Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks

The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the traini...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithms Ročník 15; číslo 9; s. 325
Hlavní autori: Moya, Christian, Lin, Guang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2022
Predmet:
ISSN:1999-4893, 1999-4893
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the training data to a centralized location. Such a strategy, however, limits our ability to secure data privacy or use high-performance distributed/parallel computing platforms. To alleviate such limitations, in this paper, we study the federated training of DeepONets for the first time. That is, we develop a framework, which we refer to as Fed-DeepONet, that allows multiple clients to train DeepONets collaboratively under the coordination of a centralized server. To achieve Fed-DeepONets, we propose an efficient stochastic gradient-based algorithm that enables the distributed optimization of the DeepONet parameters by averaging first-order estimates of the DeepONet loss gradient. Then, to accelerate the training convergence of Fed-DeepONets, we propose a moment-enhanced (i.e., adaptive) stochastic gradient-based strategy. Finally, we verify the performance of Fed-DeepONet by learning, for different configurations of the number of clients and fractions of available clients, (i) the solution operator of a gravity pendulum and (ii) the dynamic response of a parametric library of pendulums.
AbstractList The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the training data to a centralized location. Such a strategy, however, limits our ability to secure data privacy or use high-performance distributed/parallel computing platforms. To alleviate such limitations, in this paper, we study the federated training of DeepONets for the first time. That is, we develop a framework, which we refer to as Fed-DeepONet, that allows multiple clients to train DeepONets collaboratively under the coordination of a centralized server. To achieve Fed-DeepONets, we propose an efficient stochastic gradient-based algorithm that enables the distributed optimization of the DeepONet parameters by averaging first-order estimates of the DeepONet loss gradient. Then, to accelerate the training convergence of Fed-DeepONets, we propose a moment-enhanced (i.e., adaptive) stochastic gradient-based strategy. Finally, we verify the performance of Fed-DeepONet by learning, for different configurations of the number of clients and fractions of available clients, (i) the solution operator of a gravity pendulum and (ii) the dynamic response of a parametric library of pendulums.
Audience Academic
Author Moya, Christian
Lin, Guang
Author_xml – sequence: 1
  givenname: Christian
  surname: Moya
  fullname: Moya, Christian
– sequence: 2
  givenname: Guang
  orcidid: 0000-0002-0976-1987
  surname: Lin
  fullname: Lin, Guang
BackLink https://www.osti.gov/biblio/1886960$$D View this record in Osti.gov
BookMark eNplkc1uFDEQhEcoSCSBA28wghOHSfw_Y24hkBApYg8sZ6vHbm-8bOzFdhTx9ngZQAjkg1vtqq9d6pPuKKaIXfeSkjPONTkHKokmnMkn3THVWg9i0vzor_pZd1LKlhAltaLH3foK3fAecb_6hPVt_7kmewelBttfZ3ABYx3eQUHXNx1mqK1aZwgxxE2ffH9w9qv94SXlviEeU_5anndPPewKvvh1n3Zfrj6sLz8Ot6vrm8uL28EKJuqglQQH8ygYF2LGSc8SlHBq5MJPgIzOzE1auYkTAOkV8TNTYvSeCCKUtfy0u1m4LsHW7HO4h_zdJAjmZyPljYHcsuzQkHFCTcFxmJiYJQerubOoQRPrJGWN9WphpZbeFBsq2jubYkRbDZ0mpRVpoteLaJ_Ttwcs1WzTQ44to2EjbX_TUh1QZ4tqA21yiD7VDLYdh_ehIdGH1r8YhaSCE0Gb4Xwx2JxKyehNGw81pNiMYWcoMYflmj_LbY43_zh-p_9f-wMbn6M5
CitedBy_id crossref_primary_10_1088_1361_6420_ace9d4
crossref_primary_10_1016_j_jcp_2025_114184
crossref_primary_10_1016_j_physd_2024_134418
crossref_primary_10_1016_j_neunet_2025_107809
crossref_primary_10_3390_fluids8120323
crossref_primary_10_1016_j_cma_2024_117229
crossref_primary_10_1016_j_cma_2024_117084
Cites_doi 10.1109/JPROC.2020.2998530
10.1137/20M1342859
10.1109/72.392253
10.1073/pnas.1517384113
10.1016/j.ifacol.2016.10.249
10.1016/j.jcp.2021.110296
10.1016/j.neucom.2023.03.015
10.1038/nature14539
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2019.06.042
10.1038/s42256-021-00302-5
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
OTOTI
DOA
DOI 10.3390/a15090325
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_078e91ad3a824b53ac93dce9a90cd512
1886960
A745143041
10_3390_a15090325
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
OTOTI
ID FETCH-LOGICAL-c424t-965adab742344be89b5a64d6734f8ae21b2d896d830aa5f60fb2647ff04046cc3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:42:21 EDT 2025
Mon Aug 12 05:49:27 EDT 2024
Fri Jul 25 12:04:55 EDT 2025
Tue Nov 04 17:55:59 EST 2025
Tue Nov 18 22:35:20 EST 2025
Sat Nov 29 07:13:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-965adab742344be89b5a64d6734f8ae21b2d896d830aa5f60fb2647ff04046cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
SC0021142
ORCID 0000-0002-0976-1987
0000000209761987
OpenAccessLink https://doaj.org/article/078e91ad3a824b53ac93dce9a90cd512
PQID 2716479562
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_078e91ad3a824b53ac93dce9a90cd512
osti_scitechconnect_1886960
proquest_journals_2716479562
gale_infotracacademiconefile_A745143041
crossref_citationtrail_10_3390_a15090325
crossref_primary_10_3390_a15090325
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
– name: Switzerland
PublicationTitle Algorithms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Schaeffer (ref_8) 2017; 473
Lu (ref_10) 2021; 3
Qin (ref_2) 2019; 395
ref_14
Raissi (ref_5) 2019; 378
ref_12
LeCun (ref_1) 2015; 521
ref_19
ref_18
ref_16
ref_15
Li (ref_17) 2020; 37
Chen (ref_11) 1995; 6
Cai (ref_13) 2021; 436
Qin (ref_3) 2021; 43
Minerva (ref_9) 2020; 108
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_27
ref_26
Brunton (ref_6) 2016; 113
Brunton (ref_7) 2016; 49
ref_4
References_xml – volume: 473
  start-page: 20160446
  year: 2017
  ident: ref_8
  article-title: Learning partial differential equations via data discovery and sparse optimization
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– ident: ref_24
– ident: ref_26
– volume: 108
  start-page: 1785
  year: 2020
  ident: ref_9
  article-title: Digital twin in the IoT context: A survey on technical features, scenarios, and architectural models
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.2998530
– volume: 43
  start-page: A1607
  year: 2021
  ident: ref_3
  article-title: Data-driven learning of nonautonomous systems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1342859
– ident: ref_16
– ident: ref_18
– ident: ref_23
– ident: ref_21
– volume: 37
  start-page: 50
  year: 2020
  ident: ref_17
  article-title: Federated Learning: Challenges, Methods, and Future Directions
  publication-title: IEEE Signal Process. Mag.
– volume: 6
  start-page: 911
  year: 1995
  ident: ref_11
  article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392253
– ident: ref_25
– ident: ref_4
– volume: 113
  start-page: 3932
  year: 2016
  ident: ref_6
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517384113
– ident: ref_27
– volume: 49
  start-page: 710
  year: 2016
  ident: ref_7
  article-title: Sparse identification of nonlinear dynamics with control (SINDYc)
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.249
– volume: 436
  start-page: 110296
  year: 2021
  ident: ref_13
  article-title: DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110296
– ident: ref_12
– ident: ref_14
  doi: 10.1016/j.neucom.2023.03.015
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_15
– volume: 378
  start-page: 686
  year: 2019
  ident: ref_5
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 395
  start-page: 620
  year: 2019
  ident: ref_2
  article-title: Data driven governing equations approximation using deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.042
– volume: 3
  start-page: 218
  year: 2021
  ident: ref_10
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– ident: ref_19
– ident: ref_22
– ident: ref_20
SSID ssj0065961
Score 2.3728018
Snippet The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings...
SourceID doaj
osti
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 325
SubjectTerms Algorithms
Analysis
Clients
Communication
Computational linguistics
Computer architecture
Data security
deep learning
deep operator networks
Digital twins
Dynamic response
Dynamical systems
Engineering
Experiments
federated learning
Language processing
Natural language interfaces
Neural networks
Optimization
Pendulums
Privacy
stochastic-gradient descent
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EeKBRQQwuyEBJcoubhODYX1IUunNIKFqk3a_xIQUKb7W7a39-ZrLNUAnHhmjiSo3n4G3v8fYy9wZQn28KVaVBOpELaLLVKKqxSMiesRcDsxCA2UTeNurjQ53HDbR3bKsecOCRq3znaIz8uCNjXiOaLD8urlFSj6HQ1SmjcZzvEVIZ-vjM9bc6_jrlYVlrmGz6hEov7Y0D4o7OSdLHvrEIDWf82JU86jK0_MvOw3Mz2_neij9mjCDT5ycYznrB7YbHP9kYRBx5jep_t3mEkfMrms-DTTyEsz5rQv-ff-s79AKJy5p9XQ3NYn05x3fN8RiQUiFM9n0eRCd61nL7kZ8swnN3zZtNivn7Gvs9O5x-_pFF4IXWiEH2qZQUeLB3iCmGD0rYCKbysS9EqCEVuC6-09KrMAKpWZq1FXFW3LWYEIZ0rn7PJoluEA8bBOoAg2lAj9gGQStbCAmlkKQUVhIS9Gw1hXGQlJ3GMXwarE7KZ2dosYa-3Q5cbKo6_DZqSNbcDiD17eNCtLk0MRoOwKOgcfAmqELYqwenSu6BBZ84jAkrYW_IFQzGOk3EQryrgLxFbljmpBeHMTOQJOyR3MQhXiHPXUXOS602ulMTSMGFHo4uYmBrW5rd_vPj360P2sKC7FkND2xGb9Kvr8JI9cDf9z_XqVfT0W8wyBug
  priority: 102
  providerName: ProQuest
Title Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks
URI https://www.proquest.com/docview/2716479562
https://www.osti.gov/biblio/1886960
https://doaj.org/article/078e91ad3a824b53ac93dce9a90cd512
Volume 15
WOSCitedRecordID wos000858799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVl20Mv_S51ky6iFNqLiW3JspRbttltS6mzNFtIT2L0YRIIu8uu22N-e2Zs7xJooZdefLBlkGc8ozdo9B5j7zDlqabwIo3ay1Qql6VOK41VSualcwiYvezEJqq61hcXZn5H6ot6wnp64N5wR7iERZNDEKAL6UoB3ojgowGT-VB2-sJFVpldMdXnYFUalfc8QgKL-iNA2GMyQXrYd1afjqR_n4pHK4ypPzJyt8zMnrBHAz7kJ_28nrJ7cfmMPd5pL_AhFJ-zxSyG9DTG9Vkd22N-3q78JRDnMv-06bq42nSCC1TgM2KLQEAZ-GJQg-CrhtOb_Gwdu012Xve94NsX7Mdsuvj4OR0UElIvC9mmRpUQwNFuq5QuauNKUDKoSshGQyxyVwRtVNAiAygblTUOAVDVNBi6UnkvXrLRcrWMrxgH5wGibGKFIAVAaVVJByRmpTWUEBP2YWc56wf6cFKxuLZYRpCR7d7ICXu7H7ruOTP-NmhC5t8PIJrr7gY63w7Ot_9yfsLek_MsBSNOxsNwpgA_iWit7EklCRBmMk_YAfnXIq4gclxPXUS-tbnWCmu4hB3u3G6HGN7agkrJCuvH4vX_mOsBe1jQ0YmuP-2QjdrNr_iGPfC_26vtZszuT6b1_Pu4-43x-rVKx9SHek7Xmyk-n3_5Nv95C0yp-Y8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwwGCAKBtgIRC8RMuH49hICG2MsmpbV4lOGk_GXwEk1JQ2gPhT_EbuTZMyCcTbHnhNnCiJj-89jq_PAXiMIU-UqcuiIB2PuLBxZKWQOEuJHbcWCbPjjdlEMRrJszM1XoOf3V4YKqvsYmITqH3l6B_5TkrEvkA2n76cfYnINYpWVzsLjSUsDsOP7zhlW7wY7mP_PknTwevJq4OodRWIHE95HSmRG28srVByboNUNjeCe1FkvJQmpIlNvVTCyyw2Ji9FXFokDUVZIty5cC7D-16CdY5gj3uwPh4ej991sV_kSiRL_aIsU_GOQbql4ox8uM9lvcYcYJUCehWO5T8yQZPeBhv_24e5AddbIs12l8i_CWthugkbnUkFa2PWJlw7p7h4CyaD4KP9EGYno1A_Z2_ryn00JFXN3syb4rc62sO87tmARDaQh3s2aU00WFUyupKdzEJTm8BGyxL6xW04vZA3vQO9aTUNd4EZ64wJvAwFcjtjhBQFt4Y8wKQ0uQl9eNZ1vHat6jqZf3zWOPsijOgVRvrwaNV0tpQa-VujPULPqgGpgzcHqvkH3QYbjbQvqMT4zMiU2zwzTmXeBWVU7DwyvD48JexpimH4MM60WzHwlUgNTO8WnHh0zJM-bBE8NdIx0hR2VHzlap1IKXDq24ftDpK6DX0L_RuP9_59-iFcOZgcH-mj4ehwC66mtK-kKd7bhl49_xruw2X3rf60mD9oRxmD9xeN318lZWO2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4UCggQgusEAguVhzver1GQqghDVRFbgRB6m3ZLwMSikNiQPw1fh0zjh0qgbj1wNVeW_54O_PGnn0P4CGGPFkmjkdBOREJaePIKqmwSomdsBYJsxON2URWFOr0NJ9uwc9uLQy1VXYxsQnUvnL0jXyQELHPkM0ng7Jti5iOJ88XXyJykKI_rZ2dxhoix-HHdyzfVs-OxviuHyXJ5HD24lXUOgxETiSijnKZGm8s_a0UwgaV29RI4WXGRalMSIY28SqXXvHYmLSUcWmRQGRlidAX0jmO570A2xnHoqcH26PDYvqmywMyzeVwrWXEeR4PDFKvPObkyX0mAzZGAZt00KtwXv-RFZpUN9n5nx_SNbjaEmx2sJ4R12ErzHdhpzOvYG0s24UrZ5QYb8BsEnw0DmFxUoT6KXtbV-6jIQlr9nLZNMXV0QjzvWcTEt9Afu7ZrDXXYFXJ6Eh2sghNzwIr1q31q5vw7lzu9Bb05tU83AZmrDMmiDJkyPmMkUpmwhryBlPKpCb04UkHAu1aNXYyBfmssSojvOgNXvrwYDN0sZYg-dugESFpM4BUw5sN1fKDboOQRjoY8qHx3KhE2JQbl3PvQm7y2Hlkfn14TDjUFNvwYpxpl2jgLZFKmD7IBPHrWAz7sEdQ1UjTSGvYUVOWq_VQKYklcR_2O3jqNiSu9G9s3vn37vtwCUGrXx8Vx3twOaHlJk1P3z706uXXcBcuum_1p9XyXjvhGLw_b_j-AsX1bFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fed-DeepONet%3A+Stochastic+Gradient-Based+Federated+Training+of+Deep+Operator+Networks&rft.jtitle=Algorithms&rft.au=Moya%2C+Christian&rft.au=Lin%2C+Guang&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=15&rft.issue=9&rft_id=info:doi/10.3390%2Fa15090325&rft.externalDocID=A745143041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon