Mapping global forest canopy height through integration of GEDI and Landsat data

Consistent, large-scale operational monitoring of forest height is essential for estimating forest-related carbon emissions, analyzing forest degradation, and quantifying the effectiveness of forest restoration initiatives. The Global Ecosystem Dynamics Investigation (GEDI) lidar instrument onboard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment Jg. 253; S. 112165
Hauptverfasser: Potapov, Peter, Li, Xinyuan, Hernandez-Serna, Andres, Tyukavina, Alexandra, Hansen, Matthew C., Kommareddy, Anil, Pickens, Amy, Turubanova, Svetlana, Tang, Hao, Silva, Carlos Edibaldo, Armston, John, Dubayah, Ralph, Blair, J. Bryan, Hofton, Michelle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Inc 01.02.2021
Elsevier BV
Schlagworte:
ISSN:0034-4257, 1879-0704
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Consistent, large-scale operational monitoring of forest height is essential for estimating forest-related carbon emissions, analyzing forest degradation, and quantifying the effectiveness of forest restoration initiatives. The Global Ecosystem Dynamics Investigation (GEDI) lidar instrument onboard the International Space Station has been collecting unique data on vegetation structure since April 2019. Here, we employed global Landsat analysis-ready data to extrapolate GEDI footprint-level forest canopy height measurements, creating a 30 m spatial resolution global forest canopy height map for the year 2019. The global forest height map was compared to the GEDI validation data (RMSE = 6.6 m; MAE = 4.45 m, R2 = 0.62) and available airborne lidar data (RMSE = 9.07 m; MAE = 6.36 m, R2 = 0.61). The demonstrated integration of GEDI data with time-series optical imagery is expected to enable multidecadal historic analysis and operational forward monitoring of forest height and its dynamics. Such capability is important to support global climate and sustainable development initiatives.
AbstractList Consistent, large-scale operational monitoring of forest height is essential for estimating forest-related carbon emissions, analyzing forest degradation, and quantifying the effectiveness of forest restoration initiatives. The Global Ecosystem Dynamics Investigation (GEDI) lidar instrument onboard the International Space Station has been collecting unique data on vegetation structure since April 2019. Here, we employed global Landsat analysis-ready data to extrapolate GEDI footprint-level forest canopy height measurements, creating a 30 m spatial resolution global forest canopy height map for the year 2019. The global forest height map was compared to the GEDI validation data (RMSE = 6.6 m; MAE = 4.45 m, R² = 0.62) and available airborne lidar data (RMSE = 9.07 m; MAE = 6.36 m, R² = 0.61). The demonstrated integration of GEDI data with time-series optical imagery is expected to enable multidecadal historic analysis and operational forward monitoring of forest height and its dynamics. Such capability is important to support global climate and sustainable development initiatives.
Consistent, large-scale operational monitoring of forest height is essential for estimating forest-related carbon emissions, analyzing forest degradation, and quantifying the effectiveness of forest restoration initiatives. The Global Ecosystem Dynamics Investigation (GEDI) lidar instrument onboard the International Space Station has been collecting unique data on vegetation structure since April 2019. Here, we employed global Landsat analysis-ready data to extrapolate GEDI footprint-level forest canopy height measurements, creating a 30 m spatial resolution global forest canopy height map for the year 2019. The global forest height map was compared to the GEDI validation data (RMSE = 6.6 m; MAE = 4.45 m, R2 = 0.62) and available airborne lidar data (RMSE = 9.07 m; MAE = 6.36 m, R2 = 0.61). The demonstrated integration of GEDI data with time-series optical imagery is expected to enable multidecadal historic analysis and operational forward monitoring of forest height and its dynamics. Such capability is important to support global climate and sustainable development initiatives.
Consistent, large-scale operational monitoring of forest height is essential for estimating forest-related carbon emissions, analyzing forest degradation, and quantifying the effectiveness of forest restoration initiatives. The Global Ecosystem Dynamics Investigation (GEDI) lidar instrument onboard the International Space Station has been collecting unique data on vegetation structure since April 2019. Here, we employed global Landsat analysis-ready data to extrapolate GEDI footprint-level forest canopy height measurements, creating a 30 m spatial resolution global forest canopy height map for the year 2019. The global forest height map was compared to the GEDI validation data (RMSE = 6.6 m; MAE = 4.45 m, R2 = 0.62) and available airborne lidar data (RMSE = 9.07 m; MAE = 6.36 m, R2 = 0.61). The demonstrated integration of GEDI data with time-series optical imagery is expected to enable multidecadal historic analysis and operational forward monitoring of forest height and its dynamics. Such capability is important to support global climate and sustainable development initiatives.
ArticleNumber 112165
Author Dubayah, Ralph
Tyukavina, Alexandra
Hofton, Michelle
Hansen, Matthew C.
Hernandez-Serna, Andres
Tang, Hao
Potapov, Peter
Silva, Carlos Edibaldo
Li, Xinyuan
Armston, John
Turubanova, Svetlana
Blair, J. Bryan
Kommareddy, Anil
Pickens, Amy
Author_xml – sequence: 1
  givenname: Peter
  surname: Potapov
  fullname: Potapov, Peter
  email: potapov@umd.edu
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 2
  givenname: Xinyuan
  surname: Li
  fullname: Li, Xinyuan
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 3
  givenname: Andres
  surname: Hernandez-Serna
  fullname: Hernandez-Serna, Andres
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 4
  givenname: Alexandra
  surname: Tyukavina
  fullname: Tyukavina, Alexandra
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 5
  givenname: Matthew C.
  surname: Hansen
  fullname: Hansen, Matthew C.
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 6
  givenname: Anil
  surname: Kommareddy
  fullname: Kommareddy, Anil
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 7
  givenname: Amy
  surname: Pickens
  fullname: Pickens, Amy
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 8
  givenname: Svetlana
  surname: Turubanova
  fullname: Turubanova, Svetlana
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 9
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 10
  givenname: Carlos Edibaldo
  surname: Silva
  fullname: Silva, Carlos Edibaldo
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 11
  givenname: John
  surname: Armston
  fullname: Armston, John
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 12
  givenname: Ralph
  surname: Dubayah
  fullname: Dubayah, Ralph
  organization: Department of Geographical Sciences, University of Maryland, United States
– sequence: 13
  givenname: J. Bryan
  surname: Blair
  fullname: Blair, J. Bryan
  organization: NASA Goddard Space Flight Center, United States
– sequence: 14
  givenname: Michelle
  surname: Hofton
  fullname: Hofton, Michelle
  organization: Department of Geographical Sciences, University of Maryland, United States
BookMark eNp9kLFOwzAQhi0EEm3hAdgssbCk2I5Tx2JCpZRKRTDAbDnOJXUV7GC7SLw9KWXqwHKnk_7v9Osbo1PnHSB0RcmUEjq73U5DhCkjbLgpo7PiBI1oKWRGBOGnaERIzjPOCnGOxjFuCaFFKegIvT7rvreuxW3nK93hxgeICRvtfP-NN2DbTcJpE_yu3WDrErRBJ-sd9g1eLh5WWLsar4cRdcK1TvoCnTW6i3D5tyfo_XHxNn_K1i_L1fx-nRnOeMqgIKYqBC8p52Ut6hy0FHlFZpKyhrBaV5WUUnPCNQOagyylkZWsG9YIATnJJ-jm8LcP_nM3dFYfNhroOu3A76JiRUFlLqjcR6-Polu_C25opxgvS8YFp7MhRQ8pE3yMARrVB_uhw7eiRO0dq60aHKu9Y3VwPDDiiDE2_fpJQdvuX_LuQMLg6MtCUNFYcAZqG8AkVXv7D_0DtOKWsg
CitedBy_id crossref_primary_10_1016_j_jag_2025_104614
