Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine monopile foundations using wave episodes and targeted CFD simulations through active sampling
Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationall...
Uloženo v:
| Vydáno v: | Wind energy (Chichester, England) Ročník 27; číslo 1; s. 75 - 100 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bognor Regis
John Wiley & Sons, Inc
01.01.2024
Wiley |
| Témata: | |
| ISSN: | 1095-4244, 1099-1824, 1099-1824 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationally intensive simulations. Furthermore, the estimation of statistics using current practices is subject to ongoing discussion due to the inherent uncertainty involved. To address these challenges, we present a novel machine learning framework that leverages data‐driven surrogate modeling to predict hydrodynamic loads on monopile foundations while reducing reliance on costly simulations and facilitate the load statistics reconstruction. The primary advantage of our approach is the significant reduction in evaluation time compared to traditional modeling methods. The novelty of our framework lies in its efficient construction of the surrogate model, utilizing the Gaussian process regression machine learning technique and a Bayesian active learning method to sequentially sample wave episodes that contribute to accurate predictions of extreme hydrodynamic forces. Additionally, a spectrum transfer technique combines computational fluid dynamics (CFD) results from both quiescent and extreme waves, further reducing data requirements. This study focuses on reducing the dimensionality of stochastic irregular wave episodes and their associated hydrodynamic force time series. Although the dimensionality reduction is linear, Gaussian process regression successfully captures high‐order correlations. Furthermore, our framework incorporates built‐in uncertainty quantification capabilities, facilitating efficient parameter sampling using traditional CFD tools. This paper provides comprehensive implementation details and demonstrates the effectiveness of our approach in delivering reliable statistics for hydrodynamic loads while overcoming the computational cost constraints associated with classical modeling methods. |
|---|---|
| AbstractList | Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationally intensive simulations. Furthermore, the estimation of statistics using current practices is subject to ongoing discussion due to the inherent uncertainty involved. To address these challenges, we present a novel machine learning framework that leverages data‐driven surrogate modeling to predict hydrodynamic loads on monopile foundations while reducing reliance on costly simulations and facilitate the load statistics reconstruction. The primary advantage of our approach is the significant reduction in evaluation time compared to traditional modeling methods. The novelty of our framework lies in its efficient construction of the surrogate model, utilizing the Gaussian process regression machine learning technique and a Bayesian active learning method to sequentially sample wave episodes that contribute to accurate predictions of extreme hydrodynamic forces. Additionally, a spectrum transfer technique combines computational fluid dynamics (CFD) results from both quiescent and extreme waves, further reducing data requirements. This study focuses on reducing the dimensionality of stochastic irregular wave episodes and their associated hydrodynamic force time series. Although the dimensionality reduction is linear, Gaussian process regression successfully captures high‐order correlations. Furthermore, our framework incorporates built‐in uncertainty quantification capabilities, facilitating efficient parameter sampling using traditional CFD tools. This paper provides comprehensive implementation details and demonstrates the effectiveness of our approach in delivering reliable statistics for hydrodynamic loads while overcoming the computational cost constraints associated with classical modeling methods. Abstract Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due to the significant impact of nonlinear wave–structure interactions. However, obtaining precise load statistics often involves computationally intensive simulations. Furthermore, the estimation of statistics using current practices is subject to ongoing discussion due to the inherent uncertainty involved. To address these challenges, we present a novel machine learning framework that leverages data‐driven surrogate modeling to predict hydrodynamic loads on monopile foundations while reducing reliance on costly simulations and facilitate the load statistics reconstruction. The primary advantage of our approach is the significant reduction in evaluation time compared to traditional modeling methods. The novelty of our framework lies in its efficient construction of the surrogate model, utilizing the Gaussian process regression machine learning technique and a Bayesian active learning method to sequentially sample wave episodes that contribute to accurate predictions of extreme hydrodynamic forces. Additionally, a spectrum transfer technique combines computational fluid dynamics (CFD) results from both quiescent and extreme waves, further reducing data requirements. This study focuses on reducing the dimensionality of stochastic irregular wave episodes and their associated hydrodynamic force time series. Although the dimensionality reduction is linear, Gaussian process regression successfully captures high‐order correlations. Furthermore, our framework incorporates built‐in uncertainty quantification capabilities, facilitating efficient parameter sampling using traditional CFD tools. This paper provides comprehensive implementation details and demonstrates the effectiveness of our approach in delivering reliable statistics for hydrodynamic loads while overcoming the computational cost constraints associated with classical modeling methods. |
| Author | Sapsis, Themistoklis P. Guth, Stephen Katsidoniotaki, Eirini |
| Author_xml | – sequence: 1 givenname: Stephen orcidid: 0000-0002-7434-5031 surname: Guth fullname: Guth, Stephen email: sguth@mit.edu organization: Massachusetts Institute of Technology – sequence: 2 givenname: Eirini orcidid: 0000-0001-5096-3559 surname: Katsidoniotaki fullname: Katsidoniotaki, Eirini organization: Centre of Natural Hazards and Disaster Science (CNDS) – sequence: 3 givenname: Themistoklis P. orcidid: 0000-0003-0302-0691 surname: Sapsis fullname: Sapsis, Themistoklis P. organization: Massachusetts Institute of Technology |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-523227$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp1ks1u1DAQgCNUJNqCeAVLHDhAiu3YSXysti1UqsSBv6M1iSe7XmXjYMdEeSzeEGe3QgLBydbom2_G47nIzgY3YJa9ZPSKUcrfzXjF65o-yc4ZVSpnNRdnx7vMBRfiWXYRwp5SRhmrz7OfnyaYbJhsCz05OIO9HbbEdaSLfb-Q5E4BBE92i_HOLAMcbEt6ByYQNySwCzvnkcx2MGSKvkl08gxutD2SzsXBJL8bAolhNc_wAwmONqRSgcCaBH6LExqyubshwR5i_5gw7byL2x2BdrIpKcBhXJt7nj3toA_44vG8zL7c3X7efMgfPr6_31w_5K3gkuasMiVgwRlUTa0YKABVIjZclTV00jRcFoVCyYELaroWjOSVASYk7UpRVsVldn_yGgd7PXp7AL9oB1YfA85vNfg0tx51o2RbqqauQFFRCtbISiqBDaKhRhiVXG9PrjDjGJs_bDf26_XRFqOWvOB8Lf3qhI_efY8YJr130Q_ptZorWvCqLlSZqNcnqvUuBI_dby2jel0FPaNeVyGR-V9ka6fjlCcPtv8H_-bEz-kTl_9p9bfbI_0LSJXJ9g |
| CitedBy_id | crossref_primary_10_1007_s11071_025_11825_6 crossref_primary_10_3390_jmse13050941 crossref_primary_10_3390_jmse12071107 crossref_primary_10_1016_j_oceaneng_2024_119328 crossref_primary_10_1016_j_oceaneng_2024_118768 crossref_primary_10_3390_jmse12112068 crossref_primary_10_1016_j_oceaneng_2025_120391 |
| Cites_doi | 10.1017/S0022112005006774 10.1115/OMAE2020-18639 10.1016/j.oceaneng.2022.112633 10.1016/j.coastaleng.2012.07.002 10.1098/rsta.2014.0104 10.3390/jmse9030345 10.1016/j.probengmech.2015.12.009 10.1007/BF01449156 10.1017/jfm.2016.13 10.5194/wes-3-149-2018 10.1115/1.4043278 10.1007/BF02546511 10.1142/7425 10.1016/j.renene.2013.03.003 10.1016/j.marstruc.2020.102922 10.1016/j.scriptamat.2005.07.015 10.1115/OMAE2009-79444 10.1016/j.renene.2022.04.133 10.1201/9781003216599-12 10.1002/9780470770801.ch3 10.1073/pnas.1813263115 10.1016/0031-3203(81)90082-0 10.5194/wes-3-475-2018 10.1115/OMAE2007-29235 10.3390/jmse9010096 10.1016/j.apor.2019.06.003 10.1016/j.renene.2021.05.009 10.5194/wes-3-767-2018 10.1002/we.1861 10.1016/j.jcp.2012.08.013 10.1146/annurev-fluid-030420-032810 10.1016/j.oceaneng.2019.106213 10.1016/j.nexus.2021.100011 10.1177/0309524X20936201 10.1002/we.303 10.1142/p191 10.1016/j.renene.2016.08.056 10.1016/j.wse.2021.12.010 10.1016/j.oceaneng.2021.110374 10.1016/j.coastaleng.2018.10.002 10.1016/j.oceaneng.2016.10.025 10.1016/j.jcp.2020.109901 10.1016/j.jcp.2017.03.054 10.1098/rspa.2021.0781 10.1098/rspa.2012.0063 10.1016/j.probengmech.2021.103162 10.1061/(ASCE)0733-950X(2000)126:2(88) 10.1137/20M1347486 10.1002/we.80 10.1111/itor.12292 10.1214/ss/1177009939 10.1175/1520-0485(1993)023<0992:ESOEWI>2.0.CO;2 10.1016/j.oceaneng.2016.04.018 10.1098/rspa.2019.0834 10.1016/j.oceaneng.2022.113320 10.1088/1742-6596/753/9/092004 10.1038/s41598-023-28703-z 10.3390/jmse8040289 10.1038/s43588-022-00376-0 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7ST 8FE 8FG ABJCF AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ L6V M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
| DOI | 10.1002/we.2880 |
| DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 1099-1824 |
| EndPage | 100 |
| ExternalDocumentID | oai_doaj_org_article_b95c69b87a904641b57594ebeed0d4d9 oai_DiVA_org_uu_523227 10_1002_we_2880 WE2880 |
| Genre | article |
| GrantInformation_xml | – fundername: Anna‐Maria Lundins Scholarship funderid: AMh2021‐0023 – fundername: Liljewalch Scholarship – fundername: Swedish National Infrastructure for Computing – fundername: Office of Naval Research funderid: N00014‐20‐1‐2366; N00014‐21‐1‐2357 – fundername: Onassis Foundation funderid: FZP 021‐1/2019‐2020 – fundername: Swedish Centre of Natural Hazards and Disaster Science (CNDS) |
| GroupedDBID | 05W 0R~ 123 1OC 24P 31~ 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANHP AAONW AAZKR ABCUV ABIJN ABJCF ACBWZ ACCFJ ACCMX ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BOGZA BRXPI CCPQU CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HF~ HVGLF HZ~ I-F IAO ITC IX1 LATKE LAW LITHE LOXES LUTES LYRES M7S MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 P2P P2W P4E PATMY PCBAR PTHSS PYCSY QRW R.K ROL RX1 RYL SUPJJ UCJ W99 WBKPD WIH WIK WOHZO WUPDE WYISQ WYJ XPP XV2 ZZTAW AAMMB AAYXX AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY BANNL CITATION IVC O8X PHGZM PHGZT PQGLB WIN 7ST 8FE 8FG AZQEC C1K DWQXO GNUQQ L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO SOI ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c4250-17d6ae321a7b891a9aa96eeb2968af5db25339e52a240dfcad527da1450f64673 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001102026400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1095-4244 1099-1824 |
| IngestDate | Mon Nov 10 04:30:57 EST 2025 Tue Nov 04 16:57:48 EST 2025 Sat Aug 23 14:58:03 EDT 2025 Sat Nov 29 03:19:04 EST 2025 Tue Nov 18 22:30:12 EST 2025 Wed Jan 22 16:16:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4250-17d6ae321a7b891a9aa96eeb2968af5db25339e52a240dfcad527da1450f64673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0302-0691 0000-0002-7434-5031 0000-0001-5096-3559 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2880 |
| PQID | 2903278396 |
| PQPubID | 1006436 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b95c69b87a904641b57594ebeed0d4d9 swepub_primary_oai_DiVA_org_uu_523227 proquest_journals_2903278396 crossref_primary_10_1002_we_2880 crossref_citationtrail_10_1002_we_2880 wiley_primary_10_1002_we_2880_WE2880 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 20240101 2024 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Wind energy (Chichester, England) |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2019; 90 2021; 66 1934; 109 1930; 55 2013; 71 2023; 268 2020; 8 2018; 3 2021; 76 2020; 173 2000 2013; 57 2000; 126 2003; 6 2005; 545 2015; 373 2013; 232 1948 2016; 790 2022; 245 2016; 44 2021; 9 2023; 13 2021; 45 2016; 19 2021; 2 2022; 192 2010 2021; 425 2017; 24 1995; 10 2009 2008 2007 2006 2016; 128 2008; 11 2002 2019; 141 2012; 468 2011; 5 2016; 120 1947; 1947 2022; 478 2019; 143 2019; 187 2022; 266 2012; 2 2021; 53 2022 2021 2020 2018; 115 1981; 14 2019 2005; 53 2018 2016 2021; 175 2017; 340 2020; 476 2013 2017; 101 1992; 23 1973; 8 1989; 19 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Windt C (e_1_2_9_69_1) 2020; 173 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Loève M (e_1_2_9_64_1) 1948 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 Fogle J (e_1_2_9_15_1) 2008; 11 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Cheng PW (e_1_2_9_16_1) 2003; 6 Elangovan M (e_1_2_9_68_1) 2011; 5 e_1_2_9_70_1 Sapsis TP (e_1_2_9_43_1) 2020; 476 Hasselmann K (e_1_2_9_62_1) 1973; 8 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 Rasmussen CE (e_1_2_9_36_1) 2006 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 Karhunen K (e_1_2_9_63_1) 1947; 1947 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Naess A (e_1_2_9_74_1) 2013 Boccotti P (e_1_2_9_46_1) 1989; 19 e_1_2_9_9_1 e_1_2_9_25_1 Yang Y (e_1_2_9_67_1) 2022; 478 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 141 issue: 4 year: 2019 article-title: Numerical simulations of breaking waves and steep waves past a vertical cylinder at different Keulegan–Carpenter numbers publication-title: J Offshore Mech Arctic Eng – volume: 8 start-page: 1 year: 1973 end-page: 95 article-title: Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) publication-title: Deut Hydrogr Z – volume: 24 start-page: 393 issue: 3 year: 2017 end-page: 424 article-title: Surrogate‐based methods for black‐box optimization publication-title: Int Trans Oper Res – volume: 11 start-page: 613 issue: 6 year: 2008 end-page: 635 article-title: Towards an improved understanding of statistical extrapolation for wind turbine extreme loads publication-title: Wind Energy: An Int J Progr Appl Wind Power Convers Technol – volume: 115 start-page: 11138 issue: 44 year: 2018 end-page: 11143 article-title: Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems publication-title: Proc Natl Acad Sci – volume: 2 year: 2021 article-title: Application of machine learning for wind energy from design to energy‐water nexus: a survey publication-title: Energy Nexus – volume: 173 start-page: 144 issue: 3 year: 2020 end-page: 158 article-title: Wave–structure interaction of wave energy converters: A sensitivity analysis publication-title: Proc Inst Civil Eng‐Eng Comput Mech – volume: 55 start-page: 117 issue: none year: 1930 end-page: 258 article-title: Generalized harmonic analysis publication-title: Acta Math – year: 2021 – volume: 232 start-page: 288 year: 2013 end-page: 317 article-title: Simulation‐based optimal Bayesian experimental design for nonlinear systems publication-title: J Comput Phys – volume: 8 issue: 4 year: 2020 article-title: Characterization of extreme wave conditions for wave energy converter design and project risk assessment publication-title: J Marine Sci Eng – volume: 3 start-page: 767 issue: 2 year: 2018 end-page: 790 article-title: From wind to loads: wind turbine site‐specific load estimation with surrogate models trained on high‐fidelity load databases publication-title: Wind Energy Sci – volume: 19 start-page: 110 year: 1989 end-page: 170 article-title: On mechanics of irregular gravity waves publication-title: Atti della Accademia Nazionale dei Lincei – year: 2018 – volume: 9 start-page: 345 issue: 3 year: 2021 article-title: Response of point‐absorbing wave energy conversion system in 50‐years return period extreme focused waves publication-title: J Marine Sci Eng – volume: 266 year: 2022 article-title: Wave episode based Gaussian process regression for extreme event statistics in ship dynamics: Between the Scylla of Karhunen–Loève convergence and the Charybdis of transient features publication-title: Ocean Eng – volume: 478 issue: 2260 year: 2022 article-title: Output‐weighted sampling for multi‐armed bandits with extreme payoffs publication-title: Proc R Soc A: Math, Phys Eng Sci – volume: 790 start-page: 368 year: 2016 end-page: 388 article-title: Reduced order precursors of rare events in unidirectional nonlinear water waves publication-title: J Fluid Mech – volume: 192 start-page: 472 year: 2022 end-page: 484 article-title: National offshore wind strategy for late‐mover countries publication-title: Renew Energy – volume: 175 start-page: 501 year: 2021 end-page: 519 article-title: Numerical and experimental investigation of breaking wave forces on a monopile‐type offshore wind turbine publication-title: Renew Energy – volume: 10 start-page: 273 issue: 3 year: 1995 end-page: 304 article-title: Bayesian experimental design: A review publication-title: Stat Sci – volume: 5 start-page: 1379 issue: 7 year: 2011 end-page: 1383 article-title: Simulation of irregular waves by CFD publication-title: Int J Mech Mechatron Eng – volume: 76 year: 2021 article-title: Ultimate load analysis of a 10 MW offshore monopile wind turbine incorporating fully nonlinear irregular wave kinematics publication-title: Marine Struct – year: 2022 – volume: 268 year: 2023 article-title: Validation of a CFD model for wave energy system dynamics in extreme waves publication-title: Ocean Eng – volume: 128 start-page: 105 year: 2016 end-page: 115 article-title: Breaking wave interaction with a vertical cylinder and the effect of breaker location publication-title: Ocean Eng – volume: 126 start-page: 88 issue: 2 year: 2000 end-page: 97 article-title: Review of multidirectional active wave absorption methods publication-title: J Waterway, Port, Coastal, Ocean Eng – volume: 373 issue: 2033 year: 2015 article-title: Numerical investigation of flow and scour around a vertical circular cylinder publication-title: Phil Trans R Soc A: Math, Phys Eng Sci – volume: 545 start-page: 291 year: 2005 end-page: 328 article-title: Three‐dimensional vortex structures under breaking waves publication-title: J Fluid Mech – volume: 101 start-page: 126 year: 2017 end-page: 143 article-title: Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation publication-title: Renew Energy – volume: 425 year: 2021 article-title: Bayesian optimization with output‐weighted optimal sampling publication-title: J Comput Phys – volume: 45 start-page: 921 issue: 4 year: 2021 end-page: 938 article-title: Statistical extrapolation methods for estimating extreme loads on wind turbine blades under turbulent wind conditions and stochastic material properties publication-title: Wind Eng – volume: 3 start-page: 149 issue: 1 year: 2018 end-page: 162 article-title: Application of a monte carlo procedure for probabilistic fatigue design of floating offshore wind turbines publication-title: Wind Energy Sci – year: 2019 – volume: 71 start-page: 102 year: 2013 end-page: 118 article-title: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM® publication-title: Coastal Eng – volume: 9 issue: 1 year: 2021 article-title: Comparative analysis of environmental contour approaches to estimating extreme waves for offshore installations for the baltic sea and the north sea publication-title: J Marine Sci Eng – volume: 2 start-page: 823 year: 2012 end-page: 833 article-title: Discovering and forecasting extreme events via active learning in neural operators publication-title: Nature Comput Sci – volume: 44 start-page: 18 year: 2016 end-page: 27 article-title: Towards an improved critical wave groups method for the probabilistic assessment of large ship motions in irregular seas publication-title: Probab Eng Mech – volume: 53 start-page: 1193 issue: 1 year: 2005 end-page: 1196 article-title: A hysteretic cohesive‐law model of fatigue‐crack nucleation publication-title: Scripta Materialia – volume: 1947 start-page: 79 issue: 37 year: 1947 article-title: Über lineare Methoden in der Wahrscheinlichkeitsrechnung publication-title: Ann Acad Sci Fennicae Ser A I Math‐Phys – volume: 109 start-page: 604 issue: 1 year: 1934 end-page: 615 article-title: Korrelationstheorie der stationren stochastischen Prozesse publication-title: Mathematische Annalen – start-page: 479 year: 2009 end-page: 485 – volume: 340 start-page: 418 year: 2017 end-page: 434 article-title: Reduced‐order prediction of rogue waves in two‐dimensional deep‐water waves publication-title: J Comput Phys – volume: 245 year: 2022 article-title: Quantitative comparison of environmental contour approaches publication-title: Ocean Eng – year: 1948 – year: 2000 – volume: 6 start-page: 1 issue: 1 year: 2003 end-page: 22 article-title: Reliability‐based design methods to determine the extreme response distribution of offshore wind turbines publication-title: Wind Energy: An Int J Progress Appl Wind Power Convers Technol – volume: 90 year: 2019 article-title: Characteristics of breaking irregular wave forces on a monopile publication-title: Appl Ocean Res – volume: 476 issue: 2234 year: 2020 article-title: Output‐weighted optimal sampling for Bayesian regression and rare event statistics using few samples publication-title: Proc R Soc A: Math, Phys Eng Sci – start-page: 183 year: 2007 end-page: 191 – year: 2016 – volume: 53 start-page: 85 issue: 1 year: 2021 end-page: 111 article-title: Statistics of extreme events in fluid flows and waves publication-title: Ann Rev Fluid Mech – volume: 143 start-page: 76 year: 2019 end-page: 95 article-title: Probability of wave slamming and the magnitude of slamming loads on offshore wind turbine foundations publication-title: Coastal Eng – volume: 23 start-page: 992 year: 1992 end-page: 1000 article-title: Expected structure of extreme waves in a gaussian sea. Part I: Theory and SWADE buoy measurements publication-title: J Phys Oceanography – year: 2010 – volume: 14 start-page: 375 issue: 1 year: 1981 end-page: 381 article-title: On the relationships between SVD, KLT and PCA publication-title: Pattern Recog – volume: 187 year: 2019 article-title: Evaluation of the critical wave groups method in calculating the probability of ship capsize in beam seas publication-title: Ocean Eng – volume: 9 start-page: 564 year: 2021 article-title: Output‐Weighted Optimal Sampling for Bayesian Experimental Design and Uncertainty Quantification publication-title: SIAM ASA J of Uncertainty Quant – volume: 3 start-page: 475 issue: 2 year: 2018 end-page: 487 article-title: Adaptive stratified importance sampling: hybridization of extrapolation and importance sampling monte carlo methods for estimation of wind turbine extreme loads publication-title: Wind Energy Sci – year: 2002 – volume: 57 start-page: 606 year: 2013 end-page: 619 article-title: Establishing robust short‐term distributions of load extremes of offshore wind turbines publication-title: Renew Energy – year: 2006 – year: 2020 – volume: 13 start-page: 1499 issue: 1 year: 2023 article-title: A regressive machine‐learning approach to the non‐linear complex fast model for hybrid floating offshore wind turbines with integrated oscillating water columns publication-title: Sci Rep – volume: 19 start-page: 717 issue: 4 year: 2016 end-page: 737 article-title: Comparative analysis of methods for modelling the short‐term probability distribution of extreme wind turbine loads publication-title: Wind Energy – start-page: 101 year: 2021 end-page: 110 – start-page: 77 year: 2008 end-page: 107 – volume: 120 start-page: 256 year: 2016 end-page: 263 article-title: Ship dynamic stability assessment based on realistic wave group excitations publication-title: Ocean Eng – volume: 66 year: 2021 article-title: Probabilistic characterization of the effect of transient stochastic loads on the fatigue‐crack nucleation time publication-title: Probab Eng Mech – volume: 468 start-page: 2574 issue: 2145 year: 2012 end-page: 2594 article-title: Karhunen–Loève representation of stochastic ocean waves publication-title: Proc R Soc A – year: 2013 – ident: e_1_2_9_31_1 doi: 10.1017/S0022112005006774 – ident: e_1_2_9_52_1 doi: 10.1115/OMAE2020-18639 – ident: e_1_2_9_55_1 doi: 10.1016/j.oceaneng.2022.112633 – ident: e_1_2_9_3_1 – ident: e_1_2_9_78_1 doi: 10.1016/j.coastaleng.2012.07.002 – ident: e_1_2_9_29_1 doi: 10.1098/rsta.2014.0104 – ident: e_1_2_9_70_1 doi: 10.3390/jmse9030345 – ident: e_1_2_9_49_1 doi: 10.1016/j.probengmech.2015.12.009 – ident: e_1_2_9_73_1 doi: 10.1007/BF01449156 – ident: e_1_2_9_53_1 doi: 10.1017/jfm.2016.13 – ident: e_1_2_9_20_1 doi: 10.5194/wes-3-149-2018 – ident: e_1_2_9_75_1 doi: 10.1115/1.4043278 – ident: e_1_2_9_72_1 doi: 10.1007/BF02546511 – ident: e_1_2_9_66_1 doi: 10.1142/7425 – ident: e_1_2_9_17_1 doi: 10.1016/j.renene.2013.03.003 – ident: e_1_2_9_23_1 doi: 10.1016/j.marstruc.2020.102922 – ident: e_1_2_9_5_1 doi: 10.1016/j.scriptamat.2005.07.015 – ident: e_1_2_9_7_1 doi: 10.1115/OMAE2009-79444 – ident: e_1_2_9_2_1 – ident: e_1_2_9_4_1 doi: 10.1016/j.renene.2022.04.133 – ident: e_1_2_9_32_1 doi: 10.1201/9781003216599-12 – ident: e_1_2_9_35_1 – ident: e_1_2_9_33_1 doi: 10.1002/9780470770801.ch3 – ident: e_1_2_9_41_1 doi: 10.1073/pnas.1813263115 – ident: e_1_2_9_8_1 – ident: e_1_2_9_65_1 doi: 10.1016/0031-3203(81)90082-0 – ident: e_1_2_9_21_1 doi: 10.5194/wes-3-475-2018 – ident: e_1_2_9_6_1 doi: 10.1115/OMAE2007-29235 – volume: 5 start-page: 1379 issue: 7 year: 2011 ident: e_1_2_9_68_1 article-title: Simulation of irregular waves by CFD publication-title: Int J Mech Mechatron Eng – volume-title: Stochastic dynamics of marine structures year: 2013 ident: e_1_2_9_74_1 – ident: e_1_2_9_60_1 doi: 10.3390/jmse9010096 – ident: e_1_2_9_25_1 doi: 10.1016/j.apor.2019.06.003 – ident: e_1_2_9_11_1 – ident: e_1_2_9_26_1 doi: 10.1016/j.renene.2021.05.009 – ident: e_1_2_9_56_1 doi: 10.5194/wes-3-767-2018 – ident: e_1_2_9_18_1 doi: 10.1002/we.1861 – ident: e_1_2_9_39_1 doi: 10.1016/j.jcp.2012.08.013 – ident: e_1_2_9_45_1 doi: 10.1146/annurev-fluid-030420-032810 – ident: e_1_2_9_51_1 doi: 10.1016/j.oceaneng.2019.106213 – ident: e_1_2_9_57_1 doi: 10.1016/j.nexus.2021.100011 – ident: e_1_2_9_19_1 doi: 10.1177/0309524X20936201 – ident: e_1_2_9_76_1 – volume: 11 start-page: 613 issue: 6 year: 2008 ident: e_1_2_9_15_1 article-title: Towards an improved understanding of statistical extrapolation for wind turbine extreme loads publication-title: Wind Energy: An Int J Progr Appl Wind Power Convers Technol doi: 10.1002/we.303 – volume-title: Gaussian processes for machine learning year: 2006 ident: e_1_2_9_36_1 – volume: 8 start-page: 1 year: 1973 ident: e_1_2_9_62_1 article-title: Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) publication-title: Deut Hydrogr Z – ident: e_1_2_9_14_1 doi: 10.1142/p191 – ident: e_1_2_9_22_1 doi: 10.1016/j.renene.2016.08.056 – ident: e_1_2_9_30_1 doi: 10.1016/j.wse.2021.12.010 – ident: e_1_2_9_61_1 doi: 10.1016/j.oceaneng.2021.110374 – volume: 173 start-page: 144 issue: 3 year: 2020 ident: e_1_2_9_69_1 article-title: Wave–structure interaction of wave energy converters: A sensitivity analysis publication-title: Proc Inst Civil Eng‐Eng Comput Mech – ident: e_1_2_9_28_1 doi: 10.1016/j.coastaleng.2018.10.002 – ident: e_1_2_9_24_1 doi: 10.1016/j.oceaneng.2016.10.025 – ident: e_1_2_9_44_1 doi: 10.1016/j.jcp.2020.109901 – ident: e_1_2_9_54_1 doi: 10.1016/j.jcp.2017.03.054 – ident: e_1_2_9_13_1 – volume: 478 issue: 2260 year: 2022 ident: e_1_2_9_67_1 article-title: Output‐weighted sampling for multi‐armed bandits with extreme payoffs publication-title: Proc R Soc A: Math, Phys Eng Sci doi: 10.1098/rspa.2021.0781 – ident: e_1_2_9_77_1 – ident: e_1_2_9_48_1 doi: 10.1098/rspa.2012.0063 – volume: 1947 start-page: 79 issue: 37 year: 1947 ident: e_1_2_9_63_1 article-title: Über lineare Methoden in der Wahrscheinlichkeitsrechnung publication-title: Ann Acad Sci Fennicae Ser A I Math‐Phys – volume: 19 start-page: 110 year: 1989 ident: e_1_2_9_46_1 article-title: On mechanics of irregular gravity waves publication-title: Atti della Accademia Nazionale dei Lincei – ident: e_1_2_9_10_1 doi: 10.1016/j.probengmech.2021.103162 – volume-title: Processus stochastiques et mouvement brownien year: 1948 ident: e_1_2_9_64_1 – ident: e_1_2_9_79_1 doi: 10.1061/(ASCE)0733-950X(2000)126:2(88) – ident: e_1_2_9_42_1 doi: 10.1137/20M1347486 – volume: 6 start-page: 1 issue: 1 year: 2003 ident: e_1_2_9_16_1 article-title: Reliability‐based design methods to determine the extreme response distribution of offshore wind turbines publication-title: Wind Energy: An Int J Progress Appl Wind Power Convers Technol doi: 10.1002/we.80 – ident: e_1_2_9_12_1 – ident: e_1_2_9_34_1 doi: 10.1111/itor.12292 – ident: e_1_2_9_38_1 doi: 10.1214/ss/1177009939 – ident: e_1_2_9_47_1 doi: 10.1175/1520-0485(1993)023<0992:ESOEWI>2.0.CO;2 – ident: e_1_2_9_50_1 doi: 10.1016/j.oceaneng.2016.04.018 – volume: 476 issue: 2234 year: 2020 ident: e_1_2_9_43_1 article-title: Output‐weighted optimal sampling for Bayesian regression and rare event statistics using few samples publication-title: Proc R Soc A: Math, Phys Eng Sci doi: 10.1098/rspa.2019.0834 – ident: e_1_2_9_71_1 doi: 10.1016/j.oceaneng.2022.113320 – ident: e_1_2_9_37_1 – ident: e_1_2_9_27_1 doi: 10.1088/1742-6596/753/9/092004 – ident: e_1_2_9_58_1 doi: 10.1038/s41598-023-28703-z – ident: e_1_2_9_59_1 doi: 10.3390/jmse8040289 – ident: e_1_2_9_9_1 – ident: e_1_2_9_40_1 doi: 10.1038/s43588-022-00376-0 |
| SSID | ssj0010118 |
| Score | 2.427147 |
| Snippet | Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine foundations, due... Abstract Accurately determining hydrodynamic force statistics is crucial for designing offshore engineering structures, including offshore wind turbine... |
| SourceID | doaj swepub proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 75 |
| SubjectTerms | active sampling Bayesian analysis Computational fluid dynamics Computer applications Computing costs Constraint modelling Data reduction Fluid dynamics Foundations Gaussian process heavy tails and extreme events Hydrodynamics Learning algorithms Machine learning Mathematical models Offshore Offshore engineering Offshore structures optimal experimental design reduced order modeling Sampling Simulation Statistical analysis Statistical models Statistics Turbines Uncertainty wave episodes Wind power Wind turbines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ1QMcUPkSgVLNoXALdZwv-1jarjigigOU3iw7ttuVSrJas131Z_UfMrazq11VFRdOkRIn48Rj-43jeY-QQ86N6MqK51wznVedozmvjM0rTk1dKt3SyLN98a09P-eXl-L7htRX2BOW6IHThzvSou4aoXmrRPgLV-igKFmhaWuoqUxM3UPUswqmVtoFRZGS4ESdh1SulC4b6EaPlvYz44EFcmMeinT92xgz8YZuQ9Y450z2yPMRLMJxquQL8sT2L8mzDQrBV-Q-oMVItowFo6wNnobBQVhXv4M-MWGoOVzfGRwrk_483AzKeBh6LOj89TC3sMTYHHD6wUDZ4nP6YYYVArcWXfIQdshfwVLdWrCzqUdTHlS4Ke4ltwZOJqfgp79HPTAPowQQqDikgldh83p_9Zr8nJz9OPmajzIMeYcdmuZFaxplS1aoVnNRKKGUaCxG5KLhytVGM4SMwtZMITowrlOmZq1RRVVT1-A4XL4hO_i29i2BkhmEKxgJNw5nz0Jr4TDcYVQZjCsdoxn5tGoU2Y0c5UEq40YmdmUml1aG1ssIrAvOEi3HwyJfQquuLwce7XgCvUuO3iX_5V0Z2V_5hBw7t5dM0DIIlIgmIx-Tn2xZOZ1eHEcri4XEOJ-xNiOH0Y0eq6v8dRYO7_5Hld-TpwyBV1om2ic7f-YL-4HsdrfojPOD2E3-AgJFGmQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy6EceBQQgYLmULiFJs7LPqE-dsUBrSoEpbfIiZ3tSiVZErar_iz-ITO2d-kKwYVTlMSObWU8_saP72PsQAgt6yQVoah4FaZ1E4Ui1SZMRaSzRFVFZHm2zz8W06m4uJBnfsJt8Nsq1z7ROmrd1TRHfshllJAqhMzfL76HpBpFq6teQuMu2yGmsnTEdo7H07NPm3UEOldp1ztlFtKRLndslmhHD1fmHRfEBnlrPLK0_dtY0_GHbkNXO_ZMHv5vrR-xBx51wpEzk8fsjmn32P1bXIR7bJdgp2NtfsJ-bm4wlxXLwTTQNUCz9TfQOn4N1cPljUYP7FTt4apTeoCuxYTNcNn1BlYY8QMOahh-G_xO2y2wedBspJwGoH33M1ipawNmMR-wqAEUZbI71I2Gk8kpDPNvXmVsAC8sBMo6ahgUbYlvZ0_Zl8n488mH0Is7hDW6iSiMC50rk_BYFZWQsZJKydxgnC9zoZpMVxyBqDQZV4g5dFMrnfFCqzjNoiZH7548YyNsrXnOIOEaQRDG13mDY3JcVbLBIIpHSmO02vAoYG_Xv7isPfM5CXBclY6zmZcrU5ItBAw2CReO7OPPJMdkI5vXxM5tH3T9rPSdvaxkVueyEoWStHIcV6SCmmJ3MTrSqZYB219bS-ldxlD-NpWAvXFWt1XK6fz8yJayXJYZ4mBeBOzAGuXf6lp-HdPlxb9Le8l2OQI1N620z0Y_-qV5xe7V12hm_WvfoX4BzwAt6Q priority: 102 providerName: ProQuest |
| Title | Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine monopile foundations using wave episodes and targeted CFD simulations through active sampling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.2880 https://www.proquest.com/docview/2903278396 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-523227 https://doaj.org/article/b95c69b87a904641b57594ebeed0d4d9 |
| Volume | 27 |
| WOSCitedRecordID | wos001102026400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: PCBAR dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: PATMY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: WIN dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1099-1824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010118 issn: 1099-1824 databaseCode: 24P dateStart: 20210101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKSzWHhVvYxHnZxz4F0qqKFvYhLpEdO91KS1MldKv9WfxDZpxs2QohIXFpVXccO_LMeMaP72PsUAgjizASntBce1FR-p6IjPUi4Zs4VDr1Hc722XE6m4mLC5ndofpq8SG2C25kGc5fk4Er3Rz9Bg3d2I8cle8-2w-CUBBrA4-y7QYCXah0G50y9uguV3tflqoedRV3JiKH178bZLbAobsxq5t0pk_-o7tP2eMu0oRBqxrP2D27fM4e3cEffMF-UqjpkJpR0HHiYDFUJdCi_A0s23ZVDZc3Bh1tS14PV5UyDVRLFCyby6q2sMHEHnDuwizb4nOW1Qq7COWWsakBOl4_h426tmBXiwabakBRJXcQ3RoYTcfQLL53ZGINdPxBoJw_hkbRyffl_CU7nU6-jj55HYeDV6A38L0gNYmyIQ9UqoUMlFRKJhbTeZkIVcZGc4w3pY25wtDClIUyMU-NCqLYLxN04uErtodva18zCLnBWAfT6KTEqTfQWpaYK3FfGUxKS-732IfbAc2LDuCceDau8haamecbm9MY9BhsBVctpsefIkPSiO3fBMLtCqp6nnc2nWsZF4nUIlWSNogDTWSnEVqFNb6JjOyxg1t9yjvP0ORc-iGxm8ikx963OrbTynhxNnCtrNd5jOEuT3vs0CnW3_qan0_o682_ib1lDznGZe0q0gHb-1Gv7Tv2oLhGdav7zoj6bH84mWUnfbdAgb_GJ9PT4z4di_2Cn1n8Dcuy0XBAEuefZ78APbIr7A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pKTOUA48CQ6CADm1vprb8kg4cQtNMO00zPZRSTkKy5DQzrR1i0kz-FDP8Q1ayE5ph4NYDJ4_ttWXLq92VV_t9ANuMaZ6FEfOYosqLstz3WKSNFzFfx6FUqe9wts_76WDALi746Rr8WNTC2GWVC5voDLUuM_uPfI9yP7SsEDxpVlAem_kM52fVh6MufswdSnsHZ_uHXkMh4GWojL4XpDqRJqSBTBXjgeRS8sTgbJInTOaxVhTDHW5iKtGz6TyTOqaplkEU-3mCNiTE--6Ov3mWpcpmcxvKjnuwzhKe0Basn3bOTr4s8xa2jtPlV3ns2RKyukzXwpzuzcx7yiz65C3_52gCVmPbGq90NVR2vq73-H_rpSfwqImqSaceBk9hzRSb8PAW1uImbNiwukalfgY_lzt4lSMDQhlS5sRmI-akqPFD5IRczjV6mHkhr0cZuSqlrkhZoGBeXZYTQ2ajQhN02gql8T5FOcbuJPmSqqoitq5gSGbyxhAzHlXYVEWkvcitwDea7Pe6pBpdNyxqFWmIk4h0johU0i75L4bP4dOd9OkLaOHbmpdAQqoxyPNpmuQYcwRK8RwnidSXGmfjOfXbsLtQKZE1yO6WYORK1JjUVMyMsLrXBrIUHNdgJn-KfLQ6uTxt0cfdgXIyFI0xE4rHWcIVSyW3mfFAWZbXCM2B0b6ONG_D1kI7RWMSK_FbNduwU2v5Sivd0XnHtTKdihjjfJq2YdsNgr89q_h8YDev_t3aO3hweHbSF_2jwfFr2KAYlNa_0Lag9X0yNW_gfnaDKjd52wxmAl_verD8AjMyim0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagQwgeuCMCA87D4C0scW7241gXgaiqCbGxN8uJ7a7SSKqErtrP4h9ybGeBCiEh8VQpPa5d5Zzj7_jyfYTsMaZ4naQsZBWtwrQ2UchSpcOURSpLZFVEjmf7dFbM5-zsjB8PpyrtXRjPDzEuuNnIcPnaBrheKbP_izV0o99R9L6bZCe1EjITsjP9XJ7Mxj0Ee6fS7XXyLLTXufyVWdt4f2i6NRc5yv5tnOm5Q7dhq5t3yvv_M-IH5N6ANuHAu8dDckM3j8jd3zgIH5MfFm46tmY0dLo4-BhaA3Zh_goa37Hs4PxKYbL1AvZw0UrVQ9ugoenP207DBot7wPkLK22Nv9O0KxwjmFG1qQd7xH4BG3mpQa-WPXbVg7SN3GF0reCwnEK__DYIivUwaAiBdDkZemlPvzeLJ-SkPPpy-CEcdBzCGjNCFMaFyqVOaCyLivFYcil5rrGk5zmTJlMVRczJdUYlwgtlaqkyWigZp1lkckzkyVMywX-rnxFIqEK8g6V0bnD6jauKG6yXaCQVFqaGRgF5e_1GRT2QnFutjQvh6Zmp2Ghh30FAYDRceV6PP03eW5cYv7ZE3O5B2y3EENei4lmd84oVkttN4riygqcpRoZWkUoVD8jutUOJITv0gvIosQonPA_IG-9kW71Ml6cHrpf1WmQIeWkRkD3nWX8bq_h6ZD-e_5vZa3L7eFqK2cf5pxfkDkWY5heVdsnke7fWL8mt-hI9r3s1hNRPvI8oLA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+modeling+of+fully+nonlinear+hydrodynamic+loads+on+offshore+wind+turbine+monopile+foundations+using+wave+episodes+and+targeted+CFD+simulations+through+active+sampling&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Guth%2C+Stephen&rft.au=Katsidoniotaki%2C+Eirini&rft.au=Sapsis%2C+Themistoklis+P.&rft.date=2024&rft.issn=1099-1824&rft.volume=27&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1002%2Fwe.2880&rft.externalDocID=oai_DiVA_org_uu_523227 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon |