Characterization of luminescent mini-tufts in quantitative flow visualization experiments: Surface flow analysis and modelization
•Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent mini-tufts.•Surface flow topology and boundary layer parameters successfully extracted.•Physical and numerical model established for mini-tufts met...
Uložené v:
| Vydané v: | Experimental thermal and fluid science Ročník 103; s. 406 - 417 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Elsevier Inc
01.05.2019
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0894-1777, 1879-2286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent mini-tufts.•Surface flow topology and boundary layer parameters successfully extracted.•Physical and numerical model established for mini-tufts method.
As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow measurement. The luminescent mini-tufts method is preferred with its reduced size and increased luminescence, which is suitable for surface visualization measurement. To provide a standard method/procedure in quantitative analysis for luminescent mini-tuft measurement, the current study established an experimental characterization platform of luminescent mini-tufts method and conducted flat-pate model for flow analysis. The experimental system is consisted of wind tunnel and model section, high-speed image data recording system, digital image processing as well as the control system. The digital imaging processing method for result analysis is also explained, which includes the dark current image extraction, averaging, mini-tufts recognition, and tuft inclination angle/tuft angle estimation process. In this study, the steady flow characterization and quantitative flow analysis is conducted on a flat plate model (Re = 1.6 × 105–6.6 × 105), which is combined with hot-wire anemometry to investigate the basic surface flow topology and boundary layer behaviors. The method is shown capable of capturing both the steady and transient behaviors of a surface flow. Luminescent mini-tufts physical model is also established and found good agreement with the experimental results in this study, which in turn support the mini-tufts characterization and selection in practical applications. |
|---|---|
| AbstractList | As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow measurement. The luminescent mini-tufts method is preferred with its reduced size and increased luminescence, which is suitable for surface visualization measurement. To provide a standard method/procedure in quantitative analysis for luminescent mini-tuft measurement, the current study established an experimental characterization platform of luminescent mini-tufts method and conducted flat-pate model for flow analysis. The experimental system is consisted of wind tunnel and model section, high-speed image data recording system, digital image processing as well as the control system. The digital imaging processing method for result analysis is also explained, which includes the dark current image extraction, averaging, mini-tufts recognition, and tuft inclination angle/tuft angle estimation process. In this study, the steady flow characterization and quantitative flow analysis is conducted on a flat plate model (Re = 1.6 × 105–6.6 × 105), which is combined with hot-wire anemometry to investigate the basic surface flow topology and boundary layer behaviors. The method is shown capable of capturing both the steady and transient behaviors of a surface flow. Luminescent mini-tufts physical model is also established and found good agreement with the experimental results in this study, which in turn support the mini-tufts characterization and selection in practical applications. •Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent mini-tufts.•Surface flow topology and boundary layer parameters successfully extracted.•Physical and numerical model established for mini-tufts method. As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow measurement. The luminescent mini-tufts method is preferred with its reduced size and increased luminescence, which is suitable for surface visualization measurement. To provide a standard method/procedure in quantitative analysis for luminescent mini-tuft measurement, the current study established an experimental characterization platform of luminescent mini-tufts method and conducted flat-pate model for flow analysis. The experimental system is consisted of wind tunnel and model section, high-speed image data recording system, digital image processing as well as the control system. The digital imaging processing method for result analysis is also explained, which includes the dark current image extraction, averaging, mini-tufts recognition, and tuft inclination angle/tuft angle estimation process. In this study, the steady flow characterization and quantitative flow analysis is conducted on a flat plate model (Re = 1.6 × 105–6.6 × 105), which is combined with hot-wire anemometry to investigate the basic surface flow topology and boundary layer behaviors. The method is shown capable of capturing both the steady and transient behaviors of a surface flow. Luminescent mini-tufts physical model is also established and found good agreement with the experimental results in this study, which in turn support the mini-tufts characterization and selection in practical applications. |
| Author | Asai, Keisuke Nonomura, Taku Chen, Lin Suzuki, Tomohiro |
| Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0002-0628-2606 surname: Chen fullname: Chen, Lin email: chenlinpkucoe@gmail.com – sequence: 2 givenname: Tomohiro surname: Suzuki fullname: Suzuki, Tomohiro – sequence: 3 givenname: Taku orcidid: 0000-0001-7739-7104 surname: Nonomura fullname: Nonomura, Taku – sequence: 4 givenname: Keisuke surname: Asai fullname: Asai, Keisuke |
| BookMark | eNqNkEtPHDEQhK2ISFke_8ESXGfS7XkacSGrkERCyoFwtryeHuHVrL3Ynk3gxj-PycIhnDh1HapK1d8hO3DeEWNnCCUCtp_XJf3ZpjsKm3Gao7GlAJQliBJAfGAL7DtZCNG3B2wBvawL7LruEzuMcQ0AvUBYsKflnQ7aJAr2USfrHfcjn-aNdRQNucSzskWaxxS5dfx-1i7ZlJ074uPkf_OdjbOeXsN5T27a5GA85zdzGLV58Wmnp4doYxYD3_iBXjPH7OOop0gnL_eI3V59_bX8Xlz__PZjeXldmFrUqSBohFgZ2eE4VAiyl7Cirh_yq7XpWli11QC9RmxQUDdA1SCsZKaErel1XVVH7HTfuw3-fqaY1NrPIa-KSqCUohJNg9l1sXeZ4GMMNKpt_keHB4WgnqGrtfofunqGrkCovCTHv7yJm3-0vEtB2-m9JVf7Eso4dpaCyg5yhgYbyCQ1ePu-or8cTK_Y |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ac8892 crossref_primary_10_1088_1361_6501_ab512a crossref_primary_10_1016_j_euromechflu_2025_01_008 crossref_primary_10_3390_aerospace9090507 crossref_primary_10_1007_s00348_024_03882_1 crossref_primary_10_1016_j_euromechflu_2023_01_003 crossref_primary_10_1016_j_flowmeasinst_2019_101657 crossref_primary_10_3389_fenrg_2020_601158 crossref_primary_10_1177_09544100241274849 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119684 crossref_primary_10_1007_s00348_020_02979_7 crossref_primary_10_1007_s12650_021_00794_8 crossref_primary_10_2514_1_J061638 |
| Cites_doi | 10.1063/1.4963974 10.4271/06-11-01-0002 10.1017/S0001924000021357 10.1088/1873-7005/aa8551 10.1088/1742-6596/524/1/012011 10.1134/S0020441209010011 10.1002/we.1860 10.4271/2016-01-1582 10.1111/j.1467-8659.2003.00723.x 10.2514/3.9437 10.1016/j.ijheatmasstransfer.2017.11.075 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright Elsevier Science Ltd. May 2019 |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. May 2019 |
| DBID | AAYXX CITATION 7QH 7TB 7U5 7UA 8FD C1K FR3 H8D KR7 L7M |
| DOI | 10.1016/j.expthermflusci.2019.02.002 |
| DatabaseName | CrossRef Aqualine Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Aqualine Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2286 |
| EndPage | 417 |
| ExternalDocumentID | 10_1016_j_expthermflusci_2019_02_002 S0894177718311439 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QH 7TB 7U5 7UA 8FD AGCQF C1K FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c424t-e0522bc971fd3109890be78d0024c760b63d08a11512e7d03510b901616c8a433 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461409900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-1777 |
| IngestDate | Wed Aug 13 11:25:11 EDT 2025 Sat Nov 29 07:13:49 EST 2025 Tue Nov 18 22:28:23 EST 2025 Fri Feb 23 02:32:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Visualization Luminescent mini-tufts Modelization Steady flow Digital image processing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c424t-e0522bc971fd3109890be78d0024c760b63d08a11512e7d03510b901616c8a433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0628-2606 0000-0001-7739-7104 |
| PQID | 2199232551 |
| PQPubID | 2047468 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2199232551 crossref_primary_10_1016_j_expthermflusci_2019_02_002 crossref_citationtrail_10_1016_j_expthermflusci_2019_02_002 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2019_02_002 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Experimental thermal and fluid science |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Mosharov (b0050) 2009; 52 Marzkirich (b0005) 1977 Settles (b0015) 1986; 24 University of Washington, Aeronautical Laboratory (UWAL) Ristic (b0040) 2007; vol. 57 Asanuma (b0010) 1977 J.P. Crowder, Fluorescent mini-tufts for non-intrusive flow visualization, McDonnel Douglas Corp. Report MDC-J7374, 1977. D.R. Stinebring, A.L. Treaster, The use of fluorescent mini-tufts for hydrodynamic flow visualization, Technical Memorandum No. TM-80-07, NAVY Department, The Pennsylvania State University, 1980. Swytink-Binnema, Johnson (b0110) 2016; 19 Lamar (b0130) 2001 (last access date: December 25, 2018). Crowder (b0070) 1983 Ristic (b0020) 2007; 34 Stinebring, Treaster (b0075) 1983 J.P. Crowder, In-flight propeller flow visualization using fluorescent mini-tufts, In: Langley Research Center Flow Visualization and Laser Velocimetry for Wind Tunnels, NASA Report CR-2905, 1982, pp. 91–95. Y. Meng, T. Fukunishi, M. Hino, A manufacture of multi-channel constant-temperature hot-wire anemometers, Tokyo Institute of Technology, Technical Report, No. 44, December, 1991. Oshima, Ito (b0095) 1990; 25 Vey, Lang, Nayeri, Paschereit, Pechlivanoglou (b0100) 2014; 524 Omata, Shirayama (b0120) 2017; 49 Bargin, Ryabov, Skomorokhov, Slitinskaya (b0135) 2016; 1770 Mahapatra, Mukhopadhyay, Manna, Ghosh (b0025) 2018; 118 Htun, Myint (b0055) 2016 Ito, Honda (b0150) 1981 . D. Wieser, S. Bonitz, L. Lofdahl, A. Broniewicz, C. Nayeri, C. Paschereit, L. Larsson, Surface flow visualization on a full-scale passenger car with quantitative tuft image processing SAE Technical Paper, 2016. Mcdaniel, Hanson (b0080) 1983 O’Leary, Drew (b0085) 1987; 91 Crowder (b0035) 2001 Bonitz, Wieser, Broniewicz, Larsson, Lofdahl, Nayeri, Paschereit (b0125) 2018; 11 Post, Vrolijk, Hauser, Larameeand, Doleisch (b0030) 2003; 22 Ristic (b0045) 2007; vol. 57 