crossref_primary_10_7717_peerj_15478
crossref_primary_10_1016_j_ecolind_2024_112895
crossref_primary_10_1016_j_rse_2023_113745
crossref_primary_10_3390_rs14092096
crossref_primary_10_3390_rs17101726
crossref_primary_10_1139_cjfr_2023_0118
crossref_primary_10_1016_j_jnc_2024_126771
crossref_primary_10_1038_s41467_023_37880_4
crossref_primary_10_1080_10095020_2023_2249037
crossref_primary_10_1016_j_fecs_2025_100372
crossref_primary_10_1088_1748_9326_ad5572
crossref_primary_10_1016_j_jag_2025_104850
crossref_primary_10_1029_2024WR038926
crossref_primary_10_1016_j_jhydrol_2025_134000
crossref_primary_10_1007_s13253_024_00600_6
crossref_primary_10_1016_j_cub_2025_05_016
crossref_primary_10_1016_j_foreco_2024_121879
crossref_primary_10_3390_f16030432
crossref_primary_10_1016_j_actatropica_2024_107286
crossref_primary_10_1016_j_scs_2025_106756
crossref_primary_10_1016_j_srs_2025_100195
crossref_primary_10_1080_10095020_2025_2555385
crossref_primary_10_1029_2025GH001451
crossref_primary_10_1093_ornithapp_duaf041
crossref_primary_10_1111_2041_210X_14401
crossref_primary_10_3390_rs17101733
crossref_primary_10_1007_s10712_024_09833_z
crossref_primary_10_1016_j_rse_2025_115008
crossref_primary_10_3390_rs15081969
crossref_primary_10_1016_j_rse_2023_113985
crossref_primary_10_1109_JSTARS_2024_3425431
crossref_primary_10_1016_j_rse_2022_113103
crossref_primary_10_1109_TGRS_2023_3318084
crossref_primary_10_3390_rs12244042
crossref_primary_10_4236_gep_2025_135010
crossref_primary_10_3390_f13050689
crossref_primary_10_3390_rs14164112
crossref_primary_10_3390_s24041106
crossref_primary_10_3390_rs15102522
crossref_primary_10_1002_rse2_257
crossref_primary_10_1134_S1067413624602008
crossref_primary_10_21425_fob_18_145498
crossref_primary_10_1016_j_jag_2024_104348
crossref_primary_10_5194_essd_17_1835_2025
crossref_primary_10_1088_2752_664X_ad39f2
crossref_primary_10_5194_essd_16_5267_2024
crossref_primary_10_1007_s42965_023_00317_6
crossref_primary_10_1111_1365_2664_14858
crossref_primary_10_1016_j_uclim_2024_102114
crossref_primary_10_1111_oik_10554
crossref_primary_10_3390_rs14061364
crossref_primary_10_1088_1748_9326_ac358c
crossref_primary_10_1016_j_jag_2022_102840
crossref_primary_10_1109_LGRS_2024_3390136
crossref_primary_10_3390_rs14174287
crossref_primary_10_3390_ani12141794
crossref_primary_10_59717_j_xinn_geo_2023_100015
crossref_primary_10_3390_f12091211
crossref_primary_10_3390_rs14143401
crossref_primary_10_1038_s41598_023_50838_2
crossref_primary_10_1016_j_ecoinf_2022_101665
crossref_primary_10_1080_07038992_2024_2351004
crossref_primary_10_1073_pnas_2504685122
crossref_primary_10_3389_fenvs_2025_1641301
crossref_primary_10_1073_pnas_2304988120
crossref_primary_10_1016_j_actaastro_2023_09_040
crossref_primary_10_1038_s41598_025_95207_3
crossref_primary_10_3390_rs15225352
crossref_primary_10_1007_s40725_024_00223_7
crossref_primary_10_1038_s43247_025_02609_2
crossref_primary_10_1111_avsc_70002
crossref_primary_10_1038_s43247_023_00896_1
crossref_primary_10_1111_gcb_16847
crossref_primary_10_5194_essd_14_3835_2022
crossref_primary_10_3390_rs14092079
crossref_primary_10_1080_17538947_2025_2556239
crossref_primary_10_1088_1748_9326_adb506
crossref_primary_10_1080_15481603_2025_2517922
crossref_primary_10_1016_j_rse_2023_113888
crossref_primary_10_1007_s41748_025_00713_z
crossref_primary_10_1016_j_rse_2023_113648
crossref_primary_10_1038_s41598_023_30560_9
crossref_primary_10_1029_2020GL092149
crossref_primary_10_1088_2752_664X_adb850
crossref_primary_10_1109_JSTARS_2025_3567505
crossref_primary_10_3390_f16030457
crossref_primary_10_1038_s41597_025_04610_y
crossref_primary_10_1038_s41597_023_02383_w
crossref_primary_10_1016_j_crsus_2025_100343
crossref_primary_10_1016_j_scs_2025_106659
crossref_primary_10_1134_S0010952523700661
crossref_primary_10_1016_j_agrformet_2025_110784
crossref_primary_10_1029_2024GL111634
crossref_primary_10_1016_j_pecon_2024_04_002
crossref_primary_10_1021_acs_est_4c14275
crossref_primary_10_1038_s41558_025_02411_0
crossref_primary_10_1016_j_jag_2025_104700
crossref_primary_10_1016_j_jag_2025_104704
crossref_primary_10_5194_tc_18_575_2024
crossref_primary_10_1017_ext_2025_5
crossref_primary_10_1038_s41598_024_71133_8
crossref_primary_10_3390_rs15123107
crossref_primary_10_1038_s41598_025_06814_z
crossref_primary_10_1016_j_jag_2024_104123
crossref_primary_10_3390_rs14153540
crossref_primary_10_1111_phor_12507
crossref_primary_10_3390_f12101374
crossref_primary_10_3390_rs16081389
crossref_primary_10_1109_TGRS_2025_3572524
crossref_primary_10_3390_f15071132
crossref_primary_10_1016_j_geomorph_2025_109962
crossref_primary_10_1111_1365_2664_14830
crossref_primary_10_1016_j_foreco_2022_120075
crossref_primary_10_1071_WF24224
crossref_primary_10_1109_JSTARS_2024_3461843
crossref_primary_10_3390_rs13122279
crossref_primary_10_1016_j_jenvman_2023_120005
crossref_primary_10_3390_rs13183777
crossref_primary_10_1080_10095020_2023_2286377
crossref_primary_10_1111_cobi_14135
crossref_primary_10_3390_rs15020375
crossref_primary_10_1038_s41597_024_04143_w
crossref_primary_10_1080_00049158_2021_2004687
crossref_primary_10_3389_ffgc_2022_769917
crossref_primary_10_1016_j_uclim_2024_102201
crossref_primary_10_1080_01431161_2024_2343429
crossref_primary_10_3390_rs14174354
crossref_primary_10_1038_s41598_022_21412_z
crossref_primary_10_1080_10106049_2022_2153930
crossref_primary_10_1016_j_biocon_2025_111114
crossref_primary_10_1109_TGRS_2025_3571000
crossref_primary_10_5194_pb_11_31_2024
crossref_primary_10_1080_21580103_2025_2481122
crossref_primary_10_1134_S0010952523700569
crossref_primary_10_1016_j_biocon_2023_110425
crossref_primary_10_1016_j_tfp_2024_100751
crossref_primary_10_1088_1748_9326_ac583f
crossref_primary_10_1109_JSTARS_2024_3486737
crossref_primary_10_3390_rs14143330
crossref_primary_10_11626_KJEB_2024_42_2_193
crossref_primary_10_1016_j_jag_2025_104766
crossref_primary_10_1029_2023GL105588
crossref_primary_10_3390_su14137895
crossref_primary_10_3390_land11010028
crossref_primary_10_3390_rs13244961
crossref_primary_10_1016_j_isprsjprs_2024_12_018
crossref_primary_10_3390_f14061098
crossref_primary_10_1109_TGRS_2023_3333391
crossref_primary_10_1111_gcb_70166
crossref_primary_10_1016_j_oneear_2023_10_007
crossref_primary_10_1016_j_tfp_2024_100763
crossref_primary_10_3390_genes14030746
crossref_primary_10_1016_j_rse_2022_113392
crossref_primary_10_1088_1748_9326_ac4657
crossref_primary_10_1029_2023GB008016
crossref_primary_10_1088_1748_9326_ad661a
crossref_primary_10_1016_j_rse_2022_113391
crossref_primary_10_1134_S0001433824700890
crossref_primary_10_1007_s10661_023_10942_2
crossref_primary_10_1016_j_agrformet_2025_110612
crossref_primary_10_3389_fmars_2023_1187702
crossref_primary_10_34248_bsengineering_1695801
crossref_primary_10_1029_2022EF002880
crossref_primary_10_3390_f12010008
crossref_primary_10_3390_rs17172945
crossref_primary_10_1016_j_fecs_2024_100196
crossref_primary_10_5194_essd_15_1465_2023
crossref_primary_10_3390_rs12213482
crossref_primary_10_1109_JSTARS_2023_3298991
crossref_primary_10_1016_j_jag_2025_104633
crossref_primary_10_1016_j_jag_2025_104753
crossref_primary_10_3390_f14101966
crossref_primary_10_1088_2752_664X_adaaf9
crossref_primary_10_3390_rs15204969
crossref_primary_10_1007_s10980_025_02145_6
crossref_primary_10_1109_TGRS_2023_3335364
crossref_primary_10_1186_s13595_025_01293_8
crossref_primary_10_1016_j_landurbplan_2025_105396
crossref_primary_10_1016_j_foreco_2024_121852
crossref_primary_10_1088_1748_9326_ada972
crossref_primary_10_1016_j_rse_2022_113367
crossref_primary_10_1016_j_rse_2022_113003
crossref_primary_10_1111_acv_12904
crossref_primary_10_1111_ddi_13644
crossref_primary_10_3390_f15122064
crossref_primary_10_3390_rs15020467
crossref_primary_10_1007_s12145_022_00915_3
crossref_primary_10_3390_rs15041028
crossref_primary_10_1109_TGRS_2025_3538216
crossref_primary_10_1016_j_envsoft_2024_106268
crossref_primary_10_1109_TGRS_2023_3297367
crossref_primary_10_3390_w13223173
crossref_primary_10_1109_TGRS_2025_3557196
crossref_primary_10_3390_rs15123029
crossref_primary_10_1007_s11629_024_9266_8
crossref_primary_10_1016_j_foreco_2024_121725
crossref_primary_10_3390_rs14122743
crossref_primary_10_1007_s00271_022_00798_8
crossref_primary_10_1016_j_enbuild_2025_115624
crossref_primary_10_1016_j_pce_2024_103819
crossref_primary_10_1111_2041_210X_14359
crossref_primary_10_1016_j_agrformet_2024_110217
crossref_primary_10_1016_j_oneear_2024_11_001
crossref_primary_10_1016_j_agrformet_2025_110756
crossref_primary_10_1016_j_rse_2023_113797
crossref_primary_10_3390_rs14205158
crossref_primary_10_1016_j_tree_2023_04_007
crossref_primary_10_1016_j_catena_2022_106211
crossref_primary_10_1111_2041_210X_14112
crossref_primary_10_1088_1748_9326_ad5858
crossref_primary_10_1186_s40462_025_00552_7
crossref_primary_10_1016_j_ecoinf_2024_102494
crossref_primary_10_1007_s10531_024_02961_3
crossref_primary_10_3390_rs14020404
crossref_primary_10_7717_peerj_18585
crossref_primary_10_1109_TGRS_2025_3600816
crossref_primary_10_7717_peerj_19673
crossref_primary_10_3390_rs14246251
crossref_primary_10_1088_2515_7620_ada420
crossref_primary_10_3390_f15010215
crossref_primary_10_3390_rs15030664
crossref_primary_10_1029_2025GL115437
crossref_primary_10_1111_mam_12279
crossref_primary_10_3390_ijerph182111416
crossref_primary_10_1029_2021JG006668
crossref_primary_10_1080_15481603_2024_2396807
crossref_primary_10_1109_JSTARS_2025_3584704
crossref_primary_10_1016_j_isprsjprs_2022_11_011
crossref_primary_10_1016_j_scs_2024_105669
crossref_primary_10_1016_j_ecoinf_2023_102082
crossref_primary_10_1038_s41559_022_01915_8
crossref_primary_10_1016_j_rse_2024_113999
crossref_primary_10_1038_s43247_024_01246_5
crossref_primary_10_3389_frsen_2025_1575100
crossref_primary_10_1080_01431161_2024_2354072
crossref_primary_10_1109_JSTARS_2023_3328403
crossref_primary_10_3390_rs14164088
crossref_primary_10_3390_rs15215162
crossref_primary_10_1016_j_foreco_2023_121648
crossref_primary_10_1007_s11356_024_34415_2
crossref_primary_10_1088_1748_9326_ad560a
crossref_primary_10_3390_rs17050796
crossref_primary_10_1016_j_rse_2022_113074
crossref_primary_10_1016_j_rse_2022_113195
crossref_primary_10_1007_s40725_024_00242_4
crossref_primary_10_1016_j_srs_2024_100181
crossref_primary_10_3390_rs14030568
crossref_primary_10_1016_j_ecolind_2025_113610
crossref_primary_10_1016_j_rse_2023_113693
crossref_primary_10_1016_j_rse_2024_113993
crossref_primary_10_1016_j_rse_2023_113574
crossref_primary_10_1080_22797254_2024_2422323
crossref_primary_10_3390_land12081509
crossref_primary_10_3390_rs15082080
crossref_primary_10_1016_j_ecolind_2025_113889
crossref_primary_10_1016_j_jag_2025_104558
crossref_primary_10_1080_19376812_2023_2164865
crossref_primary_10_1016_j_envsoft_2025_106373
crossref_primary_10_1029_2023WR036948
crossref_primary_10_3389_fsufs_2025_1649756
crossref_primary_10_1016_j_jag_2025_104791
crossref_primary_10_1029_2021JG006519
crossref_primary_10_1080_13658816_2023_2224421
crossref_primary_10_3390_rs16111859
crossref_primary_10_1016_j_agrformet_2023_109360
crossref_primary_10_1016_j_scitotenv_2023_163128
crossref_primary_10_1016_j_segan_2023_101016
crossref_primary_10_3390_rs16132321
crossref_primary_10_1111_mam_12376
crossref_primary_10_3390_rs14194859
crossref_primary_10_1093_biolinnean_blaf008
crossref_primary_10_3390_rs12203351
crossref_primary_10_1080_01584197_2025_2508954
crossref_primary_10_1016_j_rse_2025_114774
crossref_primary_10_1111_fwb_14300
crossref_primary_10_1016_j_catena_2024_108488
crossref_primary_10_3390_rs15112862
crossref_primary_10_1109_JSTARS_2024_3443348
crossref_primary_10_3390_fire8040149
crossref_primary_10_3390_rs17142340
crossref_primary_10_1007_s12524_024_01836_y
crossref_primary_10_3390_rs15143457
crossref_primary_10_1007_s42991_023_00393_0
crossref_primary_10_1016_j_jag_2024_104080
crossref_primary_10_3390_rs14246264
crossref_primary_10_1080_14693062_2024_2330373
crossref_primary_10_1029_2022JG007046
crossref_primary_10_3390_s24051651
crossref_primary_10_1088_2752_664X_ad7f5a
crossref_primary_10_1016_j_buildenv_2023_110085
crossref_primary_10_1016_j_rse_2025_114644
crossref_primary_10_1016_j_foreco_2025_123040
crossref_primary_10_1088_2632_2153_ada47e
crossref_primary_10_1080_10106049_2025_2453024
crossref_primary_10_1080_01431161_2025_2557583
crossref_primary_10_1109_JSTARS_2024_3388914
crossref_primary_10_1080_01431161_2025_2476776
crossref_primary_10_1016_j_uclim_2024_102045
crossref_primary_10_3390_rs14030649
crossref_primary_10_1038_s41467_024_55240_8
crossref_primary_10_5194_bg_20_3803_2023
crossref_primary_10_1016_j_jag_2025_104376
crossref_primary_10_1016_j_jag_2022_102754
crossref_primary_10_1016_j_rsase_2022_100817
crossref_primary_10_1007_s10661_025_13639_w
crossref_primary_10_1088_1748_9326_acc8ea
crossref_primary_10_1002_ajp_23625
crossref_primary_10_1111_mam_70002
crossref_primary_10_1007_s12524_023_01792_z
crossref_primary_10_3389_fgene_2021_708871
crossref_primary_10_3390_rs13030442
crossref_primary_10_3390_rs17101777
crossref_primary_10_1007_s10344_025_01974_9
crossref_primary_10_1016_j_foreco_2022_120343
crossref_primary_10_1073_pnas_2401755122
crossref_primary_10_1016_j_landusepol_2023_106922
crossref_primary_10_1016_j_jhydrol_2025_132938
crossref_primary_10_1088_1748_9326_acde8f
crossref_primary_10_1080_01431161_2024_2343134
crossref_primary_10_3389_ffgc_2023_1181049
crossref_primary_10_1016_j_cub_2024_11_051
crossref_primary_10_1016_j_rse_2021_112845
crossref_primary_10_1016_j_rse_2021_112844
crossref_primary_10_3390_rs15225391
crossref_primary_10_5194_essd_14_5695_2022
crossref_primary_10_1016_j_fecs_2024_100228
crossref_primary_10_1016_j_rse_2021_112849
crossref_primary_10_1007_s42690_021_00517_4
crossref_primary_10_1016_j_agrformet_2023_109586
crossref_primary_10_1111_1365_2656_13594
crossref_primary_10_3390_rs15082197
crossref_primary_10_1007_s12524_023_01693_1
crossref_primary_10_1016_j_agrformet_2023_109592
crossref_primary_10_1016_j_rse_2023_113491
crossref_primary_10_1134_S0010952523700715
crossref_primary_10_1093_nsr_nwae274
crossref_primary_10_1016_j_buildenv_2023_110383
crossref_primary_10_3390_rs15225274
crossref_primary_10_1111_gcb_70321
crossref_primary_10_3389_fpls_2024_1492560
crossref_primary_10_3390_rs15020515
crossref_primary_10_1007_s10113_024_02302_8
crossref_primary_10_1007_s10531_023_02606_x
crossref_primary_10_1016_j_ecolind_2024_112157
crossref_primary_10_1109_TGRS_2022_3231926
crossref_primary_10_1002_pan3_10739
crossref_primary_10_1016_j_agrformet_2023_109676
crossref_primary_10_1088_1361_6501_addf66
crossref_primary_10_1016_j_jag_2025_104474
crossref_primary_10_1038_s41597_025_05739_6
crossref_primary_10_1088_2752_664X_acffcd
crossref_primary_10_1007_s10980_024_01908_x
crossref_primary_10_3390_fire5010005
crossref_primary_10_1080_15732479_2023_2177875
crossref_primary_10_1371_journal_pone_0308931
crossref_primary_10_3832_ifor4434_017
crossref_primary_10_1007_s40808_022_01648_4
crossref_primary_10_1016_j_rsase_2025_101691
crossref_primary_10_3390_rs16071281
crossref_primary_10_1016_j_rse_2024_114534
crossref_primary_10_3390_rs14215363
crossref_primary_10_1016_j_epsr_2022_107840
crossref_primary_10_3390_rs15133447
crossref_primary_10_1109_JSTARS_2025_3595673
crossref_primary_10_1016_j_jnc_2025_126849
crossref_primary_10_1038_s43247_023_00758_w
crossref_primary_10_1111_nph_20127
crossref_primary_10_3390_f16010145
crossref_primary_10_1016_j_jnc_2025_126842
crossref_primary_10_1038_s41597_025_04655_z
crossref_primary_10_3390_rs16071268
crossref_primary_10_1016_j_jag_2021_102326
crossref_primary_10_1109_IEEEDATA_2025_3576318
crossref_primary_10_11728_cjss2023_06_2023_0074
crossref_primary_10_3390_rs15030776
crossref_primary_10_1371_journal_pone_0289437
crossref_primary_10_1016_j_isprsjprs_2024_07_002
crossref_primary_10_1007_s10531_024_02920_y
crossref_primary_10_1016_j_landurbplan_2022_104499
crossref_primary_10_1111_gcb_70222
crossref_primary_10_3390_rs14020364
crossref_primary_10_3390_rs16193650
crossref_primary_10_3389_fpls_2025_1547688
crossref_primary_10_3390_rs15174123
crossref_primary_10_1016_j_rse_2025_114719
crossref_primary_10_1016_j_rse_2025_114718
crossref_primary_10_1016_j_cell_2025_03_035
crossref_primary_10_1109_JSTARS_2025_3527631
crossref_primary_10_3390_rs16020425
crossref_primary_10_1016_j_rse_2025_114957
crossref_primary_10_1109_TGRS_2025_3542685
crossref_primary_10_3390_rs14102421
crossref_primary_10_3390_rs15153781
crossref_primary_10_1109_JSTARS_2024_3522688
crossref_primary_10_1002_ecs2_70026
crossref_primary_10_1016_j_isprsjprs_2024_01_014
crossref_primary_10_3390_forecast3030034
crossref_primary_10_1016_j_scs_2022_104051
crossref_primary_10_1038_s41559_025_02821_5
crossref_primary_10_1080_17538947_2025_2482101
crossref_primary_10_3390_rs13245105
crossref_primary_10_1002_ece3_11132
crossref_primary_10_3390_rs15030820
crossref_primary_10_1038_s41561_024_01423_3
crossref_primary_10_1016_j_acags_2025_100289
crossref_primary_10_1002_ecs2_4633
crossref_primary_10_1109_LGRS_2025_3602095
crossref_primary_10_3390_rs15040975
crossref_primary_10_1016_j_rse_2024_114557
crossref_primary_10_1016_j_scs_2024_105701
crossref_primary_10_1038_s41598_025_92231_1
crossref_primary_10_1016_j_isprsjprs_2021_11_015
crossref_primary_10_1016_j_rse_2021_112764
crossref_primary_10_3390_rs15174234
crossref_primary_10_1080_17538947_2025_2528657
crossref_primary_10_1029_2024EA003709
crossref_primary_10_1038_s41597_024_03668_4
crossref_primary_10_3390_f14071357
crossref_primary_10_1111_gcb_16017
crossref_primary_10_1038_s43247_024_01325_7
crossref_primary_10_1088_1748_9326_ac9c1d
crossref_primary_10_1002_jwmg_22633
crossref_primary_10_1038_s41598_023_50308_9
crossref_primary_10_1080_01431161_2024_2391093
crossref_primary_10_3390_rs14133172
crossref_primary_10_1002_ece3_70116
crossref_primary_10_1016_j_fecs_2023_100122
crossref_primary_10_1038_s41559_023_02206_6
crossref_primary_10_1016_j_rsase_2024_101384
crossref_primary_10_1007_s00371_022_02526_x
crossref_primary_10_1016_j_foreco_2022_120536
crossref_primary_10_1007_s42965_025_00392_x
crossref_primary_10_3390_rs16162913
crossref_primary_10_1016_j_jenvman_2024_122101
crossref_primary_10_1080_13658816_2023_2183959
crossref_primary_10_1111_gcb_17224
crossref_primary_10_22201_fc_25942158e_2025_1_902
crossref_primary_10_1007_s10661_022_10657_w
crossref_primary_10_1016_j_rse_2024_114322
crossref_primary_10_1016_j_jag_2024_103941
crossref_primary_10_1016_j_rse_2021_112510
crossref_primary_10_3390_rs14102320
crossref_primary_10_3390_rs15010074
crossref_primary_10_1080_15481603_2025_2483027
crossref_primary_10_1016_j_earscirev_2023_104501
crossref_primary_10_1016_j_agrformet_2023_109754
crossref_primary_10_3390_ijgi10060384
crossref_primary_10_1007_s10661_023_12066_z
crossref_primary_10_1016_j_rse_2022_112919
crossref_primary_10_1016_j_jag_2025_104390
crossref_primary_10_1093_cz_zoae082
crossref_primary_10_1016_j_ecoinf_2023_102348
crossref_primary_10_1016_j_rse_2024_114572
crossref_primary_10_1029_2024GH001253
crossref_primary_10_7780_kjrs_2024_40_5_2_8
crossref_primary_10_3390_rs17050941
crossref_primary_10_1016_j_rse_2024_114578
crossref_primary_10_1111_geb_13773
crossref_primary_10_1016_j_rse_2025_114930
crossref_primary_10_5358_hsj_44_143
crossref_primary_10_1016_j_rse_2024_114333
crossref_primary_10_1016_j_agrformet_2023_109408
crossref_primary_10_1016_j_jag_2024_103711
crossref_primary_10_1111_geb_13406
crossref_primary_10_1051_e3sconf_202454204003
crossref_primary_10_1016_j_rse_2025_114802
crossref_primary_10_5194_essd_15_2957_2023
crossref_primary_10_59717_j_xinn_geo_2024_100095
crossref_primary_10_1002_eap_2526
crossref_primary_10_1002_ecs2_70258
crossref_primary_10_1038_s41467_024_44734_0
crossref_primary_10_3390_rs16203798
crossref_primary_10_1080_15481603_2023_2292374
crossref_primary_10_1007_s10661_024_13441_0
crossref_primary_10_3390_rs15030730
crossref_primary_10_3390_rs15245686
crossref_primary_10_1016_j_ecoinf_2023_102234
crossref_primary_10_1016_j_rse_2024_114226
crossref_primary_10_1016_j_rse_2020_112282
crossref_primary_10_1088_1748_9326_ac77a2
crossref_primary_10_3389_frsen_2025_1563430
crossref_primary_10_1038_s41467_024_54349_0
crossref_primary_10_1007_s10021_022_00777_2
crossref_primary_10_3390_rs15092285
crossref_primary_10_1038_s41597_025_05021_9
crossref_primary_10_1016_j_apgeog_2023_103024
crossref_primary_10_1088_1748_9326_ac46e9
crossref_primary_10_1016_j_rse_2025_114916
crossref_primary_10_1088_1748_9326_acad8d
crossref_primary_10_1007_s10531_024_02835_8
crossref_primary_10_2139_ssrn_4609761
crossref_primary_10_3390_rs16122138
crossref_primary_10_3390_rs17091594
crossref_primary_10_3390_rs15122963
crossref_primary_10_1206_0003_0090_472_1_1
crossref_primary_10_1016_j_gloplacha_2024_104626
crossref_primary_10_1109_LGRS_2021_3131263
crossref_primary_10_3390_app15126824
crossref_primary_10_3832_ifor4632_017
crossref_primary_10_5194_hess_26_3177_2022
crossref_primary_10_3390_f16091481
crossref_primary_10_3390_rs17050886
crossref_primary_10_1016_j_asr_2025_09_013
crossref_primary_10_1016_j_rse_2021_112571
crossref_primary_10_1016_j_ecolind_2024_111921
crossref_primary_10_3390_f13010124
crossref_primary_10_3390_f14050876
crossref_primary_10_1016_j_cub_2023_04_019
crossref_primary_10_1080_01431161_2024_2326537
crossref_primary_10_5194_essd_15_4849_2023
crossref_primary_10_1016_j_jenvman_2023_119921
crossref_primary_10_3390_rs16224332
crossref_primary_10_3390_su16051735
crossref_primary_10_1029_2022WR034215
crossref_primary_10_1016_j_ecoinf_2024_102621
crossref_primary_10_3390_fire8020054
crossref_primary_10_1007_s44391_025_00021_z
crossref_primary_10_1109_JSTARS_2023_3267118
crossref_primary_10_3389_feart_2021_752254
crossref_primary_10_1038_s41597_024_03930_9
crossref_primary_10_1088_1748_9326_ac46ec
crossref_primary_10_1016_j_rse_2024_114005
crossref_primary_10_3897_BDJ_13_e153431
crossref_primary_10_1093_ornithapp_duac004
crossref_primary_10_1002_inc3_70011
crossref_primary_10_3390_rs16193550
crossref_primary_10_3390_rs17060993
crossref_primary_10_3390_s23104937
crossref_primary_10_1029_2024MS004300
crossref_primary_10_1080_17538947_2024_2330690
crossref_primary_10_1007_s41348_024_00861_w
crossref_primary_10_1002_ece3_71341
crossref_primary_10_1002_hyp_14769
crossref_primary_10_1016_j_ecoinf_2024_102832
crossref_primary_10_1016_j_ecoinf_2024_102712
crossref_primary_10_1038_s41597_024_03428_4
crossref_primary_10_1109_JSTARS_2025_3545482
crossref_primary_10_3390_rs15122985
crossref_primary_10_1016_j_aiig_2025_100141
crossref_primary_10_3390_f16081249
crossref_primary_10_1111_2041_210X_13933
crossref_primary_10_3390_rs15061535
crossref_primary_10_26848_rbgf_v17_4_p3008_3021
crossref_primary_10_3390_rs17142407
crossref_primary_10_1016_j_jenvman_2023_118736
crossref_primary_10_3390_land13101644
crossref_primary_10_1080_2150704X_2022_2079017
crossref_primary_10_1038_s41597_024_04237_5
crossref_primary_10_3390_rs17121968
crossref_primary_10_1016_j_jhazmat_2021_126245
crossref_primary_10_1093_pnasnexus_pgad076
crossref_primary_10_1109_ACCESS_2024_3396414
crossref_primary_10_1016_j_oneear_2024_05_002
crossref_primary_10_1016_j_rse_2021_112428
crossref_primary_10_1080_21683565_2025_2524734
crossref_primary_10_1007_s10980_025_02195_w
crossref_primary_10_1002_eap_2603
crossref_primary_10_3390_rs17010085
crossref_primary_10_1109_JSTARS_2024_3522330
crossref_primary_10_3390_su14020904
crossref_primary_10_3390_rs16162933
crossref_primary_10_1016_j_rse_2024_114384
crossref_primary_10_1080_10095020_2024_2429376
crossref_primary_10_3390_rs15061522
crossref_primary_10_1007_s40725_025_00248_6
crossref_primary_10_1038_s41597_025_04430_0
crossref_primary_10_3390_rs17173012
crossref_primary_10_1109_JSTARS_2021_3080711
crossref_primary_10_5194_hess_28_3567_2024
crossref_primary_10_1016_j_rse_2024_114026
crossref_primary_10_31413_nat_v13i3_19602
crossref_primary_10_1038_s41598_023_38935_8
crossref_primary_10_5194_essd_16_5449_2024
crossref_primary_10_1029_2021WR029716
crossref_primary_10_3390_fire6050215
crossref_primary_10_1002_evan_22032
crossref_primary_10_1016_j_scitotenv_2023_161757
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_1016_j_rse_2024_114152
crossref_primary_10_5194_bg_22_4349_2025
crossref_primary_10_1016_j_rse_2024_114270
crossref_primary_10_3390_rs16213992
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_1016_j_rse_2024_114276
crossref_primary_10_1029_2022JF006873
crossref_primary_10_3389_ffgc_2022_979528
crossref_primary_10_5194_essd_17_4397_2025
crossref_primary_10_1111_btp_13014
crossref_primary_10_3390_rs15235436
crossref_primary_10_7717_peerj_13202
crossref_primary_10_1371_journal_pone_0311816
crossref_primary_10_1002_rse2_416
crossref_primary_10_1016_j_foreco_2025_122964
crossref_primary_10_1080_01431161_2025_2549131
crossref_primary_10_3390_rs15010001
crossref_primary_10_1016_j_ocemod_2025_102536
crossref_primary_10_1016_j_envres_2024_119432
crossref_primary_10_1109_JSTARS_2021_3128022
crossref_primary_10_1007_s11707_025_1151_4
crossref_primary_10_3390_rs16010110
crossref_primary_10_1109_JSTARS_2022_3163208
crossref_primary_10_24057_2071_9388_2025_3735
crossref_primary_10_3389_fenvs_2025_1635707
crossref_primary_10_1109_JSTARS_2025_3599881
crossref_primary_10_1016_j_biocon_2025_111207
crossref_primary_10_1016_j_rse_2024_114168
crossref_primary_10_1016_j_rse_2022_112997
crossref_primary_10_1016_j_foreco_2025_122996
crossref_primary_10_1016_j_rsase_2024_101407
crossref_primary_10_1109_ACCESS_2024_3523415
crossref_primary_10_1038_s41598_024_52379_8
crossref_primary_10_1016_j_coesh_2021_100251
crossref_primary_10_1515_mammalia_2021_0113
crossref_primary_10_3390_rs13091650
crossref_primary_10_1016_j_foreco_2024_122317
crossref_primary_10_1038_s41467_025_59799_8
crossref_primary_10_1109_JSTARS_2024_3417302
crossref_primary_10_3389_ffgc_2023_1098901
crossref_primary_10_1016_j_scitotenv_2024_176393
crossref_primary_10_1016_j_rse_2024_114174
crossref_primary_10_1016_j_ufug_2025_129013
crossref_primary_10_1016_j_scs_2025_106493
crossref_primary_10_1016_j_scs_2025_106494
crossref_primary_10_1016_j_ecolind_2025_113085
crossref_primary_10_1029_2025AV001689
crossref_primary_10_1016_j_rse_2024_114293
crossref_primary_10_3390_resources13050062
crossref_primary_10_1080_15481603_2024_2427305
crossref_primary_10_5194_nhess_24_681_2024
crossref_primary_10_1038_s41597_025_04481_3
crossref_primary_10_1016_j_jag_2024_103798
crossref_primary_10_1016_j_scitotenv_2023_169692
crossref_primary_10_3390_land14040872
crossref_primary_10_1016_j_rse_2021_112587
crossref_primary_10_3390_f14030506
crossref_primary_10_1038_s41597_024_03896_8
crossref_primary_10_1093_pnasnexus_pgae360
crossref_primary_10_3390_rs17060966
crossref_primary_10_1038_s41597_024_04213_z
crossref_primary_10_3390_su151310434
crossref_primary_10_1016_j_foreco_2025_122747
crossref_primary_10_1088_1748_9326_adbb03
crossref_primary_10_1016_j_fecs_2022_100006
crossref_primary_10_1111_1365_2745_13999
crossref_primary_10_1016_S2542_5196_25_00112_3
crossref_primary_10_1134_S0010952522700022
crossref_primary_10_1007_s12524_023_01740_x
crossref_primary_10_1016_j_isprsjprs_2021_08_019
crossref_primary_10_1111_2041_210X_70041
crossref_primary_10_3389_frsen_2025_1532280
crossref_primary_10_3390_rs14153813
crossref_primary_10_1016_j_geomorph_2025_109689
crossref_primary_10_1088_2515_7620_acc56d
crossref_primary_10_5194_essd_15_4927_2023
crossref_primary_10_1038_s41893_022_00904_w
crossref_primary_10_1109_TGRS_2022_3222991
crossref_primary_10_1111_2041_210X_14040
crossref_primary_10_3390_s25113570
crossref_primary_10_1016_j_measurement_2023_113972
crossref_primary_10_1016_j_rse_2023_113823
crossref_primary_10_1016_j_jag_2025_104814
crossref_primary_10_1016_j_rse_2023_113703
crossref_primary_10_1016_j_rse_2023_113945
crossref_primary_10_1029_2021EF002560
crossref_primary_10_1002_ece3_11571
crossref_primary_10_1038_s44185_024_00044_8
crossref_primary_10_1080_15481603_2023_2260637
crossref_primary_10_1080_01431161_2023_2299278
crossref_primary_10_3389_fpls_2025_1561826
crossref_primary_10_3389_fpls_2024_1428268
crossref_primary_10_3390_f15071261
crossref_primary_10_3390_s22052015
crossref_primary_10_1016_j_agrformet_2025_110689
crossref_primary_10_3390_rs15153738
crossref_primary_10_3390_f16040570
crossref_primary_10_1016_j_jag_2022_103176
crossref_primary_10_1016_j_jag_2023_103435
crossref_primary_10_1016_j_jag_2022_103175
crossref_primary_10_1016_j_isprsjprs_2024_02_002
crossref_primary_10_3390_rs13040809
crossref_primary_10_1016_j_atech_2025_101338
crossref_primary_10_1029_2024JG008635
crossref_primary_10_1080_07038992_2024_2341762
crossref_primary_10_1038_s43016_021_00429_z
crossref_primary_10_3390_f14061133
crossref_primary_10_1002_rse2_330
crossref_primary_10_1016_j_jag_2023_103431
crossref_primary_10_3390_rs14235968
crossref_primary_10_1016_j_wace_2022_100487
crossref_primary_10_1016_j_rse_2025_115030
crossref_primary_10_3390_rs15245627
crossref_primary_10_5194_essd_17_3219_2025
crossref_primary_10_3390_f14030454
crossref_primary_10_3390_s24113488
crossref_primary_10_3390_su151511525
crossref_primary_10_1016_j_scitotenv_2022_154729
crossref_primary_10_1016_j_csr_2023_104945
crossref_primary_10_3390_rs14184434
crossref_primary_10_1016_j_ecolind_2024_112744
crossref_primary_10_1029_2023EF003590
crossref_primary_10_1007_s10666_023_09897_y
crossref_primary_10_1016_j_rse_2022_113402
crossref_primary_10_1371_journal_pone_0292386
crossref_primary_10_1016_j_pce_2025_104003
crossref_primary_10_1002_rse2_248
crossref_primary_10_1016_j_ecoinf_2025_103045
crossref_primary_10_3390_rs17091536
crossref_primary_10_1002_fee_2585
crossref_primary_10_3390_f15122115
crossref_primary_10_1109_ACCESS_2024_3442768
crossref_primary_10_1016_j_egyr_2023_10_073
crossref_primary_10_3390_rs17152617
crossref_primary_10_1007_s40808_024_02171_4
crossref_primary_10_1016_j_rse_2024_114099
crossref_primary_10_3390_rs13194012
crossref_primary_10_1016_j_rse_2024_114098
crossref_primary_10_1029_2024JG008519
crossref_primary_10_1088_1748_9326_adc752
crossref_primary_10_1002_esp_5461
crossref_primary_10_3390_f15071161
crossref_primary_10_1038_s41893_022_01020_5
crossref_primary_10_1016_j_ecolind_2024_111752
crossref_primary_10_1080_01431161_2024_2373344
crossref_primary_10_3390_rs13224516
crossref_primary_10_1088_1748_9326_ac4d4f
crossref_primary_10_1186_s13717_022_00396_8
crossref_primary_10_1016_j_jag_2023_103570
crossref_primary_10_3390_f14061270
crossref_primary_10_1007_s10980_023_01597_y
crossref_primary_10_1093_jofore_fvae020
crossref_primary_10_33494_nzjfs552025x446x
crossref_primary_10_1016_j_jag_2023_103452
crossref_primary_10_1080_15481603_2024_2374150
crossref_primary_10_3390_f13101686
crossref_primary_10_1080_15481603_2025_2497603
crossref_primary_10_1109_TGRS_2024_3389821
crossref_primary_10_3390_rs14153615
crossref_primary_10_1007_s10745_025_00604_x
crossref_primary_10_1016_j_rse_2025_115019
crossref_primary_10_3390_rs14153618
crossref_primary_10_3390_rs14153738
crossref_primary_10_1007_s11355_023_00539_9
crossref_primary_10_1016_j_jenvman_2025_127197
Cites_doi 10.1016/j.rse.2019.111347
10.1038/s41598-017-15050-z
10.3390/rs70505534
10.1016/j.rse.2019.111278
10.1016/j.isprsjprs.2014.11.007
10.1016/j.rse.2014.10.029
10.4155/cmt.11.18
10.1126/science.263.5144.185
10.1111/j.1755-263X.2009.00067.x
10.1080/07038992.2016.1207484
10.1016/j.rse.2017.12.020
10.1016/S0034-4257(02)00056-1
10.1088/1748-9326/3/4/045011
10.1007/s00442-011-2165-z
10.1016/0034-4257(85)90102-6
10.1016/j.rse.2016.07.016
10.1029/2010GL043622
10.3402/tellusb.v51i2.16288
10.1126/science.1073947
10.1117/1.2795724
10.1016/j.rse.2016.02.023
10.1038/nature10425
10.3390/rs5084045
10.1126/science.1201609
10.1016/j.rse.2018.02.019
10.1126/science.1244693
10.5589/m10-037
10.3390/rs12030426
10.1073/pnas.1710465114
10.1029/2011JG001708
10.1088/1748-9326/10/7/074002
10.3390/rs61212409
10.1016/j.srs.2020.100002
10.3390/rs6031762
10.5589/m03-026
10.1023/A:1018054314350
10.1073/pnas.1810512116
10.1139/x00-142
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier BV Feb 2021
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2020.112165
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2020_112165
S0034425720305381
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c424t-e50cb57481448d7d3ea973b06912f02dabb999a404a2e13e989c9b9df2f77e303
ISICitedReferencesCount 889
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604325300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Sep 28 01:17:03 EDT 2025
Wed Aug 13 09:17:28 EDT 2025
Sat Nov 29 07:26:52 EST 2025
Tue Nov 18 22:08:39 EST 2025
Fri Feb 23 02:48:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lidar
Time-series
GEDI
Forest height
Forest monitoring
Landsat
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-e50cb57481448d7d3ea973b06912f02dabb999a404a2e13e989c9b9df2f77e303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2488247416
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2551937190
proquest_journals_2488247416
crossref_primary_10_1016_j_rse_2020_112165
crossref_citationtrail_10_1016_j_rse_2020_112165
elsevier_sciencedirect_doi_10_1016_j_rse_2020_112165
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Balmford, Bruner, Cooper, Costanza, Farber, Green, Munro (bb0020) 2002; 297
Xu, Saatchi, Shapiro, Meyer, Ferraz, Yang, Bastin, Banks, Boeckx, Verbeeck, Lewis, Muanza, Bongwele, Kayembe, Mbenza, Kalau, Mukendi, Ilunga, Ebuta (bb0250) 2017; 7
Breiman (bb0030) 1996; 24
Pugh, Lindeskog, Smith, Poulter, Arneth, Haverd, Calle (bb0210) 2019; 116
Chi, Sun, Huang, Guo, Ni, Fu (bb0040) 2015; 7
Potapov, Tyukavina, Turubanova, Talero, Hernandez-Serna, Hansen, Saah, Tenneson, Poortinga, Aekakkararungroj, Chishtie (bb0200) 2019; 232
Matasci, Hermosilla, Wulder, White, Coops, Hobart, Zald (bb0165) 2018; 209
Beck, Armston, Hofton, Luthcke (bb0025) 2020
Lefsky, Cohen, Spies (bb0150) 2001; 31
Coulter, Stow, Tsai, Ibanez, Shih, Kerr, Benza, Weeks, Mensah (bb0050) 2016; 184
Pan, Birdsey, Fang, Houghton, Kauppi, Kurz, Ciais (bb0185) 2011; 333
Houghton (bb0120) 1999; 51
UNFCCC [United Nations Framework Convention on Climate Change] (bb0240) 2006
White, Coops, Wulder, Vastaranta, Hilker, Tompalski (bb0245) 2016; 42
Lovell, Jupp, Culvenor, Coops (bb0160) 2003; 29
Dubayah, Hofton, Blair, Armston, Tang, Luthcke (bb0070) 2020
Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke (bb0065) 2020; 1
Dubayah, Tang, Armston, Luthcke, Hofton, Blair (bb0075) 2020
Tyukavina, Baccini, Hansen, Potapov, Stehman, Houghton, Krylov, Turubanova, Goetz (bb0235) 2015; 10
Simard, Pinto, Fisher, Baccini (bb0225) 2011; 116
Cook, Corp, Nelson, Middleton, Morton, McCorkel, Masek, Ranson, Ly, Montesano, Cook, Corp, Nelson, Middleton, Morton, McCorkel, Masek, Ranson, Ly, Montesano (bb0045) 2013; 5
Sasaki, Putz (bb0215) 2009; 2
Duncanson, Niemann, Wulder (bb0080) 2010; 36
UNFCCC Secretariat (bb0220) 2016
IUCN (bb0130) 2018
Lefsky (bb0145) 2010; 37
Hofton, Blair (bb0115) 2019
Florczyk, Corbane, Ehrlich, Freire, Kemper, Maffenini, Sabo (bb0085) 2019; 29788
Gibson, Lee, Koh, Brook, Gardner, Barlow, Sodhi (bb0090) 2011; 478
Jarvis, Reuter, Nelson, Guevara (bb0135) 2008
Lang, Schindler, Wegner (bb0140) 2019; 233
Goetz, Dubayah (bb0095) 2011; 2
Breiman, Friedman, Olshen, Stone (bb0035) 1984
Popescu, Zhou, Nelson, Neuenschwander, Sheridan, Narine, Walsh (bb0195) 2018; 208
Baccini, Laporte, Goetz, Sun, Dong (bb0015) 2008; 3
Crist (bb0055) 1985
Hudak, Lefsky, Cohen, Berterretche (bb0125) 2002; 82
Lefsky, Keller, Pang, De Camargo, Hunter (bb0155) 2007
TERN AusCover (bb0230) 2020
Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland, Kommareddy (bb0105) 2013; 342
Dixon, Solomon, Brown, Houghton, Trexier, Wisniewski (bb0060) 1994; 263
Peterson, Nelson (bb0190) 2014; 6
Griscom, Adams, Ellis, Houghton, Lomax, Miteva, Woodbury (bb0100) 2017; 114
NYDF Assessment Partners (bb0180) 2019
Potapov, Hansen, Kommareddy, Kommareddy, Turubanova, Pickens, Adusei, Tyukavina, Ying (bb0205) 2020; 12
Neigh, Masek, Bourget, Cook, Huang, Rishmawi, Zhao, Neigh, Masek, Bourget, Cook, Huang, Rishmawi, Zhao (bb0175) 2014; 6
Ahmed, Franklin, Wulder, White (bb0005) 2015; 101
Asner, Mascaro, Muller-Landau, Vieilledent, Vaudry, Rasamoelina, Hall, Van Breugel (bb0010) 2012; 168
Montesano, Rosette, Sun, North, Nelson, Dubayah, Ranson, Kharuk (bb0170) 2015; 158
Hansen, Potapov, Goetz, Turubanova, Tyukavina, Krylov, Kommareddy, Egorov (bb0110) 2016; 185
TERN AusCover (10.1016/j.rse.2020.112165_bb0230) 2020
UNFCCC [United Nations Framework Convention on Climate Change] (10.1016/j.rse.2020.112165_bb0240) 2006
Lefsky (10.1016/j.rse.2020.112165_bb0145) 2010; 37
Potapov (10.1016/j.rse.2020.112165_bb0200) 2019; 232
Balmford (10.1016/j.rse.2020.112165_bb0020) 2002; 297
Dubayah (10.1016/j.rse.2020.112165_bb0070) 2020
Goetz (10.1016/j.rse.2020.112165_bb0095) 2011; 2
Breiman (10.1016/j.rse.2020.112165_bb0035) 1984
Peterson (10.1016/j.rse.2020.112165_bb0190) 2014; 6
Baccini (10.1016/j.rse.2020.112165_bb0015) 2008; 3
Hudak (10.1016/j.rse.2020.112165_bb0125) 2002; 82
Dubayah (10.1016/j.rse.2020.112165_bb0065) 2020; 1
Pan (10.1016/j.rse.2020.112165_bb0185) 2011; 333
Florczyk (10.1016/j.rse.2020.112165_bb0085) 2019; 29788
Simard (10.1016/j.rse.2020.112165_bb0225) 2011; 116
Beck (10.1016/j.rse.2020.112165_bb0025) 2020
Houghton (10.1016/j.rse.2020.112165_bb0120) 1999; 51
Gibson (10.1016/j.rse.2020.112165_bb0090) 2011; 478
Lefsky (10.1016/j.rse.2020.112165_bb0150) 2001; 31
Hansen (10.1016/j.rse.2020.112165_bb0105) 2013; 342
Jarvis (10.1016/j.rse.2020.112165_bb0135)
Lang (10.1016/j.rse.2020.112165_bb0140) 2019; 233
Potapov (10.1016/j.rse.2020.112165_bb0205) 2020; 12
Neigh (10.1016/j.rse.2020.112165_bb0175) 2014; 6
Dubayah (10.1016/j.rse.2020.112165_bb0075) 2020
Duncanson (10.1016/j.rse.2020.112165_bb0080) 2010; 36
Cook (10.1016/j.rse.2020.112165_bb0045) 2013; 5
Ahmed (10.1016/j.rse.2020.112165_bb0005) 2015; 101
Montesano (10.1016/j.rse.2020.112165_bb0170) 2015; 158
Popescu (10.1016/j.rse.2020.112165_bb0195) 2018; 208
Dixon (10.1016/j.rse.2020.112165_bb0060) 1994; 263
IUCN (10.1016/j.rse.2020.112165_bb0130) 2018
Coulter (10.1016/j.rse.2020.112165_bb0050) 2016; 184
Griscom (10.1016/j.rse.2020.112165_bb0100) 2017; 114
Sasaki (10.1016/j.rse.2020.112165_bb0215) 2009; 2
Matasci (10.1016/j.rse.2020.112165_bb0165) 2018; 209
Tyukavina (10.1016/j.rse.2020.112165_bb0235) 2015; 10
Hansen (10.1016/j.rse.2020.112165_bb0110) 2016; 185
Hofton (10.1016/j.rse.2020.112165_bb0115) 2019
Xu (10.1016/j.rse.2020.112165_bb0250) 2017; 7
White (10.1016/j.rse.2020.112165_bb0245) 2016; 42
UNFCCC Secretariat (10.1016/j.rse.2020.112165_bb0220) 2016
Chi (10.1016/j.rse.2020.112165_bb0040) 2015; 7
NYDF Assessment Partners (10.1016/j.rse.2020.112165_bb0180)
Lovell (10.1016/j.rse.2020.112165_bb0160) 2003; 29
Asner (10.1016/j.rse.2020.112165_bb0010) 2012; 168
Lefsky (10.1016/j.rse.2020.112165_bb0155) 2007; 1
Pugh (10.1016/j.rse.2020.112165_bb0210) 2019; 116
Crist (10.1016/j.rse.2020.112165_bb0055) 1985
Breiman (10.1016/j.rse.2020.112165_bb0030) 1996; 24
References_xml – year: 1984
  ident: bb0035
  article-title: Classification and Regression Trees
– volume: 51
  start-page: 298
  year: 1999
  end-page: 313
  ident: bb0120
  article-title: The annual net flux of carbon to the atmosphere from changes in land use 1850–1990
  publication-title: Tellus B
– volume: 168
  start-page: 1147
  year: 2012
  end-page: 1160
  ident: bb0010
  article-title: A universal airborne LiDAR approach for tropical forest carbon mapping
  publication-title: Oecologia
– volume: 233
  start-page: 111347
  year: 2019
  ident: bb0140
  article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2
  publication-title: Remote Sens. Environ.
– volume: 208
  start-page: 154
  year: 2018
  end-page: 170
  ident: bb0195
  article-title: Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 12409
  year: 2014
  end-page: 12426
  ident: bb0190
  article-title: Mapping forest height in Alaska using GLAS, Landsat composites, and airborne LiDAR
  publication-title: Remote Sens.
– volume: 31
  start-page: 78
  year: 2001
  end-page: 87
  ident: bb0150
  article-title: An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon
  publication-title: Can. J. For. Res.
– volume: 6
  start-page: 1762
  year: 2014
  end-page: 1782
  ident: bb0175
  article-title: Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne LiDAR
  publication-title: Remote Sens.
– year: 2016
  ident: bb0220
  article-title: Key Decisions Relevant for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+)
– start-page: 301
  year: 1985
  end-page: 306
  ident: bb0055
  article-title: A TM tasseled cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
– start-page: 013537
  year: 2007
  ident: bb0155
  article-title: Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms
  publication-title: J. Appl. Remote. Sens.
– volume: 36
  start-page: 129
  year: 2010
  end-page: 141
  ident: bb0080
  article-title: Integration of GLAS and Landsat TM data for aboveground biomass estimation
  publication-title: Can. J. Remote. Sens.
– volume: 2
  start-page: 231
  year: 2011
  end-page: 244
  ident: bb0095
  article-title: Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change
  publication-title: Carbon Management
– volume: 37
  year: 2010
  ident: bb0145
  article-title: A global forest canopy height map from the moderate resolution imaging Spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 15030
  year: 2017
  ident: bb0250
  article-title: Spatial distribution of carbon stored in forests of the Democratic Republic of Congo
  publication-title: Sci. Rep.
– volume: 101
  start-page: 89
  year: 2015
  end-page: 101
  ident: bb0005
  article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the random Forest algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 116
  start-page: 4021
  year: 2011
  ident: bb0225
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: Geophys. Res. Lett.
– volume: 185
  start-page: 221
  year: 2016
  end-page: 232
  ident: bb0110
  article-title: Mapping tree height distributions in sub-Saharan Africa using Landsat 7 and 8 data
  publication-title: Remote Sens. Environ.
– volume: 209
  start-page: 90
  year: 2018
  end-page: 106
  ident: bb0165
  article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 5534
  year: 2015
  end-page: 5564
  ident: bb0040
  article-title: National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China
  publication-title: Remote Sens.
– volume: 5
  start-page: 4045
  year: 2013
  end-page: 4066
  ident: bb0045
  article-title: NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager
  publication-title: Remote Sens.
– volume: 232
  start-page: 111278
  year: 2019
  ident: bb0200
  article-title: Annual continuous fields of woody vegetation structure in the lower Mekong region from 2000-2017 Landsat time-series
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: bb0025
  article-title: GLOBAL
– volume: 333
  start-page: 988
  year: 2011
  end-page: 993
  ident: bb0185
  article-title: A large and persistent carbon sink in the world’s forests
  publication-title: Science
– volume: 116
  start-page: 4382
  year: 2019
  end-page: 4387
  ident: bb0210
  article-title: Role of forest regrowth in global carbon sink dynamics
  publication-title: Proc. Natl. Acad. Sci.
– year: 2008
  ident: bb0135
  article-title: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from
– year: 2019
  ident: bb0180
  article-title: Protecting and Restoring Forests: A Story of Large Commitments Yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report. Accessible at
– volume: 114
  start-page: 11645
  year: 2017
  end-page: 11650
  ident: bb0100
  article-title: Natural climate solutions
  publication-title: Proceedings of the National Academy of Sciences
– year: 2006
  ident: bb0240
  article-title: United Nations Office at Geneva, Switzerland
– year: 2020
  ident: bb0230
  article-title: Airborne LiDAR - Riegl Q560, point, raster and full waveform, Australian field sites
– year: 2019
  ident: bb0115
  article-title: Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1. Goddard Space Flight Center, Greenbelt, MD. and L2 Products
– volume: 184
  start-page: 396
  year: 2016
  end-page: 409
  ident: bb0050
  article-title: Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2015
  ident: bb0235
  article-title: Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012
  publication-title: Environ. Res. Lett.
– year: 2020
  ident: bb0075
  article-title: GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V001 [Data set].
– year: 2018
  ident: bb0130
  article-title: Getting Started with the Bonn Challenge
– volume: 297
  start-page: 950
  year: 2002
  end-page: 953
  ident: bb0020
  article-title: Economic reasons for conserving wild nature
  publication-title: Science
– volume: 29788
  year: 2019
  ident: bb0085
  article-title: GHSL Data Package 2019
  publication-title: Luxembourg. EUR
– volume: 29
  start-page: 607
  year: 2003
  end-page: 622
  ident: bb0160
  article-title: Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests
  publication-title: Can. J. Remote. Sens.
– volume: 12
  start-page: 426
  year: 2020
  ident: bb0205
  article-title: Landsat analysis ready data for global land cover and land cover change mapping
  publication-title: Remote Sens.
– year: 2020
  ident: bb0070
  article-title: GEDI L2A elevation and height metrics data global footprint level V001 [data set].
– volume: 1
  start-page: 100002
  year: 2020
  ident: bb0065
  article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
– volume: 263
  start-page: 185
  year: 1994
  end-page: 190
  ident: bb0060
  article-title: Carbon pools and flux of global forest ecosystems
  publication-title: Science
– volume: 158
  start-page: 95
  year: 2015
  end-page: 109
  ident: bb0170
  article-title: The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient
  publication-title: Remote Sens. Environ.
– volume: 82
  start-page: 397
  year: 2002
  end-page: 416
  ident: bb0125
  article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bb0030
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 2
  start-page: 226
  year: 2009
  end-page: 232
  ident: bb0215
  article-title: Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements
  publication-title: Conserv. Lett.
– volume: 42
  start-page: 619
  year: 2016
  end-page: 641
  ident: bb0245
  article-title: Remote sensing technologies for enhancing forest inventories: a review
  publication-title: Can. J. Remote. Sens.
– volume: 3
  start-page: 045011
  year: 2008
  ident: bb0015
  article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery
  publication-title: Environ. Res. Lett.
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: bb0105
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
– volume: 478
  start-page: 378
  year: 2011
  end-page: 381
  ident: bb0090
  article-title: Primary forests are irreplaceable for sustaining tropical biodiversity
  publication-title: Nature
– year: 2020
  ident: 10.1016/j.rse.2020.112165_bb0230
– volume: 233
  start-page: 111347
  year: 2019
  ident: 10.1016/j.rse.2020.112165_bb0140
  article-title: Country-wide high-resolution vegetation height mapping with Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111347
– year: 2006
  ident: 10.1016/j.rse.2020.112165_bb0240
– volume: 7
  start-page: 15030
  year: 2017
  ident: 10.1016/j.rse.2020.112165_bb0250
  article-title: Spatial distribution of carbon stored in forests of the Democratic Republic of Congo
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15050-z
– volume: 7
  start-page: 5534
  issue: 5
  year: 2015
  ident: 10.1016/j.rse.2020.112165_bb0040
  article-title: National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China
  publication-title: Remote Sens.
  doi: 10.3390/rs70505534
– volume: 232
  start-page: 111278
  year: 2019
  ident: 10.1016/j.rse.2020.112165_bb0200
  article-title: Annual continuous fields of woody vegetation structure in the lower Mekong region from 2000-2017 Landsat time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111278
– ident: 10.1016/j.rse.2020.112165_bb0135
– volume: 101
  start-page: 89
  year: 2015
  ident: 10.1016/j.rse.2020.112165_bb0005
  article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the random Forest algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.11.007
– volume: 29788
  year: 2019
  ident: 10.1016/j.rse.2020.112165_bb0085
  article-title: GHSL Data Package 2019
  publication-title: Luxembourg. EUR
– volume: 158
  start-page: 95
  year: 2015
  ident: 10.1016/j.rse.2020.112165_bb0170
  article-title: The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.029
– volume: 2
  start-page: 231
  year: 2011
  ident: 10.1016/j.rse.2020.112165_bb0095
  article-title: Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change
  publication-title: Carbon Management
  doi: 10.4155/cmt.11.18
– volume: 263
  start-page: 185
  issue: 5144
  year: 1994
  ident: 10.1016/j.rse.2020.112165_bb0060
  article-title: Carbon pools and flux of global forest ecosystems
  publication-title: Science
  doi: 10.1126/science.263.5144.185
– year: 2020
  ident: 10.1016/j.rse.2020.112165_bb0075
– volume: 2
  start-page: 226
  issue: 5
  year: 2009
  ident: 10.1016/j.rse.2020.112165_bb0215
  article-title: Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements
  publication-title: Conserv. Lett.
  doi: 10.1111/j.1755-263X.2009.00067.x
– volume: 42
  start-page: 619
  issue: 5
  year: 2016
  ident: 10.1016/j.rse.2020.112165_bb0245
  article-title: Remote sensing technologies for enhancing forest inventories: a review
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2016.1207484
– volume: 209
  start-page: 90
  year: 2018
  ident: 10.1016/j.rse.2020.112165_bb0165
  article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.020
– volume: 82
  start-page: 397
  issue: 2–3
  year: 2002
  ident: 10.1016/j.rse.2020.112165_bb0125
  article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00056-1
– volume: 3
  start-page: 045011
  issue: 4
  year: 2008
  ident: 10.1016/j.rse.2020.112165_bb0015
  article-title: A first map of tropical Africa’s above-ground biomass derived from satellite imagery
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/3/4/045011
– year: 1984
  ident: 10.1016/j.rse.2020.112165_bb0035
– volume: 168
  start-page: 1147
  year: 2012
  ident: 10.1016/j.rse.2020.112165_bb0010
  article-title: A universal airborne LiDAR approach for tropical forest carbon mapping
  publication-title: Oecologia
  doi: 10.1007/s00442-011-2165-z
– start-page: 301
  year: 1985
  ident: 10.1016/j.rse.2020.112165_bb0055
  article-title: A TM tasseled cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(85)90102-6
– volume: 184
  start-page: 396
  year: 2016
  ident: 10.1016/j.rse.2020.112165_bb0050
  article-title: Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.016
– volume: 37
  year: 2010
  ident: 10.1016/j.rse.2020.112165_bb0145
  article-title: A global forest canopy height map from the moderate resolution imaging Spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL043622
– volume: 51
  start-page: 298
  issue: 2
  year: 1999
  ident: 10.1016/j.rse.2020.112165_bb0120
  article-title: The annual net flux of carbon to the atmosphere from changes in land use 1850–1990
  publication-title: Tellus B
  doi: 10.3402/tellusb.v51i2.16288
– year: 2018
  ident: 10.1016/j.rse.2020.112165_bb0130
– volume: 297
  start-page: 950
  issue: 5583
  year: 2002
  ident: 10.1016/j.rse.2020.112165_bb0020
  article-title: Economic reasons for conserving wild nature
  publication-title: Science
  doi: 10.1126/science.1073947
– volume: 1
  start-page: 013537
  issue: 1
  year: 2007
  ident: 10.1016/j.rse.2020.112165_bb0155
  article-title: Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.2795724
– volume: 185
  start-page: 221
  year: 2016
  ident: 10.1016/j.rse.2020.112165_bb0110
  article-title: Mapping tree height distributions in sub-Saharan Africa using Landsat 7 and 8 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.023
– volume: 478
  start-page: 378
  issue: 7369
  year: 2011
  ident: 10.1016/j.rse.2020.112165_bb0090
  article-title: Primary forests are irreplaceable for sustaining tropical biodiversity
  publication-title: Nature
  doi: 10.1038/nature10425
– volume: 5
  start-page: 4045
  issue: 8
  year: 2013
  ident: 10.1016/j.rse.2020.112165_bb0045
  article-title: NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager
  publication-title: Remote Sens.
  doi: 10.3390/rs5084045
– volume: 333
  start-page: 988
  issue: 6045
  year: 2011
  ident: 10.1016/j.rse.2020.112165_bb0185
  article-title: A large and persistent carbon sink in the world’s forests
  publication-title: Science
  doi: 10.1126/science.1201609
– volume: 208
  start-page: 154
  year: 2018
  ident: 10.1016/j.rse.2020.112165_bb0195
  article-title: Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.019
– volume: 342
  start-page: 850
  issue: 6160
  year: 2013
  ident: 10.1016/j.rse.2020.112165_bb0105
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– year: 2020
  ident: 10.1016/j.rse.2020.112165_bb0025
– volume: 36
  start-page: 129
  issue: 2
  year: 2010
  ident: 10.1016/j.rse.2020.112165_bb0080
  article-title: Integration of GLAS and Landsat TM data for aboveground biomass estimation
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m10-037
– volume: 12
  start-page: 426
  issue: 3
  year: 2020
  ident: 10.1016/j.rse.2020.112165_bb0205
  article-title: Landsat analysis ready data for global land cover and land cover change mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs12030426
– volume: 114
  start-page: 11645
  issue: 44
  year: 2017
  ident: 10.1016/j.rse.2020.112165_bb0100
  article-title: Natural climate solutions
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1710465114
– year: 2016
  ident: 10.1016/j.rse.2020.112165_bb0220
– year: 2020
  ident: 10.1016/j.rse.2020.112165_bb0070
– volume: 116
  start-page: 4021
  year: 2011
  ident: 10.1016/j.rse.2020.112165_bb0225
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011JG001708
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.rse.2020.112165_bb0235
  article-title: Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/7/074002
– volume: 6
  start-page: 12409
  issue: 12
  year: 2014
  ident: 10.1016/j.rse.2020.112165_bb0190
  article-title: Mapping forest height in Alaska using GLAS, Landsat composites, and airborne LiDAR
  publication-title: Remote Sens.
  doi: 10.3390/rs61212409
– ident: 10.1016/j.rse.2020.112165_bb0180
– volume: 1
  start-page: 100002
  year: 2020
  ident: 10.1016/j.rse.2020.112165_bb0065
  article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2020.100002
– volume: 6
  start-page: 1762
  year: 2014
  ident: 10.1016/j.rse.2020.112165_bb0175
  article-title: Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne LiDAR
  publication-title: Remote Sens.
  doi: 10.3390/rs6031762
– volume: 29
  start-page: 607
  issue: 5
  year: 2003
  ident: 10.1016/j.rse.2020.112165_bb0160
  article-title: Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m03-026
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.rse.2020.112165_bb0030
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 116
  start-page: 4382
  issue: 10
  year: 2019
  ident: 10.1016/j.rse.2020.112165_bb0210
  article-title: Role of forest regrowth in global carbon sink dynamics
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1810512116
– volume: 31
  start-page: 78
  issue: 1
  year: 2001
  ident: 10.1016/j.rse.2020.112165_bb0150
  article-title: An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon
  publication-title: Can. J. For. Res.
  doi: 10.1139/x00-142
– year: 2019
  ident: 10.1016/j.rse.2020.112165_bb0115
SSID ssj0015871
Score 2.739836
Snippet Consistent, large-scale operational monitoring of forest height is essential for estimating forest-related carbon emissions, analyzing forest degradation, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112165
SubjectTerms Canopies
canopy height
carbon
Carbon emissions
climate
Ecosystem dynamics
ecosystems
Emissions
environment
Environmental restoration
Forest canopy
Forest degradation
Forest ecosystems
Forest height
Forest monitoring
forest restoration
Forests
GEDI
Global climate
Imagery
Integration
International Space Station
Landsat
Landsat satellites
Lidar
Monitoring
Remote sensing
Space stations
Spatial discrimination
Spatial resolution
Sustainable development
time series analysis
Time-series
Vegetation
Title Mapping global forest canopy height through integration of GEDI and Landsat data
URI https://dx.doi.org/10.1016/j.rse.2020.112165
https://www.proquest.com/docview/2488247416
https://www.proquest.com/docview/2551937190
Volume 253
WOSCitedRecordID wos000604325300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBoIXBIWJwkBGQjwwBSWOU9uPE3TdUCkTdKhvlpM6UrcpCb1p_SH8X45jOy2bmOCBl6iKnbTy-fr5HJ8bQm8SFSuSChHkkcgCGmXdgMcqC3gK27syO3rXNptgwyEfj8Vpq_XT58KsLllR8KsrUf1XUcM9ELZJnf0HcTcvhRvwGYQOVxA7XP9K8J9VVedAuVIfoJQC8ZvgrrJag15ojPGmO48vFuG0xn7v40ntTRiYBGC1OHCZa436-lWDZPXB3ES922jprUS5hmXLharK1Y3o30EdODCeFuvlBpLH_hw7-KZdflodY9mo-qP18kKtpm7IpuPM1PZhBYl8fLM_QWuyaL5vk3JMA0MddkuyPMyZya2ynYk9UZMk3qJaUBQj22bixi5gDyTO38_mphAqqfOk3NzfK24Pv8ijs8FAjnrj0dvqR2CakRmnvevMcgftEpYIIMvdw5Pe-FPjnko4s60Y3S_37vI6cPDat_5J4bm29df6zOgReugMEXxoAfQYtXTRRnu9jThh0BH_vI3u97Wrbd5G9_p1N-j1E3TqsIYt1rDFGrZYwxZr2GENb2ENlzk2WMMgS-ywhg3WnqKzo97ow3HgWnQEGSV0EegkzNKEUQ52OZ-wSayVYHEadkVE8pBMVAo8IBQNqSI6irXgIhOpmOQkZ0yD-rSHdoqy0M8QZnFXCwIGBKdgolPjPqdpSHIwkBVXSdZBoV9Hmbn69aaNyqX0gYrnEpZemqWXduk76F3zSGWLt9w2mXrhSKd9Wq1SAqxue2zfC1I6FphLAtsiocbY6aDXzTAQt_HGqUKXS5iTGOOJgUL-_PZXvEAPNn-lfbSzmC31S3Q3Wy2m89krB81fJQu3eQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+global+forest+canopy+height+through+integration+of+GEDI+and+Landsat+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Potapov%2C+Peter&rft.au=Li%2C+Xinyuan&rft.au=Hernandez-Serna%2C+Andres&rft.au=Tyukavina%2C+Alexandra&rft.date=2021-02-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=253&rft.spage=112165&rft_id=info:doi/10.1016%2Fj.rse.2020.112165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon