Design Space Exploration of Hard-Decision Viterbi Decoding: Algorithm and VLSI Implementation

Viterbi algorithm is widely used as a decoding technique for convolutional codes as well as a bit detection method in storage devices. The design space for VLSI implementation of Viterbi decoders is huge, involving choices of throughput, latency, area, and power. Even for a fixed set of parameters l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 18; no. 5; pp. 794 - 807
Main Authors: Habib, Irfan, Paker, Ozgun, Sawitzki, Sergei
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.05.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-8210, 1557-9999
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Viterbi algorithm is widely used as a decoding technique for convolutional codes as well as a bit detection method in storage devices. The design space for VLSI implementation of Viterbi decoders is huge, involving choices of throughput, latency, area, and power. Even for a fixed set of parameters like constraint length, encoder polynomials and trace-back depth, the task of designing a Viterbi decoder is quite complex and requires significant effort. Sometimes, due to incomplete design space exploration or incorrect analysis, a suboptimal design is chosen. This work analyzes the design complexity by applying most of the known VLSI implementation techniques for hard-decision Viterbi decoding to a different set of code parameters. The conclusions are based on real designs for which actual synthesis and layouts were obtained. In authors' view, due to the depth covered, it is the most comprehensive analysis of the topic published so far.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2009.2017024