Nakajima, Numata, Asai (b0140) 2014 Crowder (10.1016/j.expthermflusci.2019.02.002_b0070) 1983 Marzkirich (10.1016/j.expthermflusci.2019.02.002_b0005) 1977 Nakajima (10.1016/j.expthermflusci.2019.02.002_b0140) 2014 Stinebring (10.1016/j.expthermflusci.2019.02.002_b0075) 1983 Lamar (10.1016/j.expthermflusci.2019.02.002_b0130) 2001 10.1016/j.expthermflusci.2019.02.002_b0145 Ristic (10.1016/j.expthermflusci.2019.02.002_b0045) 2007; vol. 57 Swytink-Binnema (10.1016/j.expthermflusci.2019.02.002_b0110) 2016; 19 10.1016/j.expthermflusci.2019.02.002_b0115 Ristic (10.1016/j.expthermflusci.2019.02.002_b0040) 2007; vol. 57 O’Leary (10.1016/j.expthermflusci.2019.02.002_b0085) 1987; 91 10.1016/j.expthermflusci.2019.02.002_b0065 Settles (10.1016/j.expthermflusci.2019.02.002_b0015) 1986; 24 Mcdaniel (10.1016/j.expthermflusci.2019.02.002_b0080) 1983 10.1016/j.expthermflusci.2019.02.002_b0060 Asanuma (10.1016/j.expthermflusci.2019.02.002_b0010) 1977 Ristic (10.1016/j.expthermflusci.2019.02.002_b0020) 2007; 34 Mosharov (10.1016/j.expthermflusci.2019.02.002_b0050) 2009; 52 Crowder (10.1016/j.expthermflusci.2019.02.002_b0035) 2001 Mahapatra (10.1016/j.expthermflusci.2019.02.002_b0025) 2018; 118 Post (10.1016/j.expthermflusci.2019.02.002_b0030) 2003; 22 Htun (10.1016/j.expthermflusci.2019.02.002_b0055) 2016 Bargin (10.1016/j.expthermflusci.2019.02.002_b0135) 2016; 1770 Bonitz (10.1016/j.expthermflusci.2019.02.002_b0125) 2018; 11 10.1016/j.expthermflusci.2019.02.002_b0105 Ito (10.1016/j.expthermflusci.2019.02.002_b0150) 1981 Oshima (10.1016/j.expthermflusci.2019.02.002_b0095) 1990; 25 Vey (10.1016/j.expthermflusci.2019.02.002_b0100) 2014; 524 Omata (10.1016/j.expthermflusci.2019.02.002_b0120) 2017; 49 10.1016/j.expthermflusci.2019.02.002_b0090 |
| References_xml | – volume: 52 start-page: 5 year: 2009 end-page: 18 ident: b0050 article-title: Luminescent method for investigating surface gas flows (review) publication-title: Instrum. Exp. Tech. – start-page: 65 year: 1983 ident: b0075 article-title: Water tunnel flow visualization by use of fluorescent mini-tufts publication-title: Flow Visualization III – volume: 11 start-page: 22 year: 2018 end-page: 34 ident: b0125 article-title: Experimental investigation of the near wall flow downstream of a passenger car wheel arch publication-title: SAE Int. J. Passenger Cars Mech. Syst. – volume: 19 start-page: 703 year: 2016 end-page: 715 ident: b0110 article-title: Digital tuft analysis of stall on operational wind turbines publication-title: Wind Energy – year: 2001 ident: b0130 article-title: Flow-visualization techniques used at high speed by configuration aerodynamics wind tunnel test team, NASA Report TM-2001-210848 – volume: 524 start-page: 012011 year: 2014 ident: b0100 article-title: Extracting quantitative data from tuft flow visualizations on utility scale wind turbines publication-title: J. Phys. Conf. Ser. – volume: 25 start-page: 53 year: 1990 end-page: 61 ident: b0095 article-title: On information quantity about flow fields based on visualizing photographs by tuft method (In Japanese) publication-title: Bull. Aichi Inst. Technol. B – volume: 1770 start-page: 030032 year: 2016 ident: b0135 article-title: Study of vortex generator influence on the flow in the wake of high-lift system wing publication-title: AIP Conf. Proc. – volume: 22 start-page: 775 year: 2003 end-page: 792 ident: b0030 article-title: The state of the art in flow visualization: feature extraction and tracking publication-title: Comput. Graph. Forum – volume: 49 start-page: 055506 year: 2017 ident: b0120 article-title: Extracting quantitative three-dimensional unsteady flow direction from tuft flow visualizations publication-title: Fluid Dyn. Res. – reference: J.P. Crowder, In-flight propeller flow visualization using fluorescent mini-tufts, In: Langley Research Center Flow Visualization and Laser Velocimetry for Wind Tunnels, NASA Report CR-2905, 1982, pp. 91–95. – volume: 24 start-page: 1313 year: 1986 end-page: 1323 ident: b0015 article-title: Modern developments in flow visualization publication-title: AIAA J. – reference: J.P. Crowder, Fluorescent mini-tufts for non-intrusive flow visualization, McDonnel Douglas Corp. Report MDC-J7374, 1977. – start-page: 113 year: 1983 ident: b0080 article-title: Qualitative planer visualization in gaseous flow field using laser induced fluorescent publication-title: Flow Visualization III – year: 1977 ident: b0005 article-title: Flow Visualization – year: 2016 ident: b0055 article-title: Some principles of flow visualization techniques in wind tunnels publication-title: Proceedings of The 82nd IIER International Conference, October 3–4, Berlin, Germany – volume: 34 start-page: 7 year: 2007 end-page: 13 ident: b0020 article-title: Optical methods in wind tunnel flow visualization publication-title: FME Trans. – year: 2001 ident: b0035 article-title: Tufts publication-title: Handbook of Flow Visualization – reference: Y. Meng, T. Fukunishi, M. Hino, A manufacture of multi-channel constant-temperature hot-wire anemometers, Tokyo Institute of Technology, Technical Report, No. 44, December, 1991. – volume: vol. 57 start-page: 39 year: 2007 end-page: 49 ident: b0040 article-title: Flow visualization techniques in wind tunnels. Part I – non-optical methods publication-title: Scientific Technical Review – reference: University of Washington, Aeronautical Laboratory (UWAL), < – year: 2014 ident: b0140 article-title: A new approach to surface-flow visualization using fluorescence minitufts publication-title: Proceedings of The 16th International Symposium on Flow Visualization – year: 1981 ident: b0150 article-title: Fluid Mechanics – reference: . – volume: 118 start-page: 1069 year: 2018 end-page: 1079 ident: b0025 article-title: Heatlines and other visualization techniques for confined heat transfer systems publication-title: Int. J. Heat Mass Transf. – year: 1983 ident: b0070 article-title: Fluorescent mini-tufts for flow visualization on rotating surfaces, Flow Visualization III publication-title: Proceedings of The 3rd International Symposium on Flow Visualization, September 6–9, Michigan, USA – volume: 91 start-page: 269 year: 1987 end-page: 274 ident: b0085 article-title: Flow visualization on rolling models using minitufts publication-title: Aeronaut. J. – year: 1977 ident: b0010 article-title: Flow Visualization – volume: vol. 57 start-page: 38 year: 2007 end-page: 49 ident: b0045 article-title: Flow visualization techniques in wind tunnels. Part II – optical methods publication-title: Scientific Technical Review – reference: D.R. Stinebring, A.L. Treaster, The use of fluorescent mini-tufts for hydrodynamic flow visualization, Technical Memorandum No. TM-80-07, NAVY Department, The Pennsylvania State University, 1980. – reference: D. Wieser, S. Bonitz, L. Lofdahl, A. Broniewicz, C. Nayeri, C. Paschereit, L. Larsson, Surface flow visualization on a full-scale passenger car with quantitative tuft image processing SAE Technical Paper, 2016. – reference: > (last access date: December 25, 2018). – volume: 1770 start-page: 030032 year: 2016 ident: 10.1016/j.expthermflusci.2019.02.002_b0135 article-title: Study of vortex generator influence on the flow in the wake of high-lift system wing publication-title: AIP Conf. Proc. doi: 10.1063/1.4963974 – year: 1983 ident: 10.1016/j.expthermflusci.2019.02.002_b0070 article-title: Fluorescent mini-tufts for flow visualization on rotating surfaces, Flow Visualization III – ident: 10.1016/j.expthermflusci.2019.02.002_b0065 – ident: 10.1016/j.expthermflusci.2019.02.002_b0090 – ident: 10.1016/j.expthermflusci.2019.02.002_b0145 – year: 1981 ident: 10.1016/j.expthermflusci.2019.02.002_b0150 – volume: 11 start-page: 22 year: 2018 ident: 10.1016/j.expthermflusci.2019.02.002_b0125 article-title: Experimental investigation of the near wall flow downstream of a passenger car wheel arch publication-title: SAE Int. J. Passenger Cars Mech. Syst. doi: 10.4271/06-11-01-0002 – volume: vol. 57 start-page: 38 year: 2007 ident: 10.1016/j.expthermflusci.2019.02.002_b0045 article-title: Flow visualization techniques in wind tunnels. Part II – optical methods – volume: 91 start-page: 269 year: 1987 ident: 10.1016/j.expthermflusci.2019.02.002_b0085 article-title: Flow visualization on rolling models using minitufts publication-title: Aeronaut. J. doi: 10.1017/S0001924000021357 – volume: 49 start-page: 055506 year: 2017 ident: 10.1016/j.expthermflusci.2019.02.002_b0120 article-title: Extracting quantitative three-dimensional unsteady flow direction from tuft flow visualizations publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/aa8551 – volume: 524 start-page: 012011 year: 2014 ident: 10.1016/j.expthermflusci.2019.02.002_b0100 article-title: Extracting quantitative data from tuft flow visualizations on utility scale wind turbines publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/524/1/012011 – start-page: 65 year: 1983 ident: 10.1016/j.expthermflusci.2019.02.002_b0075 article-title: Water tunnel flow visualization by use of fluorescent mini-tufts publication-title: Flow Visualization III – volume: 34 start-page: 7 year: 2007 ident: 10.1016/j.expthermflusci.2019.02.002_b0020 article-title: Optical methods in wind tunnel flow visualization publication-title: FME Trans. – ident: 10.1016/j.expthermflusci.2019.02.002_b0115 – volume: 52 start-page: 5 issue: 1 year: 2009 ident: 10.1016/j.expthermflusci.2019.02.002_b0050 article-title: Luminescent method for investigating surface gas flows (review) publication-title: Instrum. Exp. Tech. doi: 10.1134/S0020441209010011 – year: 2001 ident: 10.1016/j.expthermflusci.2019.02.002_b0035 article-title: Tufts – volume: 19 start-page: 703 year: 2016 ident: 10.1016/j.expthermflusci.2019.02.002_b0110 article-title: Digital tuft analysis of stall on operational wind turbines publication-title: Wind Energy doi: 10.1002/we.1860 – year: 1977 ident: 10.1016/j.expthermflusci.2019.02.002_b0005 – start-page: 113 year: 1983 ident: 10.1016/j.expthermflusci.2019.02.002_b0080 article-title: Qualitative planer visualization in gaseous flow field using laser induced fluorescent publication-title: Flow Visualization III – volume: 25 start-page: 53 year: 1990 ident: 10.1016/j.expthermflusci.2019.02.002_b0095 article-title: On information quantity about flow fields based on visualizing photographs by tuft method (In Japanese) publication-title: Bull. Aichi Inst. Technol. B – ident: 10.1016/j.expthermflusci.2019.02.002_b0105 doi: 10.4271/2016-01-1582 – year: 2016 ident: 10.1016/j.expthermflusci.2019.02.002_b0055 article-title: Some principles of flow visualization techniques in wind tunnels – volume: vol. 57 start-page: 39 year: 2007 ident: 10.1016/j.expthermflusci.2019.02.002_b0040 article-title: Flow visualization techniques in wind tunnels. Part I – non-optical methods – year: 1977 ident: 10.1016/j.expthermflusci.2019.02.002_b0010 – year: 2014 ident: 10.1016/j.expthermflusci.2019.02.002_b0140 article-title: A new approach to surface-flow visualization using fluorescence minitufts – ident: 10.1016/j.expthermflusci.2019.02.002_b0060 – volume: 22 start-page: 775 year: 2003 ident: 10.1016/j.expthermflusci.2019.02.002_b0030 article-title: The state of the art in flow visualization: feature extraction and tracking publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2003.00723.x – year: 2001 ident: 10.1016/j.expthermflusci.2019.02.002_b0130 – volume: 24 start-page: 1313 issue: 8 year: 1986 ident: 10.1016/j.expthermflusci.2019.02.002_b0015 article-title: Modern developments in flow visualization publication-title: AIAA J. doi: 10.2514/3.9437 – volume: 118 start-page: 1069 year: 2018 ident: 10.1016/j.expthermflusci.2019.02.002_b0025 article-title: Heatlines and other visualization techniques for confined heat transfer systems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.11.075 |
| SSID | ssj0008210 |
| Score | 2.320176 |
| Snippet | •Experimental platform established for luminescent mini-tufts method for surface flow analysis.•Quantitative analysis method established for luminescent... As a widely used surface flow visualization method, luminescent mini-tuft has become one challenging topic with its practical advantages in quantitative flow... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 406 |
| SubjectTerms | Boundary layers Control systems Dark current Data recording Digital image processing Digital imaging Flat plates Flow measurement Flow visualization Image processing Inclination angle Luminescent mini-tufts Modelization Object recognition Quantitative analysis Steady flow Surface flow Topology Velocity measurement Visualization Wind tunnels |
| Title | Characterization of luminescent mini-tufts in quantitative flow visualization experiments: Surface flow analysis and modelization |
| URI | https://dx.doi.org/10.1016/j.expthermflusci.2019.02.002 https://www.proquest.com/docview/2199232551 |
| Volume | 103 |
| WOSCitedRecordID | wos000461409900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB6WrYg-iFdsrTIPfVsCuUwyGX2QUioqUoSusG_DZJJg2m2y7ibb0jf_nz_KuSe7UlgFX0IImSGT8-VcJt85B4CjMggzHrDEC0gWe4hHxCM4Y17A4qLkEUcc6WYT-Owsnc3I19Hol82FWc9xXac3N2TxX0Utrglhy9TZvxC3m1RcEOdC6OIoxC6OOwn-xJVgvnXuoNBAkt4umZgTWUzEa7uyVUzYHx2rVZ6ZKv89b64n62olEy3N4L4DgOLOnXfLknFzJ7MFTeTmu2qpY0ZtbPcPWwhIb_PKVCco512VT4wF7lkGWg1-qRxoz7vbTvfWnjZXzfdq2bgNbJmQ0alGSZMpu-wceFemx3YhlnJZDDc2ZC6VpRFa_UeQF2DT5cUqaz8aqFvkJwPLjXQW6B9GQe9PXAhrt1DLFOsTi5O0PqLrtYa9MbQEgC0b6ZiLlhR3QTdno3I26odUVTbdC3FM0jHYO_50OvvsPIM0VNUx3MLug6Oeb3j3093lMm05D8ojmj4Gj0woA481BJ-AUVE_BQ8HBS6fgZ_bYIRNCQdghD0YYVXDIRihhBjcACMcgPEtNFDU91koipMcDqH4HHz7cDo9-eiZph8eRyFqvcIXEUHGCQ7KXFatTYmfFTjNpTPJceJnSZT7KQukp1rgXP4I9zMiA5eEpwxF0Qswrpu6eAkgjjkOEAtFSBEhGRgL3ytLA5TFfs5RXO6Dd_a9Um4q4svGLHO6i5T3QexGL3RlmB3HvbcipOYb094rFXjdcYZDK3lqFM-KhpJHHoUiADr4xwd7BR70n-EhGLfLrngN7vF1W62WbwyWfwN5MOfG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+luminescent+mini-tufts+in+quantitative+flow+visualization+experiments%3A+Surface+flow+analysis+and+modelization&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Chen%2C+Lin&rft.au=Suzuki%2C+Tomohiro&rft.au=Nonomura%2C+Taku&rft.au=Asai%2C+Keisuke&rft.date=2019-05-01&rft.issn=0894-1777&rft.volume=103&rft.spage=406&rft.epage=417&rft_id=info:doi/10.1016%2Fj.expthermflusci.2019.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expthermflusci_2019_02_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |