXaCQVFqaGRgF5e_1GRT2QnFutjQvh6Zmp2Ghh30FAYDRceV6PP03eW5cYv7ZE3O5B2y3EENei4lmd84oVkttN4riygqcpRoZWkUoVD8jutUOJITv0gvIosQonPA_IG-9kW71Ml6cHrpf1WmQIeWkRkD3nWX8bq_h6ZD-e_5vZa3L7eFqK2cf5pxfkDkWY5heVdsnke7fWL8mt-hI9r3s1hNRPvI8oLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+modeling+of+fully+nonlinear+hydrodynamic+loads+on+offshore+wind+turbine+monopile+foundations+using+wave+episodes+and+targeted+CFD+simulations+through+active+sampling&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Guth%2C+Stephen&rft.au=Katsidoniotaki%2C+Eirini&rft.au=Sapsis%2C+Themistoklis+P.&rft.date=2024&rft.issn=1099-1824&rft.volume=27&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1002%2Fwe.2880&rft.externalDocID=oai_DiVA_org_uu_523227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon