Logic programming in tensor spaces
This paper introduces a novel approach to computing logic programming semantics. First, a propositional Herbrand base is represented in a vector space and if-then rules in a program are encoded in a matrix. Then the least fixpoint of a definite logic program is computed by matrix-vector products wit...
Gespeichert in:
| Veröffentlicht in: | Annals of mathematics and artificial intelligence Jg. 89; H. 12; S. 1133 - 1153 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2021
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1012-2443, 1573-7470 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper introduces a novel approach to computing logic programming semantics. First, a propositional Herbrand base is represented in a vector space and if-then rules in a program are encoded in a matrix. Then the least fixpoint of a definite logic program is computed by matrix-vector products with a non-linear operation. Second, disjunctive logic programs are represented in third-order tensors and their minimal models are computed by algebraic manipulation of tensors. Third, normal logic programs are represented by matrices and third-order tensors, and their stable models are computed. The result of this paper exploits a new connection between linear algebraic computation and symbolic computation, which has the potential to realize logical inference in huge scale of knowledge bases. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1012-2443 1573-7470 |
| DOI: | 10.1007/s10472-021-09767-x |