Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography
•A deep learning algorithm has been used for the approximation of the inverse operator in HT.•The algorithm is based on convolutional neural networks.•The approach has been successfully applied on the synthetic transmissivity fields. In this manuscript, we discuss the capabilities of a deep learning...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 604; s. 127233 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2022
Elsevier |
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A deep learning algorithm has been used for the approximation of the inverse operator in HT.•The algorithm is based on convolutional neural networks.•The approach has been successfully applied on the synthetic transmissivity fields.
In this manuscript, we discuss the capabilities of a deep learning algorithm implemented with the Conventional Neural Network concept to characterize the hydraulic properties of aquifers. The algorithm called CNN-HT is designed to predict the inverse operator of hydraulic tomography using a synthetic training dataset in which the hydraulic head data associated with pumping tests are linked to hydraulic transmissivity field. This approach relies on an adaptation of the SegNet network that was initially developed to process image segmentation. The SegNet is composed of encoders and decoders networks. In the encoder, sequential operations with multiple filters, as convolution, batch normalization, max-pooling are performed to identify feature maps of the input data. In the decoder, the up-sampling, convolution, batch normalization and regression operations are used to prepare the output by recovering the loss of spatial resolution that occurred in the encoder process. In this adaptation, we used the least-square iterative formulation at the initial iteration with Jacobian matrix to resize the hydraulic head data to match the size of the output (transmissivity field). This protocol was applied to the hydraulic head data computed numerically by solving the groundwater flow equation for a given transmissivity field, generated geostatistically with Gaussian and spherical variograms. A part of this data was used for training the network and the other part to test its performance. The test step confirmed the effectiveness of this tool in reconstructing the main heterogeneities of the hydraulic properties, and its effectiveness is related to the nature and quantity of the training data. Moreover, the CNN-HT method provided inversion results of the same quality than those obtained with the Gauss-Newton algorithm using the finite difference or adjoint state method in the computation of the Jacobian matrix. However, the computational time is longer in CNN-HT but this time can be less or of the same order as that of Gauss-Newton using finite difference method. |
|---|---|
| AbstractList | In this manuscript, we discuss the capabilities of a deep learning algorithm implemented with the Conventional Neural Network concept to characterize the hydraulic properties of aquifers. The algorithm called CNN-HT is designed to predict the inverse operator of hydraulic tomography using a synthetic training dataset in which the hydraulic head data associated with pumping tests are linked to hydraulic transmissivity field. This approach relies on an adaptation of the SegNet network that was initially developed to process image segmentation. The SegNet is composed of encoders and decoders networks. In the encoder, sequential operations with multiple filters, as convolution, batch normalization, max-pooling are performed to identify feature maps of the input data. In the decoder, the up-sampling, convolution, batch normalization and regression operations are used to prepare the output by recovering the loss of spatial resolution that occurred in the encoder process. In this adaptation, we used the least-square iterative formulation at the initial iteration with Jacobian matrix to resize the hydraulic head data to match the size of the output (transmissivity field). This protocol was applied to the hydraulic head data computed numerically by solving the groundwater flow equation for a given transmissivity field, generated geostatistically with Gaussian and spherical variograms. A part of this data was used for training the network and the other part to test its performance. The test step confirmed the effectiveness of this tool in reconstructing the main heterogeneities of the hydraulic properties, and its effectiveness is related to the nature and quantity of the training data. Moreover, the CNN-HT method provided inversion results of the same quality than those obtained with the Gauss-Newton algorithm using the finite difference or adjoint state method in the computation of the Jacobian matrix. However, the computational time is longer in CNN-HT but this time can be less or of the same order as that of Gauss-Newton using finite difference method. •A deep learning algorithm has been used for the approximation of the inverse operator in HT.•The algorithm is based on convolutional neural networks.•The approach has been successfully applied on the synthetic transmissivity fields. In this manuscript, we discuss the capabilities of a deep learning algorithm implemented with the Conventional Neural Network concept to characterize the hydraulic properties of aquifers. The algorithm called CNN-HT is designed to predict the inverse operator of hydraulic tomography using a synthetic training dataset in which the hydraulic head data associated with pumping tests are linked to hydraulic transmissivity field. This approach relies on an adaptation of the SegNet network that was initially developed to process image segmentation. The SegNet is composed of encoders and decoders networks. In the encoder, sequential operations with multiple filters, as convolution, batch normalization, max-pooling are performed to identify feature maps of the input data. In the decoder, the up-sampling, convolution, batch normalization and regression operations are used to prepare the output by recovering the loss of spatial resolution that occurred in the encoder process. In this adaptation, we used the least-square iterative formulation at the initial iteration with Jacobian matrix to resize the hydraulic head data to match the size of the output (transmissivity field). This protocol was applied to the hydraulic head data computed numerically by solving the groundwater flow equation for a given transmissivity field, generated geostatistically with Gaussian and spherical variograms. A part of this data was used for training the network and the other part to test its performance. The test step confirmed the effectiveness of this tool in reconstructing the main heterogeneities of the hydraulic properties, and its effectiveness is related to the nature and quantity of the training data. Moreover, the CNN-HT method provided inversion results of the same quality than those obtained with the Gauss-Newton algorithm using the finite difference or adjoint state method in the computation of the Jacobian matrix. However, the computational time is longer in CNN-HT but this time can be less or of the same order as that of Gauss-Newton using finite difference method. |
| ArticleNumber | 127233 |
| Author | Jardani, A. Vu, T.M. Fischer, P. |
| Author_xml | – sequence: 1 givenname: A. surname: Jardani fullname: Jardani, A. email: abderrahim.jardani@univ-rouen.fr organization: Normandy University, UNIROUEN, UNICEAN, UMR CNRS 6143 M2C Morphodynamique Continentale et Côtière, Université de Rouen, France – sequence: 2 givenname: T.M. surname: Vu fullname: Vu, T.M. organization: Normandy University, UNIROUEN, UNICEAN, UMR CNRS 6143 M2C Morphodynamique Continentale et Côtière, Université de Rouen, France – sequence: 3 givenname: P. surname: Fischer fullname: Fischer, P. organization: HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France |
| BackLink | https://insu.hal.science/insu-03661813$$DView record in HAL |
| BookMark | eNqFkU9r3DAUxEVJoZs0H6GgYyl4qz-OZdNDCaFpCgu9NGchS8-xtl7JfZI37KlfPXYceuglusxBM8NjfufkLMQAhHzgbMsZrz7vt_v-5DAOW8EE33KhhJRvyIbXqimEYuqMbBgTouBVU74j5ynt2fykLDfk730CGjtqYzjGYco-BjPQABM-S36M-DvRR597CsFGB1g4eFaaMk42Twi0i0hHBOdt9uGB5h6oD0fApXoENHn-94EuR5pp8JbmeIgPaMb-9J687cyQ4PJFL8j97bdfN3fF7uf3HzfXu8KWosxFy7rONYq3qlS8464TZa2qVsnaNNyykksr2loB8KYSrHGtdY41bPZIaZnl8oJ8Wnt7M-gR_cHgSUfj9d31TvuQJs1kVfGay-Ni_riaR4x_JkhZH3yyMAwmQJySFpWs5o3rspqtV6vVYkwJoftXzple6Oi9fqGjFzp6pTPnvvyXsz6bZf6Mxg-vpr-uaZgnO3pAnayf-cwIEGzWLvpXGp4Aoh2zlw |
| CitedBy_id | crossref_primary_10_1007_s40808_024_01986_5 crossref_primary_10_1016_j_jhydrol_2022_128167 crossref_primary_10_1016_j_jhydrol_2023_129677 crossref_primary_10_1016_j_jhydrol_2024_130648 crossref_primary_10_1016_j_jhydrol_2022_128562 crossref_primary_10_1007_s00477_025_03051_8 crossref_primary_10_1016_j_jhydrol_2022_127830 crossref_primary_10_1016_j_jhydrol_2022_127752 crossref_primary_10_1016_j_jhydrol_2025_133897 crossref_primary_10_1016_j_jhydrol_2024_132368 crossref_primary_10_3390_en16083320 crossref_primary_10_1029_2022WR033241 crossref_primary_10_1002_hyp_70118 crossref_primary_10_1029_2025JH000703 crossref_primary_10_1016_j_earscirev_2023_104370 crossref_primary_10_1007_s11269_022_03346_3 crossref_primary_10_1016_j_jhydrol_2024_131703 crossref_primary_10_1016_j_jhydrol_2022_127443 crossref_primary_10_3390_w17020255 crossref_primary_10_1016_j_engappai_2024_109888 crossref_primary_10_1029_2023WR035408 crossref_primary_10_1016_j_jhydrol_2024_131524 crossref_primary_10_1016_j_advwatres_2023_104463 crossref_primary_10_1016_j_jhydrol_2024_132295 crossref_primary_10_3390_w15162890 crossref_primary_10_5194_hess_29_4251_2025 crossref_primary_10_1016_j_jhydrol_2025_133584 crossref_primary_10_1016_j_compgeo_2024_106316 |
| Cites_doi | 10.1007/s11004-012-9397-2 10.1016/0021-9991(92)90400-S 10.1016/j.procs.2018.05.069 10.1109/5.726791 10.1016/S0149-1970(96)00013-3 10.1007/s11004-008-9206-0 10.1088/0266-5611/11/2/005 10.1029/2011WR010616 10.1190/geo2012-0460.1 10.1029/2000WR900114 10.1002/wrcr.20519 10.1029/2001WR001176 10.1029/RG020i002p00219 10.1016/j.cageo.2020.104681 10.1016/j.jhydrol.2017.05.051 10.1109/TPAMI.2016.2644615 10.1016/j.jhydrol.2012.09.031 10.1111/gwat.12457 10.1093/gji/ggab024 10.1002/2015WR017922 10.1029/2008WR007078 10.1029/WR021i003p00359 10.1016/j.cageo.2008.01.013 10.1029/2004WR003874 10.1029/2018WR022643 10.1016/j.advwatres.2017.11.029 10.1016/j.jhydrol.2008.11.014 10.1002/2017WR022148 10.1029/2018GL080404 10.1016/j.jhydrol.2016.08.061 10.1007/BF02769620 10.1016/j.jcp.2018.04.018 10.1016/j.mcm.2011.07.009 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Attribution - NonCommercial |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Attribution - NonCommercial |
| DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
| DOI | 10.1016/j.jhydrol.2021.127233 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | oai:HAL:insu-03661813v1 10_1016_j_jhydrol_2021_127233 S002216942101283X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c424t-b0ffd971b7471f1df24876b738a91c0413c2b87ee196209dbcdd09087633c0c13 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000731472900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Tue Oct 14 20:46:20 EDT 2025 Thu Oct 02 09:40:51 EDT 2025 Sat Nov 29 07:30:10 EST 2025 Tue Nov 18 21:51:28 EST 2025 Fri Feb 23 02:40:53 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Convolutional neural networks Hydraulic tomography Inverse problem |
| Language | English |
| License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c424t-b0ffd971b7471f1df24876b738a91c0413c2b87ee196209dbcdd09087633c0c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0358-0728 0000-0002-3401-8140 |
| OpenAccessLink | https://insu.hal.science/insu-03661813 |
| PQID | 2636723846 |
| PQPubID | 24069 |
| ParticipantIDs | hal_primary_oai_HAL_insu_03661813v1 proquest_miscellaneous_2636723846 crossref_primary_10_1016_j_jhydrol_2021_127233 crossref_citationtrail_10_1016_j_jhydrol_2021_127233 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_127233 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 20220101 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Berg, Illman (b0020) 2011; 47 Castagna, Bellin (b0040) 2009; 45 Jiménez, Mariethoz, Brauchler, Bayer (b0105) 2016; 52 Scales, Smith, Fischer (b0180) 1992; 103 Bohling, Zhan, Butler, Zheng (b0025) 2002; 38 Oliver, Cunha, Reynolds (b0160) 1997; 29 Fu, Gómez-Hernández (b0065) 2009; 41 Laloy, Hérault, Jacques, Linde (b0130) 2018; 54 Yeh, Liu (b0225) 2000; 36 Fischer, Jardani, Lecoq (b0060) 2018; 112 Fischer, Jardani, Soueid Ahmed, Abbas, Wang, Jourde, Lecoq (b0055) 2017; 55 Neuman (b0155) 1987 Fernández-Martínez, Mukerji, García-Gonzalo, Fernández-Muñiz (b0050) 2011; 54 Kitanidis (b0125) 1997 Cardiff, Kitanidis (b0030) 2008; 34 Elsheikh, Jackson, Laforce (b0045) 2012; 44 Wang, Jardani, Jourde (b0215) 2017; 551 Indolia, Goswami, Mishra, Asopa (b0090) 2018; 132 Ioffe S., Szegedy C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proceedings of the 32nd International Conference on Machine Learning, 37, 448-456. Li, Nowak, Cirpka (b0140) 2005; 41 Vu, Jardani (b0210) 2021; 225 Lochbühler, Doetsch, Brauchler, Linde (b0145) 2013; 78 Y. Wu Y. Lin InversionNet: A Real-Time and Accurate Full Waveform Inversion with CNNs and continuous CRFs 2018 arXiv preprint arXiv:1811.07875. Gottlieb, Dietrich (b0085) 1995; 11 Zio (b0240) 1997; 31 Tarantola, Valette (b0205) 1982; 20 Badrinarayanan, Kendall, Cipolla (b0015) 2017; 39 Zhao, Illman, Berg (b0230) 2016; 542 Cardiff, Barrash, Kitanidis (b0035) 2013; 49 Kingma D.P., Ba J., 2014. Adam: A method for stochastic optimization, International Conference on Learning Representations (ICLR). Sykes, Wilson, Andrews (b0200) 1985; 21 Kendall, Cipolla (b0110) 2016; 2016 LeCun, Bottou, Bengio, Haffner (b0135) 1998; 86 Puzyrev, Swidinsky (b0165) 2021; 149 Sun (b0195) 2018; 45 Gal, Ghahramani (b0075) 2016 Jardani, Dupont, Revil, Massei, Fournier, Laignel (b0100) 2012; 472-473 Fu, Jaime Gómez-Hernández (b0070) 2009; 364 Zhu, Zabaras (b0235) 2018; 366 Remy, Boucher, Wu (b0170) 2009 Shen (b0185) 2018; 54 Badrinarayanan (10.1016/j.jhydrol.2021.127233_b0015) 2017; 39 Fernández-Martínez (10.1016/j.jhydrol.2021.127233_b0050) 2011; 54 Zio (10.1016/j.jhydrol.2021.127233_b0240) 1997; 31 Castagna (10.1016/j.jhydrol.2021.127233_b0040) 2009; 45 Neuman (10.1016/j.jhydrol.2021.127233_b0155) 1987 Kendall (10.1016/j.jhydrol.2021.127233_b0110) 2016; 2016 Fischer (10.1016/j.jhydrol.2021.127233_b0055) 2017; 55 Gottlieb (10.1016/j.jhydrol.2021.127233_b0085) 1995; 11 Lochbühler (10.1016/j.jhydrol.2021.127233_b0145) 2013; 78 Li (10.1016/j.jhydrol.2021.127233_b0140) 2005; 41 Shen (10.1016/j.jhydrol.2021.127233_b0185) 2018; 54 10.1016/j.jhydrol.2021.127233_b0220 Oliver (10.1016/j.jhydrol.2021.127233_b0160) 1997; 29 Cardiff (10.1016/j.jhydrol.2021.127233_b0035) 2013; 49 Zhu (10.1016/j.jhydrol.2021.127233_b0235) 2018; 366 Gal (10.1016/j.jhydrol.2021.127233_b0075) 2016 Zhao (10.1016/j.jhydrol.2021.127233_b0230) 2016; 542 Wang (10.1016/j.jhydrol.2021.127233_b0215) 2017; 551 Scales (10.1016/j.jhydrol.2021.127233_b0180) 1992; 103 Fischer (10.1016/j.jhydrol.2021.127233_b0060) 2018; 112 Tarantola (10.1016/j.jhydrol.2021.127233_b0205) 1982; 20 Fu (10.1016/j.jhydrol.2021.127233_b0070) 2009; 364 Jardani (10.1016/j.jhydrol.2021.127233_b0100) 2012; 472-473 LeCun (10.1016/j.jhydrol.2021.127233_b0135) 1998; 86 Bohling (10.1016/j.jhydrol.2021.127233_b0025) 2002; 38 Cardiff (10.1016/j.jhydrol.2021.127233_b0030) 2008; 34 Sykes (10.1016/j.jhydrol.2021.127233_b0200) 1985; 21 Elsheikh (10.1016/j.jhydrol.2021.127233_b0045) 2012; 44 Berg (10.1016/j.jhydrol.2021.127233_b0020) 2011; 47 Kitanidis (10.1016/j.jhydrol.2021.127233_b0125) 1997 Sun (10.1016/j.jhydrol.2021.127233_b0195) 2018; 45 Laloy (10.1016/j.jhydrol.2021.127233_b0130) 2018; 54 Vu (10.1016/j.jhydrol.2021.127233_b0210) 2021; 225 Jiménez (10.1016/j.jhydrol.2021.127233_b0105) 2016; 52 Fu (10.1016/j.jhydrol.2021.127233_b0065) 2009; 41 10.1016/j.jhydrol.2021.127233_b0095 Remy (10.1016/j.jhydrol.2021.127233_b0170) 2009 Yeh (10.1016/j.jhydrol.2021.127233_b0225) 2000; 36 Puzyrev (10.1016/j.jhydrol.2021.127233_b0165) 2021; 149 Indolia (10.1016/j.jhydrol.2021.127233_b0090) 2018; 132 10.1016/j.jhydrol.2021.127233_b0115 |
| References_xml | – volume: 2016 start-page: 4762 year: 2016 end-page: 4769 ident: b0110 article-title: Modelling uncertainty in deep learning for camera relocalization publication-title: IEEE international conference on Robotics and Automation (ICRA) – volume: 45 start-page: 11137 year: 2018 end-page: 11146 ident: b0195 article-title: Discovering State-Parameter Mappings in Subsurface Models Using Generative Adversarial Networks publication-title: Geophys. Res. Lett. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0135 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 364 start-page: 328 year: 2009 end-page: 341 ident: b0070 article-title: Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method publication-title: J. Hydrol. – volume: 551 start-page: 29 year: 2017 end-page: 46 ident: b0215 article-title: A hybrid inverse method for hydraulic tomography in fractured and karstic media publication-title: J. Hydrol. – reference: Ioffe S., Szegedy C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proceedings of the 32nd International Conference on Machine Learning, 37, 448-456. – volume: 38 start-page: 60-1 year: 2002 end-page: 60-15 ident: b0025 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resour. Res. – volume: 366 start-page: 415 year: 2018 end-page: 447 ident: b0235 article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification publication-title: J. Comput. Phys. – year: 2016 ident: b0075 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning publication-title: Proceedings of the 33rd International Conference on Machine Learning – volume: 34 start-page: 1480 year: 2008 end-page: 1491 ident: b0030 article-title: Efficient solution of nonlinear, underdetermined inverse problems with a generalized PDE model publication-title: Comput. Geosci. – volume: 41 year: 2005 ident: b0140 article-title: A Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown publication-title: Water Resour. Res. – start-page: 533 year: 1987 end-page: 561 ident: b0155 article-title: Stochastic continuum representation of fractured rock permeability as an alternative to the R.E.V publication-title: and fracture network concepts, – volume: 55 start-page: 208 year: 2017 end-page: 218 ident: b0055 article-title: Application of large-scale inversion algorithms to hydraulic tomography in an alluvial aquifer publication-title: Groundwater – volume: 472-473 start-page: 287 year: 2012 end-page: 300 ident: b0100 article-title: Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence publication-title: J. Hydrol. – year: 2009 ident: b0170 article-title: Applied Geostatistics with SGeMS: A User’s Guide – volume: 21 start-page: 359 year: 1985 end-page: 371 ident: b0200 article-title: Sensitivity analysis for steady state groundwater flow using adjoint operators publication-title: Water Resour. Res. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0015 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 105 year: 2009 end-page: 128 ident: b0065 article-title: A blocking Markov Chain Monte Carlo method for inverse stochastic hydrogeological modeling publication-title: Math. Geosci. – volume: 49 start-page: 7311 year: 2013 end-page: 7326 ident: b0035 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. – volume: 31 start-page: 303 year: 1997 end-page: 315 ident: b0240 article-title: Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks publication-title: Prog. Nucl. Energy – volume: 45 start-page: W04410 year: 2009 ident: b0040 article-title: A Bayesian approach for inversion of hydraulic tomographic data publication-title: Water Resour. Res. – reference: Kingma D.P., Ba J., 2014. Adam: A method for stochastic optimization, International Conference on Learning Representations (ICLR). – reference: Y. Wu Y. Lin InversionNet: A Real-Time and Accurate Full Waveform Inversion with CNNs and continuous CRFs 2018 arXiv preprint arXiv:1811.07875. – volume: 78 start-page: ID1 year: 2013 end-page: ID14 ident: b0145 article-title: Structure-coupled joint inversion of geophysical and hydrological data publication-title: Geophysics – volume: 149 start-page: 104681 year: 2021 ident: b0165 article-title: Inversion of 1D frequency-and time-domain electromagnetic data with convolutional neural networks publication-title: Comput. Geosci. – volume: 54 start-page: 2889 year: 2011 end-page: 2899 ident: b0050 article-title: Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques publication-title: Math. Comput. Modell. – volume: 11 start-page: 353 year: 1995 end-page: 360 ident: b0085 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Prob. – volume: 36 start-page: 2095 year: 2000 end-page: 2105 ident: b0225 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. – volume: 132 start-page: 679 year: 2018 end-page: 688 ident: b0090 article-title: Conceptual understanding of convolutional neural network - a deep learning approach publication-title: Procedia Comput. Sci. – volume: 54 start-page: 8558 year: 2018 end-page: 8593 ident: b0185 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resour. Res. – volume: 20 start-page: 219 year: 1982 end-page: 232 ident: b0205 article-title: Generalized nonlinear inverse problems solved using the least squares criterion publication-title: Rev. Geophys. – volume: 103 start-page: 258 year: 1992 end-page: 268 ident: b0180 article-title: Global optimization methods for multimodal inverse problems publication-title: J. Comput. Phys. – volume: 112 start-page: 83 year: 2018 end-page: 94 ident: b0060 article-title: Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm publication-title: Adv. Water Resour. – volume: 54 start-page: 381 year: 2018 end-page: 406 ident: b0130 article-title: Training-image based geostatistical inversion using a spatial generative adversarial neural network publication-title: Water Resour. Res. – volume: 29 start-page: 61 year: 1997 end-page: 91 ident: b0160 article-title: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data publication-title: Math. Geol. – volume: 542 start-page: 156 year: 2016 end-page: 171 ident: b0230 article-title: On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study publication-title: J. Hydrol. – volume: 44 start-page: 515 year: 2012 end-page: 543 ident: b0045 article-title: Bayesian Reservoir History Matching Considering Model and Parameter Uncertainties publication-title: Math. Geosci. – year: 1997 ident: b0125 article-title: Introduction to geostatistics: applications in hydrogeology – volume: 47 start-page: W10507 year: 2011 ident: b0020 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. – volume: 52 start-page: 3966 year: 2016 end-page: 3983 ident: b0105 article-title: Smart pilot points using reversible-jump Markov-chain Monte Carlo publication-title: Water Resour. Res. – volume: 225 start-page: 1319 year: 2021 end-page: 1331 ident: b0210 article-title: Convolutional neural networks with SegNet architecture applied to three-dimensional tomography of subsurface electrical resistivity: CNN-3D-ERT publication-title: Geophys. J. Int. – volume: 44 start-page: 515 issue: 5 year: 2012 ident: 10.1016/j.jhydrol.2021.127233_b0045 article-title: Bayesian Reservoir History Matching Considering Model and Parameter Uncertainties publication-title: Math. Geosci. doi: 10.1007/s11004-012-9397-2 – year: 2009 ident: 10.1016/j.jhydrol.2021.127233_b0170 – volume: 103 start-page: 258 issue: 2 year: 1992 ident: 10.1016/j.jhydrol.2021.127233_b0180 article-title: Global optimization methods for multimodal inverse problems publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90400-S – volume: 132 start-page: 679 year: 2018 ident: 10.1016/j.jhydrol.2021.127233_b0090 article-title: Conceptual understanding of convolutional neural network - a deep learning approach publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.069 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.jhydrol.2021.127233_b0135 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 10.1016/j.jhydrol.2021.127233_b0220 – volume: 31 start-page: 303 issue: 3 year: 1997 ident: 10.1016/j.jhydrol.2021.127233_b0240 article-title: Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks publication-title: Prog. Nucl. Energy doi: 10.1016/S0149-1970(96)00013-3 – ident: 10.1016/j.jhydrol.2021.127233_b0115 – volume: 41 start-page: 105 year: 2009 ident: 10.1016/j.jhydrol.2021.127233_b0065 article-title: A blocking Markov Chain Monte Carlo method for inverse stochastic hydrogeological modeling publication-title: Math. Geosci. doi: 10.1007/s11004-008-9206-0 – volume: 11 start-page: 353 issue: 2 year: 1995 ident: 10.1016/j.jhydrol.2021.127233_b0085 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Prob. doi: 10.1088/0266-5611/11/2/005 – volume: 47 start-page: W10507 year: 2011 ident: 10.1016/j.jhydrol.2021.127233_b0020 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. doi: 10.1029/2011WR010616 – volume: 78 start-page: ID1 issue: 3 year: 2013 ident: 10.1016/j.jhydrol.2021.127233_b0145 article-title: Structure-coupled joint inversion of geophysical and hydrological data publication-title: Geophysics doi: 10.1190/geo2012-0460.1 – volume: 36 start-page: 2095 issue: 8 year: 2000 ident: 10.1016/j.jhydrol.2021.127233_b0225 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. doi: 10.1029/2000WR900114 – volume: 49 start-page: 7311 issue: 11 year: 2013 ident: 10.1016/j.jhydrol.2021.127233_b0035 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. doi: 10.1002/wrcr.20519 – start-page: 533 year: 1987 ident: 10.1016/j.jhydrol.2021.127233_b0155 article-title: Stochastic continuum representation of fractured rock permeability as an alternative to the R.E.V – volume: 38 start-page: 60-1 issue: 12 year: 2002 ident: 10.1016/j.jhydrol.2021.127233_b0025 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resour. Res. doi: 10.1029/2001WR001176 – volume: 20 start-page: 219 issue: 2 year: 1982 ident: 10.1016/j.jhydrol.2021.127233_b0205 article-title: Generalized nonlinear inverse problems solved using the least squares criterion publication-title: Rev. Geophys. doi: 10.1029/RG020i002p00219 – volume: 149 start-page: 104681 year: 2021 ident: 10.1016/j.jhydrol.2021.127233_b0165 article-title: Inversion of 1D frequency-and time-domain electromagnetic data with convolutional neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104681 – volume: 2016 start-page: 4762 year: 2016 ident: 10.1016/j.jhydrol.2021.127233_b0110 article-title: Modelling uncertainty in deep learning for camera relocalization publication-title: IEEE international conference on Robotics and Automation (ICRA) – volume: 551 start-page: 29 year: 2017 ident: 10.1016/j.jhydrol.2021.127233_b0215 article-title: A hybrid inverse method for hydraulic tomography in fractured and karstic media publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.05.051 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.jhydrol.2021.127233_b0015 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 472-473 start-page: 287 year: 2012 ident: 10.1016/j.jhydrol.2021.127233_b0100 article-title: Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.09.031 – volume: 55 start-page: 208 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2021.127233_b0055 article-title: Application of large-scale inversion algorithms to hydraulic tomography in an alluvial aquifer publication-title: Groundwater doi: 10.1111/gwat.12457 – volume: 225 start-page: 1319 issue: 2 year: 2021 ident: 10.1016/j.jhydrol.2021.127233_b0210 article-title: Convolutional neural networks with SegNet architecture applied to three-dimensional tomography of subsurface electrical resistivity: CNN-3D-ERT publication-title: Geophys. J. Int. doi: 10.1093/gji/ggab024 – volume: 52 start-page: 3966 issue: 5 year: 2016 ident: 10.1016/j.jhydrol.2021.127233_b0105 article-title: Smart pilot points using reversible-jump Markov-chain Monte Carlo publication-title: Water Resour. Res. doi: 10.1002/2015WR017922 – year: 1997 ident: 10.1016/j.jhydrol.2021.127233_b0125 – year: 2016 ident: 10.1016/j.jhydrol.2021.127233_b0075 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning – volume: 45 start-page: W04410 issue: 4 year: 2009 ident: 10.1016/j.jhydrol.2021.127233_b0040 article-title: A Bayesian approach for inversion of hydraulic tomographic data publication-title: Water Resour. Res. doi: 10.1029/2008WR007078 – volume: 21 start-page: 359 issue: 3 year: 1985 ident: 10.1016/j.jhydrol.2021.127233_b0200 article-title: Sensitivity analysis for steady state groundwater flow using adjoint operators publication-title: Water Resour. Res. doi: 10.1029/WR021i003p00359 – volume: 34 start-page: 1480 issue: 11 year: 2008 ident: 10.1016/j.jhydrol.2021.127233_b0030 article-title: Efficient solution of nonlinear, underdetermined inverse problems with a generalized PDE model publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.01.013 – volume: 41 issue: 8 year: 2005 ident: 10.1016/j.jhydrol.2021.127233_b0140 article-title: A Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown publication-title: Water Resour. Res. doi: 10.1029/2004WR003874 – volume: 54 start-page: 8558 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2021.127233_b0185 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resour. Res. doi: 10.1029/2018WR022643 – volume: 112 start-page: 83 year: 2018 ident: 10.1016/j.jhydrol.2021.127233_b0060 article-title: Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.11.029 – volume: 364 start-page: 328 issue: 3-4 year: 2009 ident: 10.1016/j.jhydrol.2021.127233_b0070 article-title: Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.11.014 – ident: 10.1016/j.jhydrol.2021.127233_b0095 – volume: 54 start-page: 381 issue: 1 year: 2018 ident: 10.1016/j.jhydrol.2021.127233_b0130 article-title: Training-image based geostatistical inversion using a spatial generative adversarial neural network publication-title: Water Resour. Res. doi: 10.1002/2017WR022148 – volume: 45 start-page: 11137 issue: 20 year: 2018 ident: 10.1016/j.jhydrol.2021.127233_b0195 article-title: Discovering State-Parameter Mappings in Subsurface Models Using Generative Adversarial Networks publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080404 – volume: 542 start-page: 156 year: 2016 ident: 10.1016/j.jhydrol.2021.127233_b0230 article-title: On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.061 – volume: 29 start-page: 61 issue: 1 year: 1997 ident: 10.1016/j.jhydrol.2021.127233_b0160 article-title: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data publication-title: Math. Geol. doi: 10.1007/BF02769620 – volume: 366 start-page: 415 year: 2018 ident: 10.1016/j.jhydrol.2021.127233_b0235 article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.04.018 – volume: 54 start-page: 2889 issue: 11-12 year: 2011 ident: 10.1016/j.jhydrol.2021.127233_b0050 article-title: Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques publication-title: Math. Comput. Modell. doi: 10.1016/j.mcm.2011.07.009 |
| SSID | ssj0000334 |
| Score | 2.5189185 |
| Snippet | •A deep learning algorithm has been used for the approximation of the inverse operator in HT.•The algorithm is based on convolutional neural networks.•The... In this manuscript, we discuss the capabilities of a deep learning algorithm implemented with the Conventional Neural Network concept to characterize the... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127233 |
| SubjectTerms | algorithms Convolutional neural networks data collection Deep learning equations groundwater flow Hydraulic tomography image analysis Inverse problem Sciences of the Universe tomography |
| Title | Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2021.127233 https://www.proquest.com/docview/2636723846 https://insu.hal.science/insu-03661813 |
| Volume | 604 |
| WOSCitedRecordID | wos000731472900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQviKsoNxnBW5WQOFmcPEaw0Y1RVWJDfbOS2NFarWnVm8YTv4j_yDmxnbYbaOOBl6RKGifp99U-Pj7nO4S8l3HOI84iRwXKc8IoUk7GktJRpZ_FGS9hyMrrYhO834-Hw2TQav2yuTDrC15V8eVlMvuvUMMxABtTZ_8B7qZROACfAXTYAuywvRXwZ9o7j-Hk5j6AAspW1rs66NuktKGGpVRzR6p639VasriigLGHszmu4SxtOtWowgAOaHqm6pV5dJSc_5DzbIUy2cvpZFv7-rq1i1_Vck9g0qYTlGeQyMXGD3EMVNX1pbppDk8DneBoYk9-X9W8crtf3YZwo4Xl2wCGdhPDa_wXbDPPtSk1290zzIz9SFc9dpXukWOeYNIc3-6yI12y-Fr3rz0RY3esXwqm_8x3fcaZFtvYldvupd_E4NOhODnqf9k9uxWj2EtPYIt5AQ6M9RHYQ8EaJtt7jO8ncZvspUcHw-PN0B8EoZWnx_fYpIx9-OND_c0YunOOUblXjIPa4jl9SB4Y8GiqKfaItFT1mNz7rAzQT8hPoBqdlnSHalRTjVqqUaQavUI12lCNAtXohmoUqEYN1ailGhygDdXohmpPydnhwenHnmMKejhFyMKlk3tlKRPu5-gJKX1ZMpguRzkP4izxCw_sqYLlMVcKhgXmJTIvpPSSWjQxKLzCD56RdjWt1HNCEw6WOw-womQegt2ZSb6vYHJSqsLL_JB1SGh_WVEYtXssunIhbFjjWBhABAIiNCAd4jaXzbTcy00XxBY2YWxWbYsK4ORNl74DmJvboM47sE0g18SGax3y1tJAQM-Py3lZpaarhWBREGHJwDB6cauWXpL7-P_T_sNXpA1Aq9fkbrFejhbzN4bKvwGU29ZI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+convolutional+neural+networks+with+encoder-decoder+structure+for+predicting+the+inverse+operator+in+hydraulic+tomography&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Jardani%2C+Abderrahim&rft.au=Vu%2C+T.+M.&rft.au=Fischer%2C+Pierre&rft.date=2022&rft.pub=Elsevier&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=604&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.127233&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ainsu-03661813v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |