A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit sol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 257; no. Part A; pp. 594 - 626
Main Authors: Meyer, Chad D., Balsara, Dinshaw S., Aslam, Tariq D.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15.01.2014
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
AbstractList Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. In a prior paper we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes "s" explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial.
Author Meyer, Chad D.
Aslam, Tariq D.
Balsara, Dinshaw S.
Author_xml – sequence: 1
  givenname: Chad D.
  surname: Meyer
  fullname: Meyer, Chad D.
  organization: Physics Department, Univ. of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
– sequence: 2
  givenname: Dinshaw S.
  surname: Balsara
  fullname: Balsara, Dinshaw S.
  organization: Physics Department, Univ. of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
– sequence: 3
  givenname: Tariq D.
  surname: Aslam
  fullname: Aslam, Tariq D.
  organization: WX-9 Group, Los Alamos National Laboratory, MS P952, Los Alamos, NM 87545, USA
BackLink https://www.osti.gov/biblio/22230848$$D View this record in Osti.gov
BookMark eNqNkc2KFDEUhYOMYM_oA7gLuHFTZZJOVSW4GgYdxQZBdB3yc6snTVVSk6RkdOU7zBv6JKZtVy5GVwcu3zlczjlHZyEGQOg5JS0ltH91aA92aRmh25aIljD6CG0okaRhA-3P0IbUUyOlpE_Qec4HQojouNigcIlz0cZP_js4_GkNe_j54_7DWoquuoM9BJcAz1BuosNjTBjulslbX3BeF0hN8TM0ucCy-LDHccSLTtrEimAdHJ79Xc2F21UXH0N-ih6Pesrw7I9eoC9v33y-etfsPl6_v7rcNZYzXhprDeu2horBDMIy6wwQK1gVyzvRCRgdBWIkddQYzjnrJZVE6NGYvjecbS_Qi1NuzMWrXN8Fe2NjCGCLYoxtieCiUi9P1JLi7Qq5qNlnC9OkA8Q1K9oPgxRdP9D_QWnPyCDZv9Guo4TzTnYVHU6oTTHnBKOqn_5uqiTtJ0WJOq6rDqquq47rKiJUnbI66V_OJflZp28Pel6fPFCb_-ohHYuBYMH5dOzFRf-A-xfUY8GX
CitedBy_id crossref_primary_10_1016_j_compfluid_2016_01_012
crossref_primary_10_1093_mnras_stz2035
crossref_primary_10_3847_1538_4357_adca3d
crossref_primary_10_1051_0004_6361_202140987
crossref_primary_10_3847_1538_4357_acd63e
crossref_primary_10_1093_mnras_stad770
crossref_primary_10_3847_2041_8213_acf19d
crossref_primary_10_3847_1538_4357_ababa0
crossref_primary_10_3847_1538_4357_addbe2
crossref_primary_10_1051_0004_6361_202348405
crossref_primary_10_3847_1538_4357_acfa72
crossref_primary_10_1051_0004_6361_202040254
crossref_primary_10_1063_5_0087020
crossref_primary_10_1016_j_proci_2018_06_037
crossref_primary_10_1051_0004_6361_202450129
crossref_primary_10_1002_htj_22298
crossref_primary_10_1088_1742_6596_1225_1_012012
crossref_primary_10_3847_1538_4357_add529
crossref_primary_10_1016_S1876_3804_20_60016_7
crossref_primary_10_1016_j_ijsolstr_2020_01_011
crossref_primary_10_1051_0004_6361_202141563
crossref_primary_10_1016_j_jcp_2022_111349
crossref_primary_10_3847_2041_8213_ab2b45
crossref_primary_10_1007_s00603_022_03071_8
crossref_primary_10_1093_mnras_stz3403
crossref_primary_10_1093_mnras_stab2715
crossref_primary_10_1177_10943420221143775
crossref_primary_10_3847_1538_4357_aaa54f
crossref_primary_10_1093_mnras_stac2625
crossref_primary_10_1088_1741_4326_aba0c9
crossref_primary_10_1063_5_0242676
crossref_primary_10_1088_1742_6596_837_1_012016
crossref_primary_10_1093_mnras_stac2269
crossref_primary_10_1051_0004_6361_202347564
crossref_primary_10_1093_mnras_staa1986
crossref_primary_10_1051_0004_6361_202451788
crossref_primary_10_3389_fspas_2022_789083
crossref_primary_10_1016_j_compgeo_2024_106075
crossref_primary_10_1016_j_jcp_2019_109141
crossref_primary_10_1093_pasj_psae036
crossref_primary_10_1088_1742_6596_837_1_012020
crossref_primary_10_1093_mnras_stz3115
crossref_primary_10_3847_1538_4357_ac41cd
crossref_primary_10_1016_j_hedp_2023_101053
crossref_primary_10_1016_j_jcp_2015_07_050
crossref_primary_10_3389_fspas_2019_00051
crossref_primary_10_1051_0004_6361_201629153
crossref_primary_10_1155_2021_5573913
crossref_primary_10_3847_1538_4357_ac97e8
crossref_primary_10_1016_j_hedp_2024_101136
crossref_primary_10_3847_1538_4357_aa7d59
crossref_primary_10_1016_j_compfluid_2020_104762
crossref_primary_10_1051_0004_6361_202346005
crossref_primary_10_1017_S0022377823000727
crossref_primary_10_1051_0004_6361_201731916
crossref_primary_10_1051_0004_6361_202453300
crossref_primary_10_3847_1538_4357_ac82b4
crossref_primary_10_3847_1538_4365_adc080
crossref_primary_10_1016_j_jelechem_2018_03_006
crossref_primary_10_1002_nag_3139
crossref_primary_10_3847_1538_4357_ad9908
crossref_primary_10_1093_mnras_sty599
crossref_primary_10_3847_2041_8213_ac715a
crossref_primary_10_1017_S002237781700037X
crossref_primary_10_2118_226214_PA
crossref_primary_10_1088_1742_6596_2742_1_012020
crossref_primary_10_3847_1538_4357_ad072a
crossref_primary_10_3847_1538_4365_ab929b
crossref_primary_10_1007_s00603_021_02694_7
crossref_primary_10_1051_0004_6361_202245359
crossref_primary_10_1051_0004_6361_202553957
crossref_primary_10_1051_0004_6361_202140872
crossref_primary_10_3847_2041_8213_acc9ba
crossref_primary_10_1051_0004_6361_202346057
crossref_primary_10_3847_1538_4357_aaa3e1
crossref_primary_10_1016_j_jcp_2020_109879
crossref_primary_10_1080_10420150_2019_1577853
crossref_primary_10_3847_1538_4365_aced0a
crossref_primary_10_1002_nag_3141
crossref_primary_10_2118_201114_PA
crossref_primary_10_3390_app142210401
crossref_primary_10_1016_j_jcp_2014_07_009
crossref_primary_10_1093_mnras_stw3306
crossref_primary_10_1016_j_jcp_2019_03_001
crossref_primary_10_3847_1538_4357_ac0e34
crossref_primary_10_1093_mnras_stx2176
crossref_primary_10_1051_0004_6361_202245305
crossref_primary_10_3847_1538_4357_adc37b
crossref_primary_10_1080_03091929_2016_1195376
crossref_primary_10_1016_j_ijthermalsci_2019_105982
Cites_doi 10.1002/(SICI)1099-0887(199601)12:1<31::AID-CNM950>3.0.CO;2-5
10.1111/j.1365-2966.2008.13085.x
10.1016/j.jcp.2006.11.004
10.1137/090775804
10.1016/0021-9991(90)90097-K
10.1016/S0168-9274(96)00022-0
10.1109/T-ED.1985.22232
10.1086/381377
10.1007/BF02512373
10.1146/annurev.fluid.38.050304.092049
10.1137/0729053
10.1111/j.1365-2966.2012.20744.x
10.1016/j.jcp.2012.04.051
10.1006/jcph.1996.0145
10.1006/jcph.2000.6488
10.1111/j.1365-2966.2007.11429.x
10.1016/j.jcp.2008.12.003
10.1137/0705041
10.1111/j.1151-2916.1997.tb02790.x
10.1063/1.857961
10.1016/0168-9274(95)00109-3
10.1137/S1064827500379549
10.1007/s10915-007-9169-1
10.1002/zamm.19800601005
10.1007/s002850000038
10.1016/S0377-0427(97)00219-7
10.1007/BF01329605
10.1063/1.1724332
10.1016/0021-9991(88)90002-2
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2013.08.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 626
ExternalDocumentID 22230848
10_1016_j_jcp_2013_08_021
S0021999113005597
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c424t-ccb253b187b78c2cdbe0c82dbec45858efd1e0b91d1bb4442691908afbb66b423
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327483200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Thu May 18 22:30:47 EDT 2023
Mon Sep 29 05:00:44 EDT 2025
Sun Nov 09 12:36:39 EST 2025
Wed Oct 01 13:52:48 EDT 2025
Sat Nov 29 06:46:06 EST 2025
Tue Nov 18 20:57:59 EST 2025
Fri Feb 23 02:18:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Part A
Keywords Super-time-stepping
Numerical methods
Parabolic operators
PDEs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-ccb253b187b78c2cdbe0c82dbec45858efd1e0b91d1bb4442691908afbb66b423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1551044595
PQPubID 23500
PageCount 33
ParticipantIDs osti_scitechconnect_22230848
proquest_miscellaneous_1677985671
proquest_miscellaneous_1671620792
proquest_miscellaneous_1551044595
crossref_citationtrail_10_1016_j_jcp_2013_08_021
crossref_primary_10_1016_j_jcp_2013_08_021
elsevier_sciencedirect_doi_10_1016_j_jcp_2013_08_021
PublicationCentury 2000
PublicationDate 2014-01-15
PublicationDateYYYYMMDD 2014-01-15
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational physics
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Meyer, Balsara, Aslam (br0370) 2012; 422
OʼSullivan, Downes (br0390) 2007; 376
LeVeque, Yee (br0330) 1990; 86
Tyson, Stern, LeVeque (br0490) 2000; 41
Verwer (br0530) 1996; 22
Osher, Sethian (br0410) 1988; 79
Weast (br0540) 1984
Balsara, Rumpf, Dumbser, Munz (br0110) 2009; 228
Barenblatt (br0150) 1952; 16
Markstein (br0340) 1964
Osher, Fedkiw (br0400) 2002; vol. 153
Gassner, Lörcher, Munz (br0190) 2007; 224
Hundsdorfer, Verwer (br0260) 2003
Rouy, Tourin (br0440) 1992; 29
Aslam, Jackson, Morris (br0070) 2009
van Der Houwen, Sommeijer (br0510) 1980; 60
Dumbser, Balsara (br0180) 2010; 54
Balsara, Tilley, Howk (br0100) 2008; 386
Lebedev (br0290) 1994
Sommeijer, Shampine, Verwer (br0470) 1998; 88
Abdulle (br0020) 2002; 23
Lee, Chung (br0310) 1997; 80
Balsara (br0090) 2004; 151
Vázquez (br0520) 2007
Marshak (br0350) 1958; 1
Gurski (br0220) 2011; vol. 1368
Aslam, Bdzil (br0050) 2002
Reinicke, Meyer-ter-Vehn (br0430) 1991; 3
Aslam, Bdzil (br0060) 2006
Lebedev (br0300) 2000; 40
Jackson (br0280) 1975
Rubenstein (br0450) 1971
Patankar (br0420) 1980
Strang (br0480) 1968; 5
Bank, Coughran, Fichtner, Grosse, Rose, Smith (br0130) 1985; ED-32
Hill, Aslam (br0240) 2003
Incropera, DeWitt (br0270) 1990
Hairer, Wanner (br0230) 1996; vol. 14
Abdulle (br0010) 2001
Gurski, OʼSullivan (br0210) 2011; 49
LeVeque (br0320) 1992
Mousseau, Knoll, Rider (br0380) 2000; 160
Balsara, Meyer, Dumbser, Du, Xu (br0120) 2013; 235
Sethian (br0460) 1999
Alexiades, Amiez, Gremaud (br0030) 1996; 12
Baer, Stephan (br0080) 2006
van der Houwen (br0500) 1996; 20
Gassner, Lörcher, Munz (br0200) 2008; 34
Bdzil, Stewart (br0160) 2007; 39
Becker (br0170) 1923; 8
Medovikov (br0360) 1998; 38
Hill, Aslam (br0250) 2010
Aslam, Bdzil, Stewart (br0040) 1996; 126
Aslam (10.1016/j.jcp.2013.08.021_br0070) 2009
Gassner (10.1016/j.jcp.2013.08.021_br0200) 2008; 34
Hairer (10.1016/j.jcp.2013.08.021_br0230) 1996; vol. 14
Hill (10.1016/j.jcp.2013.08.021_br0250) 2010
Osher (10.1016/j.jcp.2013.08.021_br0400) 2002; vol. 153
Rubenstein (10.1016/j.jcp.2013.08.021_br0450) 1971
Lebedev (10.1016/j.jcp.2013.08.021_br0290) 1994
Aslam (10.1016/j.jcp.2013.08.021_br0060) 2006
Gurski (10.1016/j.jcp.2013.08.021_br0210) 2011; 49
Vázquez (10.1016/j.jcp.2013.08.021_br0520) 2007
Rouy (10.1016/j.jcp.2013.08.021_br0440) 1992; 29
Reinicke (10.1016/j.jcp.2013.08.021_br0430) 1991; 3
Medovikov (10.1016/j.jcp.2013.08.021_br0360) 1998; 38
LeVeque (10.1016/j.jcp.2013.08.021_br0320) 1992
Markstein (10.1016/j.jcp.2013.08.021_br0340) 1964
Incropera (10.1016/j.jcp.2013.08.021_br0270) 1990
Balsara (10.1016/j.jcp.2013.08.021_br0090) 2004; 151
Gurski (10.1016/j.jcp.2013.08.021_br0220) 2011; vol. 1368
Aslam (10.1016/j.jcp.2013.08.021_br0050) 2002
Abdulle (10.1016/j.jcp.2013.08.021_br0010) 2001
Bank (10.1016/j.jcp.2013.08.021_br0130) 1985; ED-32
Marshak (10.1016/j.jcp.2013.08.021_br0350) 1958; 1
Patankar (10.1016/j.jcp.2013.08.021_br0420) 1980
LeVeque (10.1016/j.jcp.2013.08.021_br0330) 1990; 86
Hundsdorfer (10.1016/j.jcp.2013.08.021_br0260) 2003
Sethian (10.1016/j.jcp.2013.08.021_br0460) 1999
Bdzil (10.1016/j.jcp.2013.08.021_br0160) 2007; 39
Meyer (10.1016/j.jcp.2013.08.021_br0370) 2012; 422
Hill (10.1016/j.jcp.2013.08.021_br0240) 2003
Balsara (10.1016/j.jcp.2013.08.021_br0100) 2008; 386
van Der Houwen (10.1016/j.jcp.2013.08.021_br0510) 1980; 60
OʼSullivan (10.1016/j.jcp.2013.08.021_br0390) 2007; 376
Gassner (10.1016/j.jcp.2013.08.021_br0190) 2007; 224
Aslam (10.1016/j.jcp.2013.08.021_br0040) 1996; 126
Lebedev (10.1016/j.jcp.2013.08.021_br0300) 2000; 40
Lee (10.1016/j.jcp.2013.08.021_br0310) 1997; 80
Alexiades (10.1016/j.jcp.2013.08.021_br0030) 1996; 12
Dumbser (10.1016/j.jcp.2013.08.021_br0180) 2010; 54
Balsara (10.1016/j.jcp.2013.08.021_br0120) 2013; 235
Verwer (10.1016/j.jcp.2013.08.021_br0530) 1996; 22
van der Houwen (10.1016/j.jcp.2013.08.021_br0500) 1996; 20
Tyson (10.1016/j.jcp.2013.08.021_br0490) 2000; 41
Jackson (10.1016/j.jcp.2013.08.021_br0280) 1975
Barenblatt (10.1016/j.jcp.2013.08.021_br0150) 1952; 16
Strang (10.1016/j.jcp.2013.08.021_br0480) 1968; 5
Balsara (10.1016/j.jcp.2013.08.021_br0110) 2009; 228
Becker (10.1016/j.jcp.2013.08.021_br0170) 1923; 8
Sommeijer (10.1016/j.jcp.2013.08.021_br0470) 1998; 88
Mousseau (10.1016/j.jcp.2013.08.021_br0380) 2000; 160
Osher (10.1016/j.jcp.2013.08.021_br0410) 1988; 79
Baer (10.1016/j.jcp.2013.08.021_br0080) 2006
Abdulle (10.1016/j.jcp.2013.08.021_br0020) 2002; 23
Weast (10.1016/j.jcp.2013.08.021_br0540) 1984
References_xml – year: 2007
  ident: br0520
  article-title: The Porous Medium Equation: Mathematical Theory
– volume: 80
  year: 1997
  ident: br0310
  article-title: Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium–carbon–aluminum system
  publication-title: J. Am. Ceram. Soc.
– volume: 3
  start-page: 1807
  year: 1991
  ident: br0430
  article-title: The point explosion with heat conduction
  publication-title: Phys. Fluids A, Fluid Dyn.
– volume: 1
  start-page: 24
  year: 1958
  ident: br0350
  article-title: Effect of radiation on shock wave behavior
  publication-title: Phys. Fluids (US)
– volume: 38
  start-page: 372
  year: 1998
  end-page: 390
  ident: br0360
  article-title: High order explicit methods for parabolic equations
  publication-title: BIT Numer. Math.
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: br0410
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations
  publication-title: J. Comput. Phys.
– volume: 20
  start-page: 261
  year: 1996
  end-page: 272
  ident: br0500
  article-title: The development of Runge–Kutta methods for partial differential equations
  publication-title: Appl. Numer. Math.
– volume: 228
  start-page: 2480
  year: 2009
  end-page: 2516
  ident: br0110
  article-title: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics
  publication-title: J. Comput. Phys.
– volume: 40
  start-page: 1729
  year: 2000
  end-page: 1740
  ident: br0300
  article-title: Explicit difference schemes for solving stiff problems with a complex or separable spectrum
  publication-title: Comput. Math. Math. Phys.
– volume: 235
  start-page: 934
  year: 2013
  ident: br0120
  article-title: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes – comparison with Runge–Kutta methods
  publication-title: J. Comput. Phys.
– year: 2002
  ident: br0050
  article-title: Numerical and theoretical investigations on detonation-inert confinement interactions
  publication-title: Twelfth International Detonation Symposium
– volume: 422
  start-page: 2102
  year: 2012
  end-page: 2115
  ident: br0370
  article-title: A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction
  publication-title: Mon. Not. R. Astron. Soc.
– volume: vol. 153
  year: 2002
  ident: br0400
  article-title: Level Set Methods and Dynamic Implicit Surfaces
  publication-title: Appl. Math. Sci., Applied Mathematical Sciences
– volume: 386
  start-page: 627
  year: 2008
  end-page: 641
  ident: br0100
  article-title: Simulating anisotropic thermal conduction in supernova remnants—I. Numerical methods
  publication-title: Mon. Not. R. Astron. Soc.
– year: 2009
  ident: br0070
  article-title: Proton radiography of PBX 9502 detonation shock dynamics sandwich test
  publication-title: Fifteenth APS Conference on Shock Compression of Condensed Matter
– volume: 160
  start-page: 743
  year: 2000
  end-page: 765
  ident: br0380
  article-title: Physics-based preconditioning and the Newton–Krylov method for non-equilibrium radiation diffusion
  publication-title: J. Comput. Phys.
– volume: 49
  start-page: 368
  year: 2011
  end-page: 386
  ident: br0210
  article-title: A stability study of a new explicit numerical scheme for a system of differential equations with a large skew-symmetric component
  publication-title: SIAM J. Numer. Anal.
– volume: 60
  start-page: 479
  year: 1980
  end-page: 485
  ident: br0510
  article-title: On the internal stability of explicit,
  publication-title: Z. Angew. Math. Mech.
– volume: 224
  start-page: 1049
  year: 2007
  end-page: 1063
  ident: br0190
  article-title: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes
  publication-title: J. Comput. Phys.
– year: 2003
  ident: br0260
  article-title: Numerical Solution of Time-Dependent Advection–Diffusion Reaction Equations
– volume: vol. 1368
  start-page: 239
  year: 2011
  end-page: 242
  ident: br0220
  article-title: A stability and cost study of explicit and dyadic time stepping for stiff nonsymmetric problems
  publication-title: AIP Conf. Proc.
– year: 2001
  ident: br0010
  article-title: Chebyshev methods based on orthogonal polynomials
– volume: 151
  start-page: 149
  year: 2004
  end-page: 184
  ident: br0090
  article-title: Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction
  publication-title: Astrophys. J. Suppl. Ser.
– volume: 126
  start-page: 390
  year: 1996
  end-page: 409
  ident: br0040
  article-title: Level set methods applied to modeling detonation shock dynamics
  publication-title: J. Comput. Phys.
– year: 1990
  ident: br0270
  article-title: Introduction to Heat Transfer
– start-page: 475
  year: 1975
  end-page: 479
  ident: br0280
  article-title: Classical Electrodynamics
– volume: 23
  start-page: 2041
  year: 2002
  end-page: 2054
  ident: br0020
  article-title: Fourth order Chebyshev methods with recurrence relation
  publication-title: SIAM J. Sci. Comput.
– year: 1964
  ident: br0340
  article-title: Non-steady Flame Propagation
– volume: 29
  start-page: 867
  year: 1992
  end-page: 884
  ident: br0440
  article-title: A viscosity solutions approach to shape-from-shading
  publication-title: SIAM J. Numer. Anal.
– year: 2006
  ident: br0060
  article-title: Numerical and theoretical investigations on detonation confinement sandwich tests
  publication-title: Thirteenth International Detonation Symposium
– year: 2003
  ident: br0240
  article-title: The LANL detonation-confinement test: prototype development and sample results
  publication-title: Twelfth APS Conference on Shock Compression of Condensed Matter
– volume: 16
  start-page: 67
  year: 1952
  ident: br0150
  article-title: On some unsteady motions of a liquid or a gas in a porous medium
  publication-title: Prikl. Mat. Meh.
– volume: vol. 14
  year: 1996
  ident: br0230
  article-title: Solving Ordinary Differential Equations II – Stiff and Differential Algebraic Problems
  publication-title: Springer Ser. Comput. Math.
– volume: 12
  start-page: 31
  year: 1996
  end-page: 42
  ident: br0030
  article-title: Super-time-stepping acceleration of explicit schemes for parabolic problems
  publication-title: Commun. Numer. Methods Eng.
– year: 1980
  ident: br0420
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 34
  start-page: 260
  year: 2008
  end-page: 286
  ident: br0200
  article-title: A discontinuous Galerkin scheme based on a space–time expansion II. Viscous flow equations in multi dimensions
  publication-title: J. Sci. Comput.
– volume: 54
  start-page: 301
  year: 2010
  end-page: 334
  ident: br0180
  article-title: High-order unstructured one-step PNPM schemes for the viscous and resistive MHD equations
  publication-title: Comput. Model. Eng. Sci.
– volume: 5
  start-page: 506
  year: 1968
  end-page: 517
  ident: br0480
  article-title: On the construction and comparison of difference schemes
  publication-title: SIAM J. Numer. Anal.
– start-page: 45
  year: 1994
  end-page: 80
  ident: br0290
  article-title: How to solve stiff systems of differential equations by explicit methods
  publication-title: Numer. Methods Appl.
– volume: 86
  start-page: 187
  year: 1990
  end-page: 210
  ident: br0330
  article-title: A study of numerical methods for hyperbolic conservation laws with stiff source terms
  publication-title: J. Comput. Phys.
– year: 1992
  ident: br0320
  article-title: Numerical Methods for Conservation Laws
– year: 2010
  ident: br0250
  article-title: Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations
  publication-title: Fourteenth International Detonation Symposium
– start-page: C475
  year: 1984
  ident: br0540
  article-title: Handbook of Chemistry and Physics
– volume: 8
  start-page: 321
  year: 1923
  ident: br0170
  article-title: Stosswelle und Detonation
  publication-title: Z. Phys.
– volume: 22
  start-page: 359
  year: 1996
  end-page: 379
  ident: br0530
  article-title: Explicit Runge–Kutta methods for parabolic partial differential equations
  publication-title: Appl. Numer. Math.
– year: 1971
  ident: br0450
  article-title: The Stefan Problem
– volume: 88
  start-page: 315
  year: 1998
  end-page: 326
  ident: br0470
  article-title: RKC: an explicit solver for parabolic PDEs
  publication-title: J. Comput. Appl. Math.
– volume: ED-32
  start-page: 1992
  year: 1985
  ident: br0130
  article-title: Transient simulation of silicon devices and circuits
  publication-title: IEEE Trans. Electron Devices
– year: 1999
  ident: br0460
  article-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry Fluid Mechanics, Computer Vision, and Materials Science, vol. 3
– year: 2006
  ident: br0080
  article-title: Heat and Mass Transfer
– volume: 376
  start-page: 1648
  year: 2007
  end-page: 1658
  ident: br0390
  article-title: A three-dimensional numerical method for modelling weakly ionized plasmas
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 41
  start-page: 455
  year: 2000
  end-page: 475
  ident: br0490
  article-title: Fractional step methods applied to a chemotaxis model
  publication-title: J. Math. Biol.
– volume: 39
  start-page: 263
  year: 2007
  end-page: 292
  ident: br0160
  article-title: The dynamics of detonation in explosive systems
  publication-title: Annu. Rev. Fluid Mech.
– volume: 12
  start-page: 31
  issue: 1
  year: 1996
  ident: 10.1016/j.jcp.2013.08.021_br0030
  article-title: Super-time-stepping acceleration of explicit schemes for parabolic problems
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/(SICI)1099-0887(199601)12:1<31::AID-CNM950>3.0.CO;2-5
– volume: 386
  start-page: 627
  issue: 2
  year: 2008
  ident: 10.1016/j.jcp.2013.08.021_br0100
  article-title: Simulating anisotropic thermal conduction in supernova remnants—I. Numerical methods
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2008.13085.x
– volume: 224
  start-page: 1049
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2013.08.021_br0190
  article-title: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.11.004
– volume: 49
  start-page: 368
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2013.08.021_br0210
  article-title: A stability study of a new explicit numerical scheme for a system of differential equations with a large skew-symmetric component
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090775804
– year: 2003
  ident: 10.1016/j.jcp.2013.08.021_br0240
  article-title: The LANL detonation-confinement test: prototype development and sample results
– start-page: 475
  year: 1975
  ident: 10.1016/j.jcp.2013.08.021_br0280
– volume: 86
  start-page: 187
  issue: 1
  year: 1990
  ident: 10.1016/j.jcp.2013.08.021_br0330
  article-title: A study of numerical methods for hyperbolic conservation laws with stiff source terms
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90097-K
– year: 1992
  ident: 10.1016/j.jcp.2013.08.021_br0320
– volume: 22
  start-page: 359
  issue: 1
  year: 1996
  ident: 10.1016/j.jcp.2013.08.021_br0530
  article-title: Explicit Runge–Kutta methods for parabolic partial differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(96)00022-0
– volume: ED-32
  start-page: 1992
  year: 1985
  ident: 10.1016/j.jcp.2013.08.021_br0130
  article-title: Transient simulation of silicon devices and circuits
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1985.22232
– year: 1971
  ident: 10.1016/j.jcp.2013.08.021_br0450
– volume: 151
  start-page: 149
  issue: 1
  year: 2004
  ident: 10.1016/j.jcp.2013.08.021_br0090
  article-title: Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/381377
– volume: 38
  start-page: 372
  issue: 2
  year: 1998
  ident: 10.1016/j.jcp.2013.08.021_br0360
  article-title: High order explicit methods for parabolic equations
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF02512373
– volume: 39
  start-page: 263
  year: 2007
  ident: 10.1016/j.jcp.2013.08.021_br0160
  article-title: The dynamics of detonation in explosive systems
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092049
– volume: 29
  start-page: 867
  issue: 3
  year: 1992
  ident: 10.1016/j.jcp.2013.08.021_br0440
  article-title: A viscosity solutions approach to shape-from-shading
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729053
– volume: 422
  start-page: 2102
  year: 2012
  ident: 10.1016/j.jcp.2013.08.021_br0370
  article-title: A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2012.20744.x
– year: 1980
  ident: 10.1016/j.jcp.2013.08.021_br0420
– volume: vol. 14
  year: 1996
  ident: 10.1016/j.jcp.2013.08.021_br0230
  article-title: Solving Ordinary Differential Equations II – Stiff and Differential Algebraic Problems
– year: 2007
  ident: 10.1016/j.jcp.2013.08.021_br0520
– year: 2003
  ident: 10.1016/j.jcp.2013.08.021_br0260
– volume: 235
  start-page: 934
  year: 2013
  ident: 10.1016/j.jcp.2013.08.021_br0120
  article-title: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes – comparison with Runge–Kutta methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.051
– year: 2002
  ident: 10.1016/j.jcp.2013.08.021_br0050
  article-title: Numerical and theoretical investigations on detonation-inert confinement interactions
– volume: 16
  start-page: 67
  issue: 1
  year: 1952
  ident: 10.1016/j.jcp.2013.08.021_br0150
  article-title: On some unsteady motions of a liquid or a gas in a porous medium
  publication-title: Prikl. Mat. Meh.
– volume: 126
  start-page: 390
  issue: 2
  year: 1996
  ident: 10.1016/j.jcp.2013.08.021_br0040
  article-title: Level set methods applied to modeling detonation shock dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0145
– volume: 160
  start-page: 743
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2013.08.021_br0380
  article-title: Physics-based preconditioning and the Newton–Krylov method for non-equilibrium radiation diffusion
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6488
– volume: 376
  start-page: 1648
  issue: 4
  year: 2007
  ident: 10.1016/j.jcp.2013.08.021_br0390
  article-title: A three-dimensional numerical method for modelling weakly ionized plasmas
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2007.11429.x
– start-page: C475
  year: 1984
  ident: 10.1016/j.jcp.2013.08.021_br0540
– year: 2001
  ident: 10.1016/j.jcp.2013.08.021_br0010
– volume: 40
  start-page: 1729
  issue: 12
  year: 2000
  ident: 10.1016/j.jcp.2013.08.021_br0300
  article-title: Explicit difference schemes for solving stiff problems with a complex or separable spectrum
  publication-title: Comput. Math. Math. Phys.
– year: 1964
  ident: 10.1016/j.jcp.2013.08.021_br0340
– volume: 228
  start-page: 2480
  year: 2009
  ident: 10.1016/j.jcp.2013.08.021_br0110
  article-title: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.003
– volume: 5
  start-page: 506
  issue: 3
  year: 1968
  ident: 10.1016/j.jcp.2013.08.021_br0480
  article-title: On the construction and comparison of difference schemes
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0705041
– volume: 80
  issue: 1
  year: 1997
  ident: 10.1016/j.jcp.2013.08.021_br0310
  article-title: Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium–carbon–aluminum system
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1997.tb02790.x
– volume: vol. 153
  year: 2002
  ident: 10.1016/j.jcp.2013.08.021_br0400
  article-title: Level Set Methods and Dynamic Implicit Surfaces
– volume: 3
  start-page: 1807
  year: 1991
  ident: 10.1016/j.jcp.2013.08.021_br0430
  article-title: The point explosion with heat conduction
  publication-title: Phys. Fluids A, Fluid Dyn.
  doi: 10.1063/1.857961
– volume: 20
  start-page: 261
  issue: 3
  year: 1996
  ident: 10.1016/j.jcp.2013.08.021_br0500
  article-title: The development of Runge–Kutta methods for partial differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(95)00109-3
– volume: 54
  start-page: 301
  issue: 3
  year: 2010
  ident: 10.1016/j.jcp.2013.08.021_br0180
  article-title: High-order unstructured one-step PNPM schemes for the viscous and resistive MHD equations
  publication-title: Comput. Model. Eng. Sci.
– volume: 23
  start-page: 2041
  issue: 6
  year: 2002
  ident: 10.1016/j.jcp.2013.08.021_br0020
  article-title: Fourth order Chebyshev methods with recurrence relation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827500379549
– year: 1990
  ident: 10.1016/j.jcp.2013.08.021_br0270
– year: 2006
  ident: 10.1016/j.jcp.2013.08.021_br0080
– volume: 34
  start-page: 260
  issue: 3
  year: 2008
  ident: 10.1016/j.jcp.2013.08.021_br0200
  article-title: A discontinuous Galerkin scheme based on a space–time expansion II. Viscous flow equations in multi dimensions
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-007-9169-1
– year: 2009
  ident: 10.1016/j.jcp.2013.08.021_br0070
  article-title: Proton radiography of PBX 9502 detonation shock dynamics sandwich test
– year: 1999
  ident: 10.1016/j.jcp.2013.08.021_br0460
– volume: 60
  start-page: 479
  year: 1980
  ident: 10.1016/j.jcp.2013.08.021_br0510
  article-title: On the internal stability of explicit, m-stage Runge–Kutta methods for large m-values
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19800601005
– year: 2006
  ident: 10.1016/j.jcp.2013.08.021_br0060
  article-title: Numerical and theoretical investigations on detonation confinement sandwich tests
– start-page: 45
  year: 1994
  ident: 10.1016/j.jcp.2013.08.021_br0290
  article-title: How to solve stiff systems of differential equations by explicit methods
  publication-title: Numer. Methods Appl.
– volume: 41
  start-page: 455
  issue: 5
  year: 2000
  ident: 10.1016/j.jcp.2013.08.021_br0490
  article-title: Fractional step methods applied to a chemotaxis model
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850000038
– volume: vol. 1368
  start-page: 239
  year: 2011
  ident: 10.1016/j.jcp.2013.08.021_br0220
  article-title: A stability and cost study of explicit and dyadic time stepping for stiff nonsymmetric problems
– volume: 88
  start-page: 315
  issue: 2
  year: 1998
  ident: 10.1016/j.jcp.2013.08.021_br0470
  article-title: RKC: an explicit solver for parabolic PDEs
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(97)00219-7
– volume: 8
  start-page: 321
  year: 1923
  ident: 10.1016/j.jcp.2013.08.021_br0170
  article-title: Stosswelle und Detonation
  publication-title: Z. Phys.
  doi: 10.1007/BF01329605
– volume: 1
  start-page: 24
  year: 1958
  ident: 10.1016/j.jcp.2013.08.021_br0350
  article-title: Effect of radiation on shock wave behavior
  publication-title: Phys. Fluids (US)
  doi: 10.1063/1.1724332
– year: 2010
  ident: 10.1016/j.jcp.2013.08.021_br0250
  article-title: Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 10.1016/j.jcp.2013.08.021_br0410
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
SSID ssj0008548
Score 2.4910736
Snippet Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 594
SubjectTerms Accuracy
AMBIPOLAR DIFFUSION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computation
Conduction
Design engineering
LEGENDRE POLYNOMIALS
MAGNETOHYDRODYNAMICS
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
Mathematical models
MATHEMATICAL SOLUTIONS
NONLINEAR PROBLEMS
Numerical methods
Parabolic operators
PARTIAL DIFFERENTIAL EQUATIONS
PDEs
Polynomials
Recursion
Runge-Kutta method
STABILITY
Super-time-stepping
THERMAL CONDUCTION
Title A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations
URI https://dx.doi.org/10.1016/j.jcp.2013.08.021
https://www.proquest.com/docview/1551044595
https://www.proquest.com/docview/1671620792
https://www.proquest.com/docview/1677985671
https://www.osti.gov/biblio/22230848
Volume 257
WOSCitedRecordID wos000327483200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dr9IwFG-U64MvfhvRq6mJ8UFTs24dbR-J4cYPRGO4CW_L2pVcCI6xgUH_ek_XbqBcyfXBl0GWdpCe305Pz9cPoRdUKp6aLCSBiXtwQMk4SVNhiBSRjoxiU8p1TTbBRyMxmcgvPmJa1XQCPM_FdiuL_ypquAfCtqWz_yDu9qFwA76D0OEKYofrlQTft-4Bm_L6E2zJr_AuG_Jxs16nZGhgTlYazxrtmn1vbfx6tn5dbQpTEss0T0DuRdEkQ6cloGThm7p-m23hmWa12XPzHRq2uiaKaJyMznXSWu6fzA9feniRZjs36qJKSxd5muXVxc6x3m8QO4Yz_WrfRUFtWgtxRZptyQAl1hLdV7uha0ztFWfsqI79HtxzVfQH6t15GuZv5tq2GqVR3X3VVVj_3kp79Dk5Ox8Ok_FgMn5ZrIhlGbPReE-5ch2dhDyWoAVP-u8Hkw_t3i1i5vZu_4ebOHidEfjHr_7NkuksQTkfbO21vTK-g255eeC-A8hddM3k99Btf-jAXqVX99G8j3d4wZfhBTu8YMALbvCCL8ELXk5xixcMeME1XnCLlwfo_GwwfvuOeAIOolnI1kRrFcaRooIrLnSoM2UCLUL40AyOmcJMM2oCJWlGlWLMVkWDfSnSqVK9ngJD_SHq5MvcPEI44JpnsY7YVArGFFUy1oGWikapjg1lXRQ0i5lo353ekqQskiYNcZ7A-id2_RNLnBrSLnrVTilca5Zjg1kjocTbls5mTABbx6adWmnaKbansrbJZzDHGtWWiKKLnjdSTkAt21hbmpvlpkrsSSRgLJbxkTE9274t4DI8OoZLEcPIx1d4zhN0c_f-naLOutyYp-iG_r6eVeUzD_Zf93TLpA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stabilized+Runge-Kutta-Legendre+method+for+explicit+super-time-stepping+of+parabolic+and+mixed+equations&rft.jtitle=Journal+of+computational+physics&rft.au=Meyer%2C+Chad&rft.au=Balsara%2C+Dinshaw&rft.au=Aslam%2C+Tariq&rft.date=2014-01-15&rft.issn=0021-9991&rft.volume=257&rft.spage=594&rft.epage=626&rft_id=info:doi/10.1016%2Fj.jcp.2013.08.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon