Parallel algorithms for geometric connected component labeling on a hypercube multiprocessor

Parallel algorithms for the geometric connected component labeling (GCCL) problem on a hypercube multiprocessor can be designed by dividing the domain, consisting of a number of rectangles, into regions using a slice or rectangular partitioning scheme. Each processor in the hypercube is assigned one...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computers Ročník 41; číslo 6; s. 699 - 709
Hlavní autoři: Belkhale, K.P., Banerjee, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Legacy CDMS IEEE 01.06.1992
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9340
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Parallel algorithms for the geometric connected component labeling (GCCL) problem on a hypercube multiprocessor can be designed by dividing the domain, consisting of a number of rectangles, into regions using a slice or rectangular partitioning scheme. Each processor in the hypercube is assigned one partition. The processor determines the connected sets of rectangles in its partition. The connected sets at different processors have to then be combined across processors into globally connected sets. This merging problem is defined as the GCCL problem. Different algorithms for the GCCL problem are presented. Each of the algorithms involves d stages of message passing, for a d-dimensional hypercube. The basic idea in these algorithms is that in each stage a processor increases its knowledge of the domain. The algorithms described in this paper differ in their run time, memory requirements, and message complexity. These algorithms have been implemented on an Intel iPSC2/D4/MX hypercube.< >
Bibliografie:CDMS
Legacy CDMS
ISSN: 0018-9340
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9340
DOI:10.1109/12.144622