Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks
The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the traini...
Uložené v:
| Vydané v: | Algorithms Ročník 15; číslo 9; s. 325 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2022
|
| Predmet: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the training data to a centralized location. Such a strategy, however, limits our ability to secure data privacy or use high-performance distributed/parallel computing platforms. To alleviate such limitations, in this paper, we study the federated training of DeepONets for the first time. That is, we develop a framework, which we refer to as Fed-DeepONet, that allows multiple clients to train DeepONets collaboratively under the coordination of a centralized server. To achieve Fed-DeepONets, we propose an efficient stochastic gradient-based algorithm that enables the distributed optimization of the DeepONet parameters by averaging first-order estimates of the DeepONet loss gradient. Then, to accelerate the training convergence of Fed-DeepONets, we propose a moment-enhanced (i.e., adaptive) stochastic gradient-based strategy. Finally, we verify the performance of Fed-DeepONet by learning, for different configurations of the number of clients and fractions of available clients, (i) the solution operator of a gravity pendulum and (ii) the dynamic response of a parametric library of pendulums. |
|---|---|
| AbstractList | The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the training data to a centralized location. Such a strategy, however, limits our ability to secure data privacy or use high-performance distributed/parallel computing platforms. To alleviate such limitations, in this paper, we study the federated training of DeepONets for the first time. That is, we develop a framework, which we refer to as Fed-DeepONet, that allows multiple clients to train DeepONets collaboratively under the coordination of a centralized server. To achieve Fed-DeepONets, we propose an efficient stochastic gradient-based algorithm that enables the distributed optimization of the DeepONet parameters by averaging first-order estimates of the DeepONet loss gradient. Then, to accelerate the training convergence of Fed-DeepONets, we propose a moment-enhanced (i.e., adaptive) stochastic gradient-based strategy. Finally, we verify the performance of Fed-DeepONet by learning, for different configurations of the number of clients and fractions of available clients, (i) the solution operator of a gravity pendulum and (ii) the dynamic response of a parametric library of pendulums. |
| Audience | Academic |
| Author | Moya, Christian Lin, Guang |
| Author_xml | – sequence: 1 givenname: Christian surname: Moya fullname: Moya, Christian – sequence: 2 givenname: Guang orcidid: 0000-0002-0976-1987 surname: Lin fullname: Lin, Guang |
| BackLink | https://www.osti.gov/biblio/1886960$$D View this record in Osti.gov |
| BookMark | eNplkc1uFDEQhEcoSCSBA28wghOHSfw_Y24hkBApYg8sZ6vHbm-8bOzFdhTx9ngZQAjkg1vtqq9d6pPuKKaIXfeSkjPONTkHKokmnMkn3THVWg9i0vzor_pZd1LKlhAltaLH3foK3fAecb_6hPVt_7kmewelBttfZ3ABYx3eQUHXNx1mqK1aZwgxxE2ffH9w9qv94SXlviEeU_5anndPPewKvvh1n3Zfrj6sLz8Ot6vrm8uL28EKJuqglQQH8ygYF2LGSc8SlHBq5MJPgIzOzE1auYkTAOkV8TNTYvSeCCKUtfy0u1m4LsHW7HO4h_zdJAjmZyPljYHcsuzQkHFCTcFxmJiYJQerubOoQRPrJGWN9WphpZbeFBsq2jubYkRbDZ0mpRVpoteLaJ_Ttwcs1WzTQ44to2EjbX_TUh1QZ4tqA21yiD7VDLYdh_ehIdGH1r8YhaSCE0Gb4Xwx2JxKyehNGw81pNiMYWcoMYflmj_LbY43_zh-p_9f-wMbn6M5 |
| CitedBy_id | crossref_primary_10_1088_1361_6420_ace9d4 crossref_primary_10_1016_j_jcp_2025_114184 crossref_primary_10_1016_j_physd_2024_134418 crossref_primary_10_1016_j_neunet_2025_107809 crossref_primary_10_3390_fluids8120323 crossref_primary_10_1016_j_cma_2024_117229 crossref_primary_10_1016_j_cma_2024_117084 |
| Cites_doi | 10.1109/JPROC.2020.2998530 10.1137/20M1342859 10.1109/72.392253 10.1073/pnas.1517384113 10.1016/j.ifacol.2016.10.249 10.1016/j.jcp.2021.110296 10.1016/j.neucom.2023.03.015 10.1038/nature14539 10.1016/j.jcp.2018.10.045 10.1016/j.jcp.2019.06.042 10.1038/s42256-021-00302-5 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U OTOTI DOA |
| DOI | 10.3390/a15090325 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_078e91ad3a824b53ac93dce9a90cd512 1886960 A745143041 10_3390_a15090325 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U OTOTI |
| ID | FETCH-LOGICAL-c424t-965adab742344be89b5a64d6734f8ae21b2d896d830aa5f60fb2647ff04046cc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:42:21 EDT 2025 Mon Aug 12 05:49:27 EDT 2024 Fri Jul 25 12:04:55 EDT 2025 Tue Nov 04 17:55:59 EST 2025 Tue Nov 18 22:35:20 EST 2025 Sat Nov 29 07:13:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-965adab742344be89b5a64d6734f8ae21b2d896d830aa5f60fb2647ff04046cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE SC0021142 |
| ORCID | 0000-0002-0976-1987 0000000209761987 |
| OpenAccessLink | https://doaj.org/article/078e91ad3a824b53ac93dce9a90cd512 |
| PQID | 2716479562 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_078e91ad3a824b53ac93dce9a90cd512 osti_scitechconnect_1886960 proquest_journals_2716479562 gale_infotracacademiconefile_A745143041 crossref_citationtrail_10_3390_a15090325 crossref_primary_10_3390_a15090325 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel – name: Switzerland |
| PublicationTitle | Algorithms |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Schaeffer (ref_8) 2017; 473 Lu (ref_10) 2021; 3 Qin (ref_2) 2019; 395 ref_14 Raissi (ref_5) 2019; 378 ref_12 LeCun (ref_1) 2015; 521 ref_19 ref_18 ref_16 ref_15 Li (ref_17) 2020; 37 Chen (ref_11) 1995; 6 Cai (ref_13) 2021; 436 Qin (ref_3) 2021; 43 Minerva (ref_9) 2020; 108 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_27 ref_26 Brunton (ref_6) 2016; 113 Brunton (ref_7) 2016; 49 ref_4 |
| References_xml | – volume: 473 start-page: 20160446 year: 2017 ident: ref_8 article-title: Learning partial differential equations via data discovery and sparse optimization publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – ident: ref_24 – ident: ref_26 – volume: 108 start-page: 1785 year: 2020 ident: ref_9 article-title: Digital twin in the IoT context: A survey on technical features, scenarios, and architectural models publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.2998530 – volume: 43 start-page: A1607 year: 2021 ident: ref_3 article-title: Data-driven learning of nonautonomous systems publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1342859 – ident: ref_16 – ident: ref_18 – ident: ref_23 – ident: ref_21 – volume: 37 start-page: 50 year: 2020 ident: ref_17 article-title: Federated Learning: Challenges, Methods, and Future Directions publication-title: IEEE Signal Process. Mag. – volume: 6 start-page: 911 year: 1995 ident: ref_11 article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.392253 – ident: ref_25 – ident: ref_4 – volume: 113 start-page: 3932 year: 2016 ident: ref_6 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517384113 – ident: ref_27 – volume: 49 start-page: 710 year: 2016 ident: ref_7 article-title: Sparse identification of nonlinear dynamics with control (SINDYc) publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.249 – volume: 436 start-page: 110296 year: 2021 ident: ref_13 article-title: DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110296 – ident: ref_12 – ident: ref_14 doi: 10.1016/j.neucom.2023.03.015 – volume: 521 start-page: 436 year: 2015 ident: ref_1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_15 – volume: 378 start-page: 686 year: 2019 ident: ref_5 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 395 start-page: 620 year: 2019 ident: ref_2 article-title: Data driven governing equations approximation using deep neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.06.042 – volume: 3 start-page: 218 year: 2021 ident: ref_10 article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00302-5 – ident: ref_19 – ident: ref_22 – ident: ref_20 |
| SSID | ssj0065961 |
| Score | 2.3728018 |
| Snippet | The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings... |
| SourceID | doaj osti proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 325 |
| SubjectTerms | Algorithms Analysis Clients Communication Computational linguistics Computer architecture Data security deep learning deep operator networks Digital twins Dynamic response Dynamical systems Engineering Experiments federated learning Language processing Natural language interfaces Neural networks Optimization Pendulums Privacy stochastic-gradient descent Training |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EeKBRQQwuyEBJcoubhODYX1IUunNIKFqk3a_xIQUKb7W7a39-ZrLNUAnHhmjiSo3n4G3v8fYy9wZQn28KVaVBOpELaLLVKKqxSMiesRcDsxCA2UTeNurjQ53HDbR3bKsecOCRq3znaIz8uCNjXiOaLD8urlFSj6HQ1SmjcZzvEVIZ-vjM9bc6_jrlYVlrmGz6hEov7Y0D4o7OSdLHvrEIDWf82JU86jK0_MvOw3Mz2_neij9mjCDT5ycYznrB7YbHP9kYRBx5jep_t3mEkfMrms-DTTyEsz5rQv-ff-s79AKJy5p9XQ3NYn05x3fN8RiQUiFM9n0eRCd61nL7kZ8swnN3zZtNivn7Gvs9O5x-_pFF4IXWiEH2qZQUeLB3iCmGD0rYCKbysS9EqCEVuC6-09KrMAKpWZq1FXFW3LWYEIZ0rn7PJoluEA8bBOoAg2lAj9gGQStbCAmlkKQUVhIS9Gw1hXGQlJ3GMXwarE7KZ2dosYa-3Q5cbKo6_DZqSNbcDiD17eNCtLk0MRoOwKOgcfAmqELYqwenSu6BBZ84jAkrYW_IFQzGOk3EQryrgLxFbljmpBeHMTOQJOyR3MQhXiHPXUXOS602ulMTSMGFHo4uYmBrW5rd_vPj360P2sKC7FkND2xGb9Kvr8JI9cDf9z_XqVfT0W8wyBug priority: 102 providerName: ProQuest |
| Title | Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks |
| URI | https://www.proquest.com/docview/2716479562 https://www.osti.gov/biblio/1886960 https://doaj.org/article/078e91ad3a824b53ac93dce9a90cd512 |
| Volume | 15 |
| WOSCitedRecordID | wos000858799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVl20Mv_S51ky6iFNqLiW3JspRbttltS6mzNFtIT2L0YRIIu8uu22N-e2Zs7xJooZdefLBlkGc8ozdo9B5j7zDlqabwIo3ay1Qql6VOK41VSualcwiYvezEJqq61hcXZn5H6ot6wnp64N5wR7iERZNDEKAL6UoB3ojgowGT-VB2-sJFVpldMdXnYFUalfc8QgKL-iNA2GMyQXrYd1afjqR_n4pHK4ypPzJyt8zMnrBHAz7kJ_28nrJ7cfmMPd5pL_AhFJ-zxSyG9DTG9Vkd22N-3q78JRDnMv-06bq42nSCC1TgM2KLQEAZ-GJQg-CrhtOb_Gwdu012Xve94NsX7Mdsuvj4OR0UElIvC9mmRpUQwNFuq5QuauNKUDKoSshGQyxyVwRtVNAiAygblTUOAVDVNBi6UnkvXrLRcrWMrxgH5wGibGKFIAVAaVVJByRmpTWUEBP2YWc56wf6cFKxuLZYRpCR7d7ICXu7H7ruOTP-NmhC5t8PIJrr7gY63w7Ot_9yfsLek_MsBSNOxsNwpgA_iWit7EklCRBmMk_YAfnXIq4gclxPXUS-tbnWCmu4hB3u3G6HGN7agkrJCuvH4vX_mOsBe1jQ0YmuP-2QjdrNr_iGPfC_26vtZszuT6b1_Pu4-43x-rVKx9SHek7Xmyk-n3_5Nv95C0yp-Y8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwwGCAKBtgIRC8RMuH49hICG2MsmpbV4lOGk_GXwEk1JQ2gPhT_EbuTZMyCcTbHnhNnCiJj-89jq_PAXiMIU-UqcuiIB2PuLBxZKWQOEuJHbcWCbPjjdlEMRrJszM1XoOf3V4YKqvsYmITqH3l6B_5TkrEvkA2n76cfYnINYpWVzsLjSUsDsOP7zhlW7wY7mP_PknTwevJq4OodRWIHE95HSmRG28srVByboNUNjeCe1FkvJQmpIlNvVTCyyw2Ji9FXFokDUVZIty5cC7D-16CdY5gj3uwPh4ej991sV_kSiRL_aIsU_GOQbql4ox8uM9lvcYcYJUCehWO5T8yQZPeBhv_24e5AddbIs12l8i_CWthugkbnUkFa2PWJlw7p7h4CyaD4KP9EGYno1A_Z2_ryn00JFXN3syb4rc62sO87tmARDaQh3s2aU00WFUyupKdzEJTm8BGyxL6xW04vZA3vQO9aTUNd4EZ64wJvAwFcjtjhBQFt4Y8wKQ0uQl9eNZ1vHat6jqZf3zWOPsijOgVRvrwaNV0tpQa-VujPULPqgGpgzcHqvkH3QYbjbQvqMT4zMiU2zwzTmXeBWVU7DwyvD48JexpimH4MM60WzHwlUgNTO8WnHh0zJM-bBE8NdIx0hR2VHzlap1IKXDq24ftDpK6DX0L_RuP9_59-iFcOZgcH-mj4ehwC66mtK-kKd7bhl49_xruw2X3rf60mD9oRxmD9xeN318lZWO2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4UCggQgusEAguVhzver1GQqghDVRFbgRB6m3ZLwMSikNiQPw1fh0zjh0qgbj1wNVeW_54O_PGnn0P4CGGPFkmjkdBOREJaePIKqmwSomdsBYJsxON2URWFOr0NJ9uwc9uLQy1VXYxsQnUvnL0jXyQELHPkM0ng7Jti5iOJ88XXyJykKI_rZ2dxhoix-HHdyzfVs-OxviuHyXJ5HD24lXUOgxETiSijnKZGm8s_a0UwgaV29RI4WXGRalMSIY28SqXXvHYmLSUcWmRQGRlidAX0jmO570A2xnHoqcH26PDYvqmywMyzeVwrWXEeR4PDFKvPObkyX0mAzZGAZt00KtwXv-RFZpUN9n5nx_SNbjaEmx2sJ4R12ErzHdhpzOvYG0s24UrZ5QYb8BsEnw0DmFxUoT6KXtbV-6jIQlr9nLZNMXV0QjzvWcTEt9Afu7ZrDXXYFXJ6Eh2sghNzwIr1q31q5vw7lzu9Bb05tU83AZmrDMmiDJkyPmMkUpmwhryBlPKpCb04UkHAu1aNXYyBfmssSojvOgNXvrwYDN0sZYg-dugESFpM4BUw5sN1fKDboOQRjoY8qHx3KhE2JQbl3PvQm7y2Hlkfn14TDjUFNvwYpxpl2jgLZFKmD7IBPHrWAz7sEdQ1UjTSGvYUVOWq_VQKYklcR_2O3jqNiSu9G9s3vn37vtwCUGrXx8Vx3twOaHlJk1P3z706uXXcBcuum_1p9XyXjvhGLw_b_j-AsX1bFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fed-DeepONet%3A+Stochastic+Gradient-Based+Federated+Training+of+Deep+Operator+Networks&rft.jtitle=Algorithms&rft.au=Moya%2C+Christian&rft.au=Lin%2C+Guang&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=15&rft.issue=9&rft_id=info:doi/10.3390%2Fa15090325&rft.externalDocID=A745143041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |