Characterization of luminescent mini-tufts in quantitative flow visualization experiments: Surface flow analysis and modelization

•Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent mini-tufts.•Surface flow topology and boundary layer parameters successfully extracted.•Physical and numerical model established for mini-tufts met...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Experimental thermal and fluid science Ročník 103; s. 406 - 417
Hlavní autori: Chen, Lin, Suzuki, Tomohiro, Nonomura, Taku, Asai, Keisuke
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Elsevier Inc 01.05.2019
Elsevier Science Ltd
Predmet:
ISSN:0894-1777, 1879-2286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent mini-tufts.•Surface flow topology and boundary layer parameters successfully extracted.•Physical and numerical model established for mini-tufts method. As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow measurement. The luminescent mini-tufts method is preferred with its reduced size and increased luminescence, which is suitable for surface visualization measurement. To provide a standard method/procedure in quantitative analysis for luminescent mini-tuft measurement, the current study established an experimental characterization platform of luminescent mini-tufts method and conducted flat-pate model for flow analysis. The experimental system is consisted of wind tunnel and model section, high-speed image data recording system, digital image processing as well as the control system. The digital imaging processing method for result analysis is also explained, which includes the dark current image extraction, averaging, mini-tufts recognition, and tuft inclination angle/tuft angle estimation process. In this study, the steady flow characterization and quantitative flow analysis is conducted on a flat plate model (Re = 1.6 × 105–6.6 × 105), which is combined with hot-wire anemometry to investigate the basic surface flow topology and boundary layer behaviors. The method is shown capable of capturing both the steady and transient behaviors of a surface flow. Luminescent mini-tufts physical model is also established and found good agreement with the experimental results in this study, which in turn support the mini-tufts characterization and selection in practical applications.
AbstractList As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow measurement. The luminescent mini-tufts method is preferred with its reduced size and increased luminescence, which is suitable for surface visualization measurement. To provide a standard method/procedure in quantitative analysis for luminescent mini-tuft measurement, the current study established an experimental characterization platform of luminescent mini-tufts method and conducted flat-pate model for flow analysis. The experimental system is consisted of wind tunnel and model section, high-speed image data recording system, digital image processing as well as the control system. The digital imaging processing method for result analysis is also explained, which includes the dark current image extraction, averaging, mini-tufts recognition, and tuft inclination angle/tuft angle estimation process. In this study, the steady flow characterization and quantitative flow analysis is conducted on a flat plate model (Re = 1.6 × 105–6.6 × 105), which is combined with hot-wire anemometry to investigate the basic surface flow topology and boundary layer behaviors. The method is shown capable of capturing both the steady and transient behaviors of a surface flow. Luminescent mini-tufts physical model is also established and found good agreement with the experimental results in this study, which in turn support the mini-tufts characterization and selection in practical applications.
•Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent mini-tufts.•Surface flow topology and boundary layer parameters successfully extracted.•Physical and numerical model established for mini-tufts method. As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow measurement. The luminescent mini-tufts method is preferred with its reduced size and increased luminescence, which is suitable for surface visualization measurement. To provide a standard method/procedure in quantitative analysis for luminescent mini-tuft measurement, the current study established an experimental characterization platform of luminescent mini-tufts method and conducted flat-pate model for flow analysis. The experimental system is consisted of wind tunnel and model section, high-speed image data recording system, digital image processing as well as the control system. The digital imaging processing method for result analysis is also explained, which includes the dark current image extraction, averaging, mini-tufts recognition, and tuft inclination angle/tuft angle estimation process. In this study, the steady flow characterization and quantitative flow analysis is conducted on a flat plate model (Re = 1.6 × 105–6.6 × 105), which is combined with hot-wire anemometry to investigate the basic surface flow topology and boundary layer behaviors. The method is shown capable of capturing both the steady and transient behaviors of a surface flow. Luminescent mini-tufts physical model is also established and found good agreement with the experimental results in this study, which in turn support the mini-tufts characterization and selection in practical applications.
Author Asai, Keisuke
Nonomura, Taku
Chen, Lin
Suzuki, Tomohiro
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0002-0628-2606
  surname: Chen
  fullname: Chen, Lin
  email: chenlinpkucoe@gmail.com
– sequence: 2
  givenname: Tomohiro
  surname: Suzuki
  fullname: Suzuki, Tomohiro
– sequence: 3
  givenname: Taku
  orcidid: 0000-0001-7739-7104
  surname: Nonomura
  fullname: Nonomura, Taku
– sequence: 4
  givenname: Keisuke
  surname: Asai
  fullname: Asai, Keisuke
BookMark eNqNkEtPHDEQhK2ISFke_8ESXGfS7XkacSGrkERCyoFwtryeHuHVrL3Ynk3gxj-PycIhnDh1HapK1d8hO3DeEWNnCCUCtp_XJf3ZpjsKm3Gao7GlAJQliBJAfGAL7DtZCNG3B2wBvawL7LruEzuMcQ0AvUBYsKflnQ7aJAr2USfrHfcjn-aNdRQNucSzskWaxxS5dfx-1i7ZlJ074uPkf_OdjbOeXsN5T27a5GA85zdzGLV58Wmnp4doYxYD3_iBXjPH7OOop0gnL_eI3V59_bX8Xlz__PZjeXldmFrUqSBohFgZ2eE4VAiyl7Cirh_yq7XpWli11QC9RmxQUDdA1SCsZKaErel1XVVH7HTfuw3-fqaY1NrPIa-KSqCUohJNg9l1sXeZ4GMMNKpt_keHB4WgnqGrtfofunqGrkCovCTHv7yJm3-0vEtB2-m9JVf7Eso4dpaCyg5yhgYbyCQ1ePu-or8cTK_Y
CitedBy_id crossref_primary_10_1088_1361_6501_ac8892
crossref_primary_10_1088_1361_6501_ab512a
crossref_primary_10_1016_j_euromechflu_2025_01_008
crossref_primary_10_3390_aerospace9090507
crossref_primary_10_1007_s00348_024_03882_1
crossref_primary_10_1016_j_euromechflu_2023_01_003
crossref_primary_10_1016_j_flowmeasinst_2019_101657
crossref_primary_10_3389_fenrg_2020_601158
crossref_primary_10_1177_09544100241274849
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119684
crossref_primary_10_1007_s00348_020_02979_7
crossref_primary_10_1007_s12650_021_00794_8
crossref_primary_10_2514_1_J061638
Cites_doi 10.1063/1.4963974
10.4271/06-11-01-0002
10.1017/S0001924000021357
10.1088/1873-7005/aa8551
10.1088/1742-6596/524/1/012011
10.1134/S0020441209010011
10.1002/we.1860
10.4271/2016-01-1582
10.1111/j.1467-8659.2003.00723.x
10.2514/3.9437
10.1016/j.ijheatmasstransfer.2017.11.075
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier Science Ltd. May 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. May 2019
DBID AAYXX
CITATION
7QH
7TB
7U5
7UA
8FD
C1K
FR3
H8D
KR7
L7M
DOI 10.1016/j.expthermflusci.2019.02.002
DatabaseName CrossRef
Aqualine
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Aqualine
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2286
EndPage 417
ExternalDocumentID 10_1016_j_expthermflusci_2019_02_002
S0894177718311439
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7TB
7U5
7UA
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c424t-e0522bc971fd3109890be78d0024c760b63d08a11512e7d03510b901616c8a433
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461409900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-1777
IngestDate Wed Aug 13 11:25:11 EDT 2025
Sat Nov 29 07:13:49 EST 2025
Tue Nov 18 22:28:23 EST 2025
Fri Feb 23 02:32:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Visualization
Luminescent mini-tufts
Modelization
Steady flow
Digital image processing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-e0522bc971fd3109890be78d0024c760b63d08a11512e7d03510b901616c8a433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0628-2606
0000-0001-7739-7104
PQID 2199232551
PQPubID 2047468
PageCount 12
ParticipantIDs proquest_journals_2199232551
crossref_primary_10_1016_j_expthermflusci_2019_02_002
crossref_citationtrail_10_1016_j_expthermflusci_2019_02_002
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2019_02_002
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Experimental thermal and fluid science
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Mosharov (b0050) 2009; 52
Marzkirich (b0005) 1977
Settles (b0015) 1986; 24
University of Washington, Aeronautical Laboratory (UWAL)
Ristic (b0040) 2007; vol. 57
Asanuma (b0010) 1977
J.P. Crowder, Fluorescent mini-tufts for non-intrusive flow visualization, McDonnel Douglas Corp. Report MDC-J7374, 1977.
D.R. Stinebring, A.L. Treaster, The use of fluorescent mini-tufts for hydrodynamic flow visualization, Technical Memorandum No. TM-80-07, NAVY Department, The Pennsylvania State University, 1980.
Swytink-Binnema, Johnson (b0110) 2016; 19
Lamar (b0130) 2001
(last access date: December 25, 2018).
Crowder (b0070) 1983
Ristic (b0020) 2007; 34
Stinebring, Treaster (b0075) 1983
J.P. Crowder, In-flight propeller flow visualization using fluorescent mini-tufts, In: Langley Research Center Flow Visualization and Laser Velocimetry for Wind Tunnels, NASA Report CR-2905, 1982, pp. 91–95.
Y. Meng, T. Fukunishi, M. Hino, A manufacture of multi-channel constant-temperature hot-wire anemometers, Tokyo Institute of Technology, Technical Report, No. 44, December, 1991.
Oshima, Ito (b0095) 1990; 25
Vey, Lang, Nayeri, Paschereit, Pechlivanoglou (b0100) 2014; 524
Omata, Shirayama (b0120) 2017; 49
Bargin, Ryabov, Skomorokhov, Slitinskaya (b0135) 2016; 1770
Mahapatra, Mukhopadhyay, Manna, Ghosh (b0025) 2018; 118
Htun, Myint (b0055) 2016
Ito, Honda (b0150) 1981
.
D. Wieser, S. Bonitz, L. Lofdahl, A. Broniewicz, C. Nayeri, C. Paschereit, L. Larsson, Surface flow visualization on a full-scale passenger car with quantitative tuft image processing SAE Technical Paper, 2016.
Mcdaniel, Hanson (b0080) 1983
O’Leary, Drew (b0085) 1987; 91
Crowder (b0035) 2001
Bonitz, Wieser, Broniewicz, Larsson, Lofdahl, Nayeri, Paschereit (b0125) 2018; 11
Post, Vrolijk, Hauser, Larameeand, Doleisch (b0030) 2003; 22
Ristic (b0045) 2007; vol. 57
Nakajima, Numata, Asai (b0140) 2014
Crowder (10.1016/j.expthermflusci.2019.02.002_b0070) 1983
Marzkirich (10.1016/j.expthermflusci.2019.02.002_b0005) 1977
Nakajima (10.1016/j.expthermflusci.2019.02.002_b0140) 2014
Stinebring (10.1016/j.expthermflusci.2019.02.002_b0075) 1983
Lamar (10.1016/j.expthermflusci.2019.02.002_b0130) 2001
10.1016/j.expthermflusci.2019.02.002_b0145
Ristic (10.1016/j.expthermflusci.2019.02.002_b0045) 2007; vol. 57
Swytink-Binnema (10.1016/j.expthermflusci.2019.02.002_b0110) 2016; 19
10.1016/j.expthermflusci.2019.02.002_b0115
Ristic (10.1016/j.expthermflusci.2019.02.002_b0040) 2007; vol. 57
O’Leary (10.1016/j.expthermflusci.2019.02.002_b0085) 1987; 91
10.1016/j.expthermflusci.2019.02.002_b0065
Settles (10.1016/j.expthermflusci.2019.02.002_b0015) 1986; 24
Mcdaniel (10.1016/j.expthermflusci.2019.02.002_b0080) 1983
10.1016/j.expthermflusci.2019.02.002_b0060
Asanuma (10.1016/j.expthermflusci.2019.02.002_b0010) 1977
Ristic (10.1016/j.expthermflusci.2019.02.002_b0020) 2007; 34
Mosharov (10.1016/j.expthermflusci.2019.02.002_b0050) 2009; 52
Crowder (10.1016/j.expthermflusci.2019.02.002_b0035) 2001
Mahapatra (10.1016/j.expthermflusci.2019.02.002_b0025) 2018; 118
Post (10.1016/j.expthermflusci.2019.02.002_b0030) 2003; 22
Htun (10.1016/j.expthermflusci.2019.02.002_b0055) 2016
Bargin (10.1016/j.expthermflusci.2019.02.002_b0135) 2016; 1770
Bonitz (10.1016/j.expthermflusci.2019.02.002_b0125) 2018; 11
10.1016/j.expthermflusci.2019.02.002_b0105
Ito (10.1016/j.expthermflusci.2019.02.002_b0150) 1981
Oshima (10.1016/j.expthermflusci.2019.02.002_b0095) 1990; 25
Vey (10.1016/j.expthermflusci.2019.02.002_b0100) 2014; 524
Omata (10.1016/j.expthermflusci.2019.02.002_b0120) 2017; 49
10.1016/j.expthermflusci.2019.02.002_b0090
References_xml – volume: 52
  start-page: 5
  year: 2009
  end-page: 18
  ident: b0050
  article-title: Luminescent method for investigating surface gas flows (review)
  publication-title: Instrum. Exp. Tech.
– start-page: 65
  year: 1983
  ident: b0075
  article-title: Water tunnel flow visualization by use of fluorescent mini-tufts
  publication-title: Flow Visualization III
– volume: 11
  start-page: 22
  year: 2018
  end-page: 34
  ident: b0125
  article-title: Experimental investigation of the near wall flow downstream of a passenger car wheel arch
  publication-title: SAE Int. J. Passenger Cars Mech. Syst.
– volume: 19
  start-page: 703
  year: 2016
  end-page: 715
  ident: b0110
  article-title: Digital tuft analysis of stall on operational wind turbines
  publication-title: Wind Energy
– year: 2001
  ident: b0130
  article-title: Flow-visualization techniques used at high speed by configuration aerodynamics wind tunnel test team, NASA Report TM-2001-210848
– volume: 524
  start-page: 012011
  year: 2014
  ident: b0100
  article-title: Extracting quantitative data from tuft flow visualizations on utility scale wind turbines
  publication-title: J. Phys. Conf. Ser.
– volume: 25
  start-page: 53
  year: 1990
  end-page: 61
  ident: b0095
  article-title: On information quantity about flow fields based on visualizing photographs by tuft method (In Japanese)
  publication-title: Bull. Aichi Inst. Technol. B
– volume: 1770
  start-page: 030032
  year: 2016
  ident: b0135
  article-title: Study of vortex generator influence on the flow in the wake of high-lift system wing
  publication-title: AIP Conf. Proc.
– volume: 22
  start-page: 775
  year: 2003
  end-page: 792
  ident: b0030
  article-title: The state of the art in flow visualization: feature extraction and tracking
  publication-title: Comput. Graph. Forum
– volume: 49
  start-page: 055506
  year: 2017
  ident: b0120
  article-title: Extracting quantitative three-dimensional unsteady flow direction from tuft flow visualizations
  publication-title: Fluid Dyn. Res.
– reference: J.P. Crowder, In-flight propeller flow visualization using fluorescent mini-tufts, In: Langley Research Center Flow Visualization and Laser Velocimetry for Wind Tunnels, NASA Report CR-2905, 1982, pp. 91–95.
– volume: 24
  start-page: 1313
  year: 1986
  end-page: 1323
  ident: b0015
  article-title: Modern developments in flow visualization
  publication-title: AIAA J.
– reference: J.P. Crowder, Fluorescent mini-tufts for non-intrusive flow visualization, McDonnel Douglas Corp. Report MDC-J7374, 1977.
– start-page: 113
  year: 1983
  ident: b0080
  article-title: Qualitative planer visualization in gaseous flow field using laser induced fluorescent
  publication-title: Flow Visualization III
– year: 1977
  ident: b0005
  article-title: Flow Visualization
– year: 2016
  ident: b0055
  article-title: Some principles of flow visualization techniques in wind tunnels
  publication-title: Proceedings of The 82nd IIER International Conference, October 3–4, Berlin, Germany
– volume: 34
  start-page: 7
  year: 2007
  end-page: 13
  ident: b0020
  article-title: Optical methods in wind tunnel flow visualization
  publication-title: FME Trans.
– year: 2001
  ident: b0035
  article-title: Tufts
  publication-title: Handbook of Flow Visualization
– reference: Y. Meng, T. Fukunishi, M. Hino, A manufacture of multi-channel constant-temperature hot-wire anemometers, Tokyo Institute of Technology, Technical Report, No. 44, December, 1991.
– volume: vol. 57
  start-page: 39
  year: 2007
  end-page: 49
  ident: b0040
  article-title: Flow visualization techniques in wind tunnels. Part I – non-optical methods
  publication-title: Scientific Technical Review
– reference: University of Washington, Aeronautical Laboratory (UWAL), <
– year: 2014
  ident: b0140
  article-title: A new approach to surface-flow visualization using fluorescence minitufts
  publication-title: Proceedings of The 16th International Symposium on Flow Visualization
– year: 1981
  ident: b0150
  article-title: Fluid Mechanics
– reference: .
– volume: 118
  start-page: 1069
  year: 2018
  end-page: 1079
  ident: b0025
  article-title: Heatlines and other visualization techniques for confined heat transfer systems
  publication-title: Int. J. Heat Mass Transf.
– year: 1983
  ident: b0070
  article-title: Fluorescent mini-tufts for flow visualization on rotating surfaces, Flow Visualization III
  publication-title: Proceedings of The 3rd International Symposium on Flow Visualization, September 6–9, Michigan, USA
– volume: 91
  start-page: 269
  year: 1987
  end-page: 274
  ident: b0085
  article-title: Flow visualization on rolling models using minitufts
  publication-title: Aeronaut. J.
– year: 1977
  ident: b0010
  article-title: Flow Visualization
– volume: vol. 57
  start-page: 38
  year: 2007
  end-page: 49
  ident: b0045
  article-title: Flow visualization techniques in wind tunnels. Part II – optical methods
  publication-title: Scientific Technical Review
– reference: D.R. Stinebring, A.L. Treaster, The use of fluorescent mini-tufts for hydrodynamic flow visualization, Technical Memorandum No. TM-80-07, NAVY Department, The Pennsylvania State University, 1980.
– reference: D. Wieser, S. Bonitz, L. Lofdahl, A. Broniewicz, C. Nayeri, C. Paschereit, L. Larsson, Surface flow visualization on a full-scale passenger car with quantitative tuft image processing SAE Technical Paper, 2016.
– reference: > (last access date: December 25, 2018).
– volume: 1770
  start-page: 030032
  year: 2016
  ident: 10.1016/j.expthermflusci.2019.02.002_b0135
  article-title: Study of vortex generator influence on the flow in the wake of high-lift system wing
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4963974
– year: 1983
  ident: 10.1016/j.expthermflusci.2019.02.002_b0070
  article-title: Fluorescent mini-tufts for flow visualization on rotating surfaces, Flow Visualization III
– ident: 10.1016/j.expthermflusci.2019.02.002_b0065
– ident: 10.1016/j.expthermflusci.2019.02.002_b0090
– ident: 10.1016/j.expthermflusci.2019.02.002_b0145
– year: 1981
  ident: 10.1016/j.expthermflusci.2019.02.002_b0150
– volume: 11
  start-page: 22
  year: 2018
  ident: 10.1016/j.expthermflusci.2019.02.002_b0125
  article-title: Experimental investigation of the near wall flow downstream of a passenger car wheel arch
  publication-title: SAE Int. J. Passenger Cars Mech. Syst.
  doi: 10.4271/06-11-01-0002
– volume: vol. 57
  start-page: 38
  year: 2007
  ident: 10.1016/j.expthermflusci.2019.02.002_b0045
  article-title: Flow visualization techniques in wind tunnels. Part II – optical methods
– volume: 91
  start-page: 269
  year: 1987
  ident: 10.1016/j.expthermflusci.2019.02.002_b0085
  article-title: Flow visualization on rolling models using minitufts
  publication-title: Aeronaut. J.
  doi: 10.1017/S0001924000021357
– volume: 49
  start-page: 055506
  year: 2017
  ident: 10.1016/j.expthermflusci.2019.02.002_b0120
  article-title: Extracting quantitative three-dimensional unsteady flow direction from tuft flow visualizations
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/1873-7005/aa8551
– volume: 524
  start-page: 012011
  year: 2014
  ident: 10.1016/j.expthermflusci.2019.02.002_b0100
  article-title: Extracting quantitative data from tuft flow visualizations on utility scale wind turbines
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/524/1/012011
– start-page: 65
  year: 1983
  ident: 10.1016/j.expthermflusci.2019.02.002_b0075
  article-title: Water tunnel flow visualization by use of fluorescent mini-tufts
  publication-title: Flow Visualization III
– volume: 34
  start-page: 7
  year: 2007
  ident: 10.1016/j.expthermflusci.2019.02.002_b0020
  article-title: Optical methods in wind tunnel flow visualization
  publication-title: FME Trans.
– ident: 10.1016/j.expthermflusci.2019.02.002_b0115
– volume: 52
  start-page: 5
  issue: 1
  year: 2009
  ident: 10.1016/j.expthermflusci.2019.02.002_b0050
  article-title: Luminescent method for investigating surface gas flows (review)
  publication-title: Instrum. Exp. Tech.
  doi: 10.1134/S0020441209010011
– year: 2001
  ident: 10.1016/j.expthermflusci.2019.02.002_b0035
  article-title: Tufts
– volume: 19
  start-page: 703
  year: 2016
  ident: 10.1016/j.expthermflusci.2019.02.002_b0110
  article-title: Digital tuft analysis of stall on operational wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.1860
– year: 1977
  ident: 10.1016/j.expthermflusci.2019.02.002_b0005
– start-page: 113
  year: 1983
  ident: 10.1016/j.expthermflusci.2019.02.002_b0080
  article-title: Qualitative planer visualization in gaseous flow field using laser induced fluorescent
  publication-title: Flow Visualization III
– volume: 25
  start-page: 53
  year: 1990
  ident: 10.1016/j.expthermflusci.2019.02.002_b0095
  article-title: On information quantity about flow fields based on visualizing photographs by tuft method (In Japanese)
  publication-title: Bull. Aichi Inst. Technol. B
– ident: 10.1016/j.expthermflusci.2019.02.002_b0105
  doi: 10.4271/2016-01-1582
– year: 2016
  ident: 10.1016/j.expthermflusci.2019.02.002_b0055
  article-title: Some principles of flow visualization techniques in wind tunnels
– volume: vol. 57
  start-page: 39
  year: 2007
  ident: 10.1016/j.expthermflusci.2019.02.002_b0040
  article-title: Flow visualization techniques in wind tunnels. Part I – non-optical methods
– year: 1977
  ident: 10.1016/j.expthermflusci.2019.02.002_b0010
– year: 2014
  ident: 10.1016/j.expthermflusci.2019.02.002_b0140
  article-title: A new approach to surface-flow visualization using fluorescence minitufts
– ident: 10.1016/j.expthermflusci.2019.02.002_b0060
– volume: 22
  start-page: 775
  year: 2003
  ident: 10.1016/j.expthermflusci.2019.02.002_b0030
  article-title: The state of the art in flow visualization: feature extraction and tracking
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2003.00723.x
– year: 2001
  ident: 10.1016/j.expthermflusci.2019.02.002_b0130
– volume: 24
  start-page: 1313
  issue: 8
  year: 1986
  ident: 10.1016/j.expthermflusci.2019.02.002_b0015
  article-title: Modern developments in flow visualization
  publication-title: AIAA J.
  doi: 10.2514/3.9437
– volume: 118
  start-page: 1069
  year: 2018
  ident: 10.1016/j.expthermflusci.2019.02.002_b0025
  article-title: Heatlines and other visualization techniques for confined heat transfer systems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.11.075
SSID ssj0008210
Score 2.320176
Snippet •Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent...
As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 406
SubjectTerms Boundary layers
Control systems
Dark current
Data recording
Digital image processing
Digital imaging
Flat plates
Flow measurement
Flow visualization
Image processing
Inclination angle
Luminescent mini-tufts
Modelization
Object recognition
Quantitative analysis
Steady flow
Surface flow
Topology
Velocity measurement
Visualization
Wind tunnels
Title Characterization of luminescent mini-tufts in quantitative flow visualization experiments: Surface flow analysis and modelization
URI https://dx.doi.org/10.1016/j.expthermflusci.2019.02.002
https://www.proquest.com/docview/2199232551
Volume 103
WOSCitedRecordID wos000461409900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB6WrYg-iFdsrTIPfVsCuUwyGX2QUioqUoSusG_DZJJg2m2y7ibb0jf_nz_KuSe7UlgFX0IImSGT8-VcJt85B4CjMggzHrDEC0gWe4hHxCM4Y17A4qLkEUcc6WYT-Owsnc3I19Hol82FWc9xXac3N2TxX0Utrglhy9TZvxC3m1RcEOdC6OIoxC6OOwn-xJVgvnXuoNBAkt4umZgTWUzEa7uyVUzYHx2rVZ6ZKv89b64n62olEy3N4L4DgOLOnXfLknFzJ7MFTeTmu2qpY0ZtbPcPWwhIb_PKVCco512VT4wF7lkGWg1-qRxoz7vbTvfWnjZXzfdq2bgNbJmQ0alGSZMpu-wceFemx3YhlnJZDDc2ZC6VpRFa_UeQF2DT5cUqaz8aqFvkJwPLjXQW6B9GQe9PXAhrt1DLFOsTi5O0PqLrtYa9MbQEgC0b6ZiLlhR3QTdno3I26odUVTbdC3FM0jHYO_50OvvsPIM0VNUx3MLug6Oeb3j3093lMm05D8ojmj4Gj0woA481BJ-AUVE_BQ8HBS6fgZ_bYIRNCQdghD0YYVXDIRihhBjcACMcgPEtNFDU91koipMcDqH4HHz7cDo9-eiZph8eRyFqvcIXEUHGCQ7KXFatTYmfFTjNpTPJceJnSZT7KQukp1rgXP4I9zMiA5eEpwxF0Qswrpu6eAkgjjkOEAtFSBEhGRgL3ytLA5TFfs5RXO6Dd_a9Um4q4svGLHO6i5T3QexGL3RlmB3HvbcipOYb094rFXjdcYZDK3lqFM-KhpJHHoUiADr4xwd7BR70n-EhGLfLrngN7vF1W62WbwyWfwN5MOfG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+luminescent+mini-tufts+in+quantitative+flow+visualization+experiments%3A+Surface+flow+analysis+and+modelization&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Chen%2C+Lin&rft.au=Suzuki%2C+Tomohiro&rft.au=Nonomura%2C+Taku&rft.au=Asai%2C+Keisuke&rft.date=2019-05-01&rft.issn=0894-1777&rft.volume=103&rft.spage=406&rft.epage=417&rft_id=info:doi/10.1016%2Fj.expthermflusci.2019.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expthermflusci_2019_02_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon