Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species

The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non- albicans species has increased o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mSphere Jg. 1; H. 4
Hauptverfasser: Borman, Andrew M., Szekely, Adrien, Johnson, Elizabeth M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Society for Microbiology 01.07.2016
Schlagworte:
ISSN:2379-5042, 2379-5042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non- albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris , with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans , which is currently accepted as the most pathogenic member of the genus. Candida auris , first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro , with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella , with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans , which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella . IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non- albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris , with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans , which is currently accepted as the most pathogenic member of the genus.
AbstractList The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris, with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus. Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris, with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus.
Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris, with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus.
Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris, with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus.Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris, with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus.
ABSTRACT Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris, with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus.
The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non- albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris , with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans , which is currently accepted as the most pathogenic member of the genus. Candida auris , first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro , with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella , with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans , which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella . IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non- albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain-specific differences in the virulence of C. auris , with the most virulent isolates exhibiting pathogenicity comparable to that of C. albicans , which is currently accepted as the most pathogenic member of the genus.
Author Johnson, Elizabeth M.
Szekely, Adrien
Borman, Andrew M.
Author_xml – sequence: 1
  givenname: Andrew M.
  surname: Borman
  fullname: Borman, Andrew M.
  organization: UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Bristol, United Kingdom
– sequence: 2
  givenname: Adrien
  surname: Szekely
  fullname: Szekely, Adrien
  organization: UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Bristol, United Kingdom
– sequence: 3
  givenname: Elizabeth M.
  surname: Johnson
  fullname: Johnson, Elizabeth M.
  organization: UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Bristol, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27547827$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFLHDEYxUOxVKvePUmgFy9jk0wmmbkUymJbUbCgnkM2881uZCaZJhlh7_3Dm6nrshV6SsL7vccL3_cRHTjvAKEzSi4pZfXn4X5cQ4BLQmjdFFS8Q0eslE1REc4O9u6H6DTGJ5IxwYSQ4gM6ZLLismbyCP1e-GHUQSf7DPinTmu_AmeNTRvsO_zobIIW31i3av2Ar6PvdYI4S2kN-GqAsMrazogX2rW21VhPwUacH_gugwHfwGYvfYfdj2AsxBP0vtN9hNPteYwev109LH4Ut3ffrxdfbwvDGU9F0wKp60pqAUsmWtEaAiVpRGdMJ8EwseSGUtNoTitmBO8I551ogVUdIctSlMfoy0vuOC0HaA24FHSvxmAHHTbKa6v-VZxdq5V_VrxpiKQ0B1xsA4L_NUFMarDRQN9rB36Kita0FKwqS5bRT2_QJz8Fl7-naJMJSXgzNzrfb7Sr8jqgDIgXwAQfY4BO5dnkafm5oO0VJWpeBrVdBvV3GRSdk8kb42v2fy1_AMs6uuk
CitedBy_id crossref_primary_10_3389_fmicb_2019_02788
crossref_primary_10_1128_mSphere_00339_19
crossref_primary_10_1128_JCM_02202_16
crossref_primary_10_1111_myc_12781
crossref_primary_10_1093_mmy_myab032
crossref_primary_10_3390_jof7100804
crossref_primary_10_1016_j_micpath_2018_09_014
crossref_primary_10_3390_ijms22116162
crossref_primary_10_1007_s40588_024_00219_8
crossref_primary_10_1016_j_micpath_2025_107663
crossref_primary_10_3390_pharmaceutics14010180
crossref_primary_10_1080_22221751_2023_2300525
crossref_primary_10_1111_ajt_14121
crossref_primary_10_3390_jof11060406
crossref_primary_10_3390_jof4040129
crossref_primary_10_1002_mbo3_1218
crossref_primary_10_1016_j_ijantimicag_2017_05_019
crossref_primary_10_1111_imj_14612
crossref_primary_10_2147_IDR_S249864
crossref_primary_10_1371_journal_ppat_1012076
crossref_primary_10_3389_fcimb_2020_00397
crossref_primary_10_3389_fmicb_2020_00957
crossref_primary_10_3390_pathogens10080990
crossref_primary_10_1097_QCO_0000000000000411
crossref_primary_10_1016_j_mib_2019_05_008
crossref_primary_10_1111_nyas_13739
crossref_primary_10_1016_j_cmi_2017_11_005
crossref_primary_10_3390_pathogens14040328
crossref_primary_10_1128_AAC_00476_20
crossref_primary_10_1099_jmm_0_001820
crossref_primary_10_1371_journal_ppat_1008921
crossref_primary_10_3390_jof10090615
crossref_primary_10_1016_j_jhin_2017_08_019
crossref_primary_10_3390_jof10090617
crossref_primary_10_3390_jof11090625
crossref_primary_10_1093_jac_dkz280
crossref_primary_10_3389_fcimb_2017_00099
crossref_primary_10_3390_jof8111126
crossref_primary_10_1128_msphere_00817_21
crossref_primary_10_1111_1348_0421_12973
crossref_primary_10_2147_IDR_S467418
crossref_primary_10_3389_fmed_2024_1312929
crossref_primary_10_1038_s41598_021_94320_3
crossref_primary_10_1128_msphere_00161_25
crossref_primary_10_1016_j_diagmicrobio_2024_116589
crossref_primary_10_1371_journal_ppat_1006290
crossref_primary_10_3389_fcimb_2021_759408
crossref_primary_10_1128_AAC_02396_16
crossref_primary_10_1111_myc_13776
crossref_primary_10_1007_s11046_024_00868_9
crossref_primary_10_3390_microorganisms8020181
crossref_primary_10_3390_pharmaceutics13091333
crossref_primary_10_1128_AAC_01872_17
crossref_primary_10_3389_fmicb_2018_03081
crossref_primary_10_1097_JD9_0000000000000385
crossref_primary_10_1128_spectrum_00222_25
crossref_primary_10_1038_s41426_018_0187_x
crossref_primary_10_1128_CMR_00029_17
crossref_primary_10_1093_jambio_lxaf005
crossref_primary_10_1099_jmm_0_001036
crossref_primary_10_1080_21501203_2023_2227218
crossref_primary_10_1128_spectrum_02942_23
crossref_primary_10_1186_s40560_018_0342_4
crossref_primary_10_1016_j_bbapap_2019_02_008
crossref_primary_10_1111_lam_13395
crossref_primary_10_1007_s11046_025_00974_2
crossref_primary_10_3390_jof6030152
crossref_primary_10_2147_IDR_S402754
crossref_primary_10_1016_j_micpath_2021_105285
crossref_primary_10_3390_healthcare11030425
crossref_primary_10_1146_annurev_micro_032521_015858
crossref_primary_10_1016_j_biopha_2018_12_009
crossref_primary_10_1128_mSphere_00506_18
crossref_primary_10_1111_eea_13237
crossref_primary_10_3390_diseases10030058
crossref_primary_10_1016_j_jiph_2019_03_009
crossref_primary_10_3390_jof4010012
crossref_primary_10_1021_acsinfecdis_5c00081
crossref_primary_10_18203_2320_6012_ijrms20252187
crossref_primary_10_1093_jacamr_dlaf106
crossref_primary_10_3390_jof9101026
crossref_primary_10_1007_s11046_019_00351_w
crossref_primary_10_1016_j_mib_2024_102506
crossref_primary_10_3389_fmicb_2019_01918
crossref_primary_10_3390_pathogens12121444
crossref_primary_10_1128_JCM_00591_18
crossref_primary_10_1016_j_jhin_2019_06_006
crossref_primary_10_1111_myc_12754
crossref_primary_10_3390_microorganisms10040758
crossref_primary_10_1016_j_ijantimicag_2018_05_007
crossref_primary_10_1007_s40475_023_00293_w
crossref_primary_10_1016_j_plasmid_2017_11_001
crossref_primary_10_15585_mmwr_mm6544e1
crossref_primary_10_3390_pharmaceutics15051365
crossref_primary_10_1007_s12281_017_0299_0
crossref_primary_10_1093_mmy_myae042
crossref_primary_10_1016_j_mycmed_2018_04_011
crossref_primary_10_1371_journal_ppat_1011843
crossref_primary_10_1128_JCM_02083_19
crossref_primary_10_1128_AAC_01625_19
crossref_primary_10_1093_genetics_iyab029
crossref_primary_10_3390_jof9100955
crossref_primary_10_1371_journal_ppat_1012011
crossref_primary_10_3390_microorganisms13040717
crossref_primary_10_1111_myc_12647
crossref_primary_10_1128_msphere_00734_24
crossref_primary_10_1128_JCM_02055_18
crossref_primary_10_1128_Spectrum_00957_21
crossref_primary_10_1093_jac_dkz100
crossref_primary_10_3201_eid2302_161486
crossref_primary_10_1038_s41467_025_60189_3
crossref_primary_10_1128_spectrum_01837_21
crossref_primary_10_3390_jof5040093
crossref_primary_10_1016_j_ajem_2024_07_062
crossref_primary_10_3390_jof7090763
crossref_primary_10_3390_antibiotics11070977
crossref_primary_10_1128_mSphere_00458_19
crossref_primary_10_1002_mbo3_578
crossref_primary_10_3389_fmicb_2023_1174878
crossref_primary_10_1093_mmy_myz127
crossref_primary_10_1016_j_jiph_2022_12_012
crossref_primary_10_1186_s13017_023_00518_3
crossref_primary_10_3390_pathogens10040466
crossref_primary_10_1007_s00284_023_03416_8
crossref_primary_10_1093_femspd_ftaa067
crossref_primary_10_3389_fmicb_2018_01996
crossref_primary_10_1093_cid_ciw696
crossref_primary_10_1016_j_ijid_2017_08_017
crossref_primary_10_3390_microorganisms9040863
crossref_primary_10_1016_j_jiac_2025_102747
crossref_primary_10_3390_ijms22020771
crossref_primary_10_5812_archcid_70741
crossref_primary_10_1007_s11046_019_00352_9
crossref_primary_10_1128_mSphere_00371_20
crossref_primary_10_3390_jof6030104
crossref_primary_10_1155_2023_2385018
crossref_primary_10_1016_j_ijantimicag_2018_08_016
crossref_primary_10_1080_14787210_2020_1750368
crossref_primary_10_3390_tropicalmed8080382
crossref_primary_10_3390_jof9020129
crossref_primary_10_1016_j_jiac_2020_12_012
crossref_primary_10_1111_apm_70022
crossref_primary_10_3390_jof9020243
crossref_primary_10_3390_jof7060401
crossref_primary_10_1038_s41467_021_27545_5
crossref_primary_10_1093_mmy_myae122
crossref_primary_10_1371_journal_ppat_1010954
crossref_primary_10_1016_j_chom_2023_02_010
crossref_primary_10_1080_14787210_2017_1364992
crossref_primary_10_26779_2786_832X_2023_6_44
crossref_primary_10_1128_JCM_00630_17
crossref_primary_10_3390_jof7040262
crossref_primary_10_1016_j_tim_2022_01_010
crossref_primary_10_1099_jmm_0_001318
crossref_primary_10_3201_eid2302_161320
crossref_primary_10_1016_j_bbrc_2025_151573
crossref_primary_10_1371_journal_pntd_0008190
crossref_primary_10_1093_femsyr_foy082
crossref_primary_10_1038_s41467_024_46786_8
crossref_primary_10_1111_jam_14490
crossref_primary_10_3390_jof7090725
crossref_primary_10_1371_journal_ppat_1011239
crossref_primary_10_3389_fgene_2020_00351
crossref_primary_10_3390_microorganisms9102177
crossref_primary_10_1016_j_mycmed_2022_101248
crossref_primary_10_1128_aem_01025_24
crossref_primary_10_1038_s41426_018_0095_0
crossref_primary_10_3390_antibiotics12081234
crossref_primary_10_1128_msphere_00760_20
crossref_primary_10_1007_s10096_020_03886_9
crossref_primary_10_1016_j_fm_2017_11_014
crossref_primary_10_1080_22221751_2021_2017756
crossref_primary_10_1093_jac_dkx480
crossref_primary_10_1016_j_cmrp_2017_11_004
crossref_primary_10_2147_IDR_S387675
crossref_primary_10_1371_journal_pone_0223433
crossref_primary_10_1016_j_micinf_2018_06_004
crossref_primary_10_1128_mbio_01253_25
crossref_primary_10_1080_14787210_2023_2179036
crossref_primary_10_1111_myc_12904
crossref_primary_10_3390_antibiotics12050861
crossref_primary_10_4014_jmb_2404_04040
crossref_primary_10_1016_j_micres_2020_126621
crossref_primary_10_1128_Spectrum_00013_21
crossref_primary_10_15446_revfacmed_v68n3_75599
crossref_primary_10_2478_am_2023_0003
crossref_primary_10_1128_spectrum_01531_24
crossref_primary_10_1017_ice_2020_410
crossref_primary_10_3390_jof6010030
crossref_primary_10_1093_femspd_ftaa034
crossref_primary_10_1007_s13225_018_0413_9
crossref_primary_10_1093_mmy_myy054
crossref_primary_10_1128_spectrum_01746_24
crossref_primary_10_1128_JCM_01588_17
crossref_primary_10_1002_advs_202509567
crossref_primary_10_3390_jof10050326
crossref_primary_10_1111_apm_13260
crossref_primary_10_1371_journal_ppat_1007638
crossref_primary_10_3390_jof4030113
crossref_primary_10_1016_j_riam_2016_11_002
crossref_primary_10_1093_femsyr_foae039
crossref_primary_10_3390_ph18040460
crossref_primary_10_1080_14787210_2017_1402678
crossref_primary_10_1038_s41467_022_31201_x
crossref_primary_10_1093_mmy_myy162
crossref_primary_10_3390_jof9010011
crossref_primary_10_3390_microorganisms13030652
crossref_primary_10_1016_j_mycmed_2018_06_007
crossref_primary_10_1016_j_jgar_2019_10_018
crossref_primary_10_1097_ICO_0000000000002306
crossref_primary_10_3390_microorganisms9040807
crossref_primary_10_1016_j_scitotenv_2021_151023
crossref_primary_10_1038_s41598_020_60792_y
crossref_primary_10_1093_mmy_myz139
crossref_primary_10_1016_j_csbj_2022_06_030
crossref_primary_10_3390_jof8050499
crossref_primary_10_1093_mmy_myad108
crossref_primary_10_1080_13543784_2017_1341488
crossref_primary_10_1128_mSphere_00334_18
crossref_primary_10_1016_j_jiac_2021_09_018
crossref_primary_10_3390_pathogens14010040
crossref_primary_10_3390_jof4030108
crossref_primary_10_1038_s41564_020_0780_3
crossref_primary_10_5858_arpa_2018_0508_RA
crossref_primary_10_1007_s11046_020_00526_w
crossref_primary_10_1128_spectrum_02086_23
crossref_primary_10_3390_pathogens10111397
Cites_doi 10.1007/s10096-013-2027-1
10.3201/eid1910.130393
10.1093/clinids/19.Supplement_1.S49
10.1128/JCM.00319-11
10.3201/eid2007.131765
10.2174/138945006776359421
10.3109/13693786.2010.493563
10.1016/S0732-8893(99)00046-2
10.1086/432060
10.1111/j.1574-695X.2000.tb01427.x
10.1128/EC.00242-10
10.4103/0255-0857.108746
10.1128/JCM.40.6.2266-2269.2002
10.1086/597108
10.1378/chest.123.5_suppl.500S
10.1016/S0891-5520(05)70363-9
10.1016/S0732-8893(97)00240-X
10.1111/j.1348-0421.2008.00083.x
10.1128/JCM.00367-15
10.1093/mmy/myv085
10.1128/JCM.01136-12
10.1111/myc.12519
10.1128/JCM.02816-12
10.3855/jidc.4582
ContentType Journal Article
Copyright Copyright © 2016 Borman et al. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Borman et al. 2016 Borman et al.
Copyright_xml – notice: Copyright © 2016 Borman et al. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Borman et al. 2016 Borman et al.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1128/mSphere.00189-16
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Candida auris Pathogenicity in Galleria mellonella
EISSN 2379-5042
ExternalDocumentID PMC4990711
27547827
10_1128_mSphere_00189_16
Genre Journal Article
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
ADRAZ
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
EJD
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
R9-
RHI
RPM
RSF
UKHRP
3V.
ALIPV
NPM
RHF
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c424t-9de08857a6eb26d6dc0e3096fccf7ec26b4c11c9a4152c64f044f6de25f00b363
IEDL.DBID BENPR
ISICitedReferencesCount 269
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392586000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-5042
IngestDate Tue Nov 04 02:05:38 EST 2025
Sun Nov 09 09:34:32 EST 2025
Tue Oct 07 07:01:26 EDT 2025
Thu Jan 02 22:19:53 EST 2025
Tue Nov 18 21:48:00 EST 2025
Sat Nov 29 03:33:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Candida auris
pathogenicity
emerging pathogen
pathogenic yeasts
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-9de08857a6eb26d6dc0e3096fccf7ec26b4c11c9a4152c64f044f6de25f00b363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation Borman AM, Szekely A, Johnson EM. 2016. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 1(4):e00189-16. doi:10.1128/mSphere.00189-16.
OpenAccessLink https://www.proquest.com/docview/1953370496?pq-origsite=%requestingapplication%
PMID 27547827
PQID 1953370496
PQPubID 2045592
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4990711
proquest_miscellaneous_1813625332
proquest_journals_1953370496
pubmed_primary_27547827
crossref_citationtrail_10_1128_mSphere_00189_16
crossref_primary_10_1128_mSphere_00189_16
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSphere
PublicationTitleAlternate mSphere
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Marr KA (e_1_3_2_2_2) 2004; 18
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_14_2
Clinical and Laboratory Standards Institute (e_1_3_2_27_2) 2008
21715586 - J Clin Microbiol. 2011 Sep;49(9):3139-42
24963796 - Emerg Infect Dis. 2014 Jul;20(7):1250-1
20560864 - Med Mycol. 2011 Jan;49(1):98-102
16611037 - Curr Drug Targets. 2006 Apr;7(4):495-504
27292939 - Mycoses. 2016 Aug;59(8):535-8
7948571 - Clin Infect Dis. 1994 Aug;19 Suppl 1:S49-53
21076011 - Eukaryot Cell. 2011 Jan;10(1):34-42
16028162 - Clin Infect Dis. 2005 Aug 15;41(4):521-6
25809970 - J Clin Microbiol. 2015 Jun;53(6):1823-30
23303503 - J Clin Microbiol. 2013 Mar;51(3):967-72
10640612 - FEMS Immunol Med Microbiol. 2000 Feb;27(2):163-9
19193113 - Clin Infect Dis. 2009 Mar 15;48(6):e57-61
23508441 - Indian J Med Microbiol. 2013 Jan-Mar;31(1):90-1
19161556 - Microbiol Immunol. 2009 Jan;53(1):41-4
12037106 - J Clin Microbiol. 2002 Jun;40(6):2266-9
9597393 - Diagn Microbiol Infect Dis. 1998 May;31(1):327-32
10529877 - Diagn Microbiol Infect Dis. 1999 Sep;35(1):19-25
25881537 - J Infect Dev Ctries. 2015 Apr 15;9(4):435-7
24048006 - Emerg Infect Dis. 2013 Oct;19(10):1670-3
12740235 - Chest. 2003 May;123(5 Suppl):500S-3S
24357342 - Eur J Clin Microbiol Infect Dis. 2014 Jun;33(6):919-26
22895037 - J Clin Microbiol. 2012 Nov;50(11):3783-5
26591008 - Med Mycol. 2016 Jan;54(1):80-8
9187954 - Infect Dis Clin North Am. 1997 Jun;11(2):411-25
15682589 - Oncology (Williston Park). 2004 Dec;18(14 Suppl 13):9-14
References_xml – ident: e_1_3_2_14_2
  doi: 10.1007/s10096-013-2027-1
– ident: e_1_3_2_16_2
  doi: 10.3201/eid1910.130393
– ident: e_1_3_2_8_2
  doi: 10.1093/clinids/19.Supplement_1.S49
– ident: e_1_3_2_15_2
  doi: 10.1128/JCM.00319-11
– ident: e_1_3_2_19_2
  doi: 10.3201/eid2007.131765
– ident: e_1_3_2_6_2
  doi: 10.2174/138945006776359421
– ident: e_1_3_2_24_2
  doi: 10.3109/13693786.2010.493563
– ident: e_1_3_2_4_2
  doi: 10.1016/S0732-8893(99)00046-2
– ident: e_1_3_2_3_2
  doi: 10.1086/432060
– ident: e_1_3_2_25_2
  doi: 10.1111/j.1574-695X.2000.tb01427.x
– volume-title: Reference method for broth dilution susceptibility testing of yeasts: approved standard
  year: 2008
  ident: e_1_3_2_27_2
– ident: e_1_3_2_10_2
  doi: 10.1128/EC.00242-10
– ident: e_1_3_2_17_2
  doi: 10.4103/0255-0857.108746
– ident: e_1_3_2_20_2
  doi: 10.1128/JCM.40.6.2266-2269.2002
– ident: e_1_3_2_13_2
  doi: 10.1086/597108
– ident: e_1_3_2_7_2
  doi: 10.1378/chest.123.5_suppl.500S
– ident: e_1_3_2_9_2
  doi: 10.1016/S0891-5520(05)70363-9
– ident: e_1_3_2_5_2
  doi: 10.1016/S0732-8893(97)00240-X
– ident: e_1_3_2_12_2
  doi: 10.1111/j.1348-0421.2008.00083.x
– ident: e_1_3_2_22_2
  doi: 10.1128/JCM.00367-15
– ident: e_1_3_2_26_2
  doi: 10.1093/mmy/myv085
– ident: e_1_3_2_21_2
  doi: 10.1128/JCM.01136-12
– ident: e_1_3_2_23_2
  doi: 10.1111/myc.12519
– volume: 18
  start-page: 9
  year: 2004
  ident: e_1_3_2_2_2
  article-title: Invasive Candida infections: the changing epidemiology
  publication-title: Oncology
– ident: e_1_3_2_11_2
  doi: 10.1128/JCM.02816-12
– ident: e_1_3_2_18_2
  doi: 10.3855/jidc.4582
– reference: 19193113 - Clin Infect Dis. 2009 Mar 15;48(6):e57-61
– reference: 15682589 - Oncology (Williston Park). 2004 Dec;18(14 Suppl 13):9-14
– reference: 23508441 - Indian J Med Microbiol. 2013 Jan-Mar;31(1):90-1
– reference: 24963796 - Emerg Infect Dis. 2014 Jul;20(7):1250-1
– reference: 12037106 - J Clin Microbiol. 2002 Jun;40(6):2266-9
– reference: 16611037 - Curr Drug Targets. 2006 Apr;7(4):495-504
– reference: 25881537 - J Infect Dev Ctries. 2015 Apr 15;9(4):435-7
– reference: 10640612 - FEMS Immunol Med Microbiol. 2000 Feb;27(2):163-9
– reference: 21076011 - Eukaryot Cell. 2011 Jan;10(1):34-42
– reference: 16028162 - Clin Infect Dis. 2005 Aug 15;41(4):521-6
– reference: 12740235 - Chest. 2003 May;123(5 Suppl):500S-3S
– reference: 10529877 - Diagn Microbiol Infect Dis. 1999 Sep;35(1):19-25
– reference: 21715586 - J Clin Microbiol. 2011 Sep;49(9):3139-42
– reference: 7948571 - Clin Infect Dis. 1994 Aug;19 Suppl 1:S49-53
– reference: 22895037 - J Clin Microbiol. 2012 Nov;50(11):3783-5
– reference: 24048006 - Emerg Infect Dis. 2013 Oct;19(10):1670-3
– reference: 9597393 - Diagn Microbiol Infect Dis. 1998 May;31(1):327-32
– reference: 20560864 - Med Mycol. 2011 Jan;49(1):98-102
– reference: 26591008 - Med Mycol. 2016 Jan;54(1):80-8
– reference: 19161556 - Microbiol Immunol. 2009 Jan;53(1):41-4
– reference: 9187954 - Infect Dis Clin North Am. 1997 Jun;11(2):411-25
– reference: 23303503 - J Clin Microbiol. 2013 Mar;51(3):967-72
– reference: 25809970 - J Clin Microbiol. 2015 Jun;53(6):1823-30
– reference: 24357342 - Eur J Clin Microbiol Infect Dis. 2014 Jun;33(6):919-26
– reference: 27292939 - Mycoses. 2016 Aug;59(8):535-8
SSID ssj0001626676
Score 2.4861712
Snippet The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality...
Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported...
ABSTRACT Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Fungal infections
Outbreaks
Title Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species
URI https://www.ncbi.nlm.nih.gov/pubmed/27547827
https://www.proquest.com/docview/1953370496
https://www.proquest.com/docview/1813625332
https://pubmed.ncbi.nlm.nih.gov/PMC4990711
Volume 1
WOSCitedRecordID wos000392586000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDiRexucgMCoj8cJD1MTxbOcJQbWJCSgRA6k8Ra0_RCWWlKWbtHf-cO4SN-1A2gsvkRKfE0d3tn_34TuAV8YmEpGujYWweSyMd_E8y22MvOY57g820e1B4Y9qMtHTaV4Eg1sTwirXa2K7UNvakI18RO6eTCGelW-Wv2KqGkXe1VBCYwd2KVOZGMDuu6NJ8WVjZUG8LlXvn-R6dHZKx_UdeSB0HlOZ8-396B-Q-Xes5Nbmc3zvf4d9H_YC7GRvOzl5ALdc9RDudIUorx7B7_EmCTgrEBTWKFcLgwid1Z51uJRR-RNbn7ETFFdCqNSE8JGRXYtKHfUd2ZjOytgZo5RFDcMb9plwJvvgrrbe3pOdLh2uMM1j-HZ89HX8Pg71GWIjuFjFuXW4Rh2qmUT1XFppTeIyVIm8MV45w-VcmDQ1-YxAgpHCJ0J4aR0_9Ekyz2S2D4OqrtxTYJn2msAad1kmcpdp7ud4QTEnhdPbCEZrLpUmJC-nGho_y1aJ4boMfC1bvpapjOB132PZJe64gfZgzbwyTOGm3HAugpd9M04-8qjMKldfII1OEQAgHY_gSScn_ce4olRpXEWgrklQT0CJva-3VIsfbYJv1ELxr9NnNw_rOdxF9Ca72OEDGKzOL9wLuG0uV4vmfAg7aqraqx6GWTFsDQ5DCm8t8Flx8qn4_gdxJBzJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoJLeUOggJHgwMHaxHHt5IAQWqi66rJUapH2lu76IVaiydJsqXrv7-E3diav3YLUWw9cIkWePJx8M_7GY88AvDU2VMh0LZfSplwa7_g0Ti3Hfy1SHB9smFQbhYd6NErG43RvDf60e2FoWWVrEytDbQtDc-Q9CvfEGvms-jj_xalqFEVX2xIaNSx23dkpumzlh8Fn_L_vhNj-ctDf4U1VAW6kkAueWoeataUnCp1KZZU1oYuRyHtjvHZGqKk0UWTSCQ1tRkkfSumVdWLLh-E0VjHe9wbcRDuuaQmZHuvlnA56B0p30VCR9I72KTmAo3hHknIqqr46-v1Daf9embky1G3f-98-0n3YaEg1-1RrwQNYc_lDuF2X2Tx7BOf9ZYpztoeUt0CtmRn0P1jhWc26GRV3scURG6AyEv-mJiTHjGbtqJBTdyHr004gO2GUkKlkeMK-EYtm2OWVu3di-3OH9rN8DN-v5RM8gfW8yN0zYHHiE6KiwsWxTF2cCD_FAyoxudPeBtBrUZGZJjU7VQj5mVUumkiyBkdZhaMsUgG8766Y12lJrpDdbMGSNQaqzJZICeBN14ymheJFk9wVJyiTREhvUE4E8LTGZfcwoSkRnNAB6EuI7QQobfnllnz2o0pfjj429jp6fvVrvYY7Owdfh9lwMNp9AXeRp6p6lfQmrC-OT9xLuGV-L2bl8atKBxkcXjeeLwAHCHOs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhAX3pRAASPBgUO0iePazgEh2HbFqtWyoiD1lu76IVZqk6XZgnrnV_HrmMlrtyD11gOXSJEnDyffjL_x2DMAr4yNJDJdGwph01AY78JpktoQ_zVPcXywka42Cu-r0UgfHqbjNfjd7oWhZZWtTawMtS0MzZH3KNyTKOSzsuebZRHjncG7-feQKkhRpLUtp1FDZM-d_0T3rXw73MF__Zrzwe6X_sewqTAQGsHFIkytQy3bVhOJDqa00prIJUjqvTFeOcPlVJg4NumEhjkjhY-E8NI6vu2jaJrIBO97DTYUkgzUro0Pu6Px5-UMD_oKUnWxUa57JweUKsBR9EOnIZVYXx0L_yG4f6_TXBn4Bnf-5092F243dJu9r_XjHqy5_D7cqAtwnj-AX_1l8nM2RjJcoD7NDHomrPCs5uOMyr7Y4oQNUU2JmVMT0mZG83lU4qm7kPVpj5CdMErVVDI8YZ-IXzPs8srdO7GDuUPLWj6Er1fyCR7Bel7k7jGwRHtNJJW7JBGpSzT3UzygepOj7W0AvRYhmWmStlPtkOOsct64zhpMZRWmslgG8Ka7Yl4nLLlEdqsFTtaYrjJboiaAl10zGh2KJE1yV5yhjI6R-KAcD2Czxmj3MK4oRRxXAagL6O0EKKH5xZZ89q1KbI7eN_Y6fnL5a72AmwjjbH842nsKt5DAynr59BasL07P3DO4bn4sZuXp80YhGRxdNaD_ADmDfc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Pathogenicity+of+United+Kingdom+Isolates+of+the+Emerging+Pathogen+Candida+auris+and+Other+Key+Pathogenic+Candida+Species&rft.jtitle=mSphere&rft.au=Borman%2C+Andrew+M&rft.au=Szekely%2C+Adrien&rft.au=Johnson%2C+Elizabeth+M&rft.date=2016-07-01&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1128%2FmSphere.00189-16&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon