Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows

In this paper, we investigate the numerical simulation of particulate flows using a new moving mesh method combined with the multigrid fictitious boundary method (FBM) [S. Turek, D.C. Wan, L.S. Rivkind, The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 222; no. 1; pp. 28 - 56
Main Authors: Wan, Decheng, Turek, Stefan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 01.03.2007
Elsevier
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we investigate the numerical simulation of particulate flows using a new moving mesh method combined with the multigrid fictitious boundary method (FBM) [S. Turek, D.C. Wan, L.S. Rivkind, The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations. Challenges in Scientific Computing, Lecture Notes in Computational Science and Engineering, vol. 35, Springer, Berlin, 2003, pp. 37–68; D.C. Wan, S. Turek, L.S. Rivkind, An efficient multigrid FEM solution technique for incompressible flow with moving rigid bodies. Numerical Mathematics and Advanced Applications, ENUMATH 2003, Springer, Berlin, 2004, pp. 844–853; D.C. Wan, S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method, Int. J. Numer. Method Fluids 51 (2006) 531–566]. With this approach, the mesh is dynamically relocated through a (linear) partial differential equation to capture the surface of the moving particles with a relatively small number of grid points. The complete system is realized by solving the mesh movement and the partial differential equations of the flow problem alternately via an operator-splitting approach. The flow is computed by a special ALE formulation with a multigrid finite element solver, and the solid particles are allowed to move freely through the computational mesh which is adaptively aligned by the moving mesh method in every time step. One important aspect is that the data structure of the undeformed initial mesh, in many cases a tensor-product mesh or a semi-structured grid consisting of many tensor-product meshes, is preserved, while only the spacing between the grid points is adapted in each time step so that the high efficiency of structured meshes can be exploited. Numerical results demonstrate that the interaction between the fluid and the particles can be accurately and efficiently handled by the presented method. It is also shown that the presented method significantly improves the accuracy of the previous multigrid FBM to simulate particulate flows with many moving rigid particles.
AbstractList In this paper, we investigate the numerical simulation of particulate flows using a new moving mesh method combined with the multigrid fictitious boundary method (FBM) [S. Turek, D.C. Wan, L.S. Rivkind, The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations. Challenges in Scientific Computing, Lecture Notes in Computational Science and Engineering, vol. 35, Springer, Berlin, 2003, pp. 37-68; D.C. Wan, S. Turek, L.S. Rivkind, An efficient multigrid FEM solution technique for incompressible flow with moving rigid bodies. Numerical Mathematics and Advanced Applications, ENUMATH 2003, Springer, Berlin, 2004, pp. 844-853; D.C. Wan, S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method, Int. J. Numer. Method Fluids 51 (2006) 531-566]. With this approach, the mesh is dynamically relocated through a (linear) partial differential equation to capture the surface of the moving particles with a relatively small number of grid points. The complete system is realized by solving the mesh movement and the partial differential equations of the flow problem alternately via an operator-splitting approach. The flow is computed by a special ALE formulation with a multigrid finite element solver, and the solid particles are allowed to move freely through the computational mesh which is adaptively aligned by the moving mesh method in every time step. One important aspect is that the data structure of the undeformed initial mesh, in many cases a tensor-product mesh or a semi- structured grid consisting of many tensor-product meshes, is preserved, while only the spacing between the grid points is adapted in each time step so that the high efficiency of structured meshes can be exploited. Numerical results demonstrate that the interaction between the fluid and the particles can be accurately and efficiently handled by the presented method. It is also shown that the presented method significantly improves the accuracy of the previous multigrid FBM to simulate particulate flows with many moving rigid particles.
Author Wan, Decheng
Turek, Stefan
Author_xml – sequence: 1
  givenname: Decheng
  surname: Wan
  fullname: Wan, Decheng
  email: dcwan@sjtu.edu.cn
  organization: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Huashan Road 1954, 200030 Shanghai, China
– sequence: 2
  givenname: Stefan
  surname: Turek
  fullname: Turek, Stefan
  organization: Institute of Applied Mathematics LS III, University of Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18544169$$DView record in Pascal Francis
BookMark eNqFkUGLFDEQhYOs4OzqD_CWi-Klx0qmO-ngSRZXFxa86Dkk6eqdDN3JmKRX9t9v2lk8eBihSKB470F975JchBiQkLcMtgyY-HjYHtxxywHEdh3gL8iGgYKGSyYuyKZuWKOUYq_IZc4HAOi7tt8Qd-Nd8cXHJVMblzCY9EhNGOgcH3y4pzPmfX3KPg6ZjjHRskcalhmTd2ai2c_LZKo90DjS5O_9QI8mFe_WNdJxir_za_JyNFPGN8__Ffl58-XH9bfm7vvX2-vPd41reVua3gqL2A9qsCj5wEfRtV3XSguOI1eWg4EODdgdswiSG2mZUuPocADc7frdFXl_yj2m-GvBXPTss8NpMgHrfZor3nZCQRV-OCtkQkrVdYqr_0uh56wXopVV-u5ZanJlMyYTnM_6mPxcoWpWgbdMrJHypHMp5pxw1M6XPwxLMn6qkXqtVB90rVSvlep1gFcn-8f5N_yM59PJg5X8g8eks_MYKjSf0BU9RH_G_QTT6rx1
CitedBy_id crossref_primary_10_1016_j_compfluid_2015_04_006
crossref_primary_10_1016_j_jcp_2009_07_010
crossref_primary_10_1016_j_jcp_2019_05_004
crossref_primary_10_1016_j_jcp_2013_08_038
crossref_primary_10_1002_fld_5037
crossref_primary_10_1016_j_jcp_2011_10_026
crossref_primary_10_1016_j_ijmultiphaseflow_2011_12_002
crossref_primary_10_1002_fld_4965
crossref_primary_10_1016_j_ces_2011_06_075
crossref_primary_10_1007_s40571_019_00289_2
crossref_primary_10_1016_j_jfoodeng_2019_05_029
crossref_primary_10_1016_j_pss_2008_11_019
crossref_primary_10_1088_1361_6463_aae233
crossref_primary_10_1016_j_compfluid_2017_02_003
crossref_primary_10_1016_j_jcp_2020_109850
crossref_primary_10_1016_j_jcp_2013_12_030
crossref_primary_10_1007_s12206_008_0816_8
crossref_primary_10_1007_s40997_016_0035_3
crossref_primary_10_1007_s11802_014_2263_8
crossref_primary_10_1007_s11804_007_7008_2
crossref_primary_10_1016_j_compfluid_2009_01_005
crossref_primary_10_1002_nme_5764
crossref_primary_10_1007_s40571_023_00684_w
crossref_primary_10_1016_j_cpc_2019_01_009
crossref_primary_10_1016_j_jcp_2011_06_031
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_062
crossref_primary_10_1080_10618562_2020_1805106
crossref_primary_10_1016_j_cma_2013_08_014
crossref_primary_10_1002_cnm_1428
crossref_primary_10_1016_j_jnnfm_2018_07_010
crossref_primary_10_1002_cjce_20610
crossref_primary_10_1007_s40571_021_00423_z
crossref_primary_10_1016_j_compfluid_2015_05_026
crossref_primary_10_1016_j_jcp_2008_06_004
crossref_primary_10_1017_jmech_2015_47
crossref_primary_10_1016_j_compfluid_2025_106685
crossref_primary_10_1109_TMTT_2022_3142180
crossref_primary_10_1063_1_5035163
crossref_primary_10_3390_fluids8080229
crossref_primary_10_1016_j_jcp_2019_109164
crossref_primary_10_1007_s40430_021_03283_z
crossref_primary_10_1016_j_compfluid_2013_11_016
crossref_primary_10_1002_nme_4481
crossref_primary_10_1016_j_physd_2011_06_013
Cites_doi 10.1006/jcph.1999.6365
10.1016/S0294-1449(16)30307-9
10.1016/S0045-7825(96)01155-3
10.1007/BF00717645
10.1016/S0301-9322(99)00100-7
10.1016/j.camwa.2004.10.006
10.1016/S0301-9322(98)00048-2
10.1006/jcph.2001.6844
10.1002/(SICI)1098-2426(199607)12:4<489::AID-NUM5>3.0.CO;2-I
10.1006/jcph.2000.6592
10.1016/S0301-9322(02)00164-7
10.1137/S1064827596305738
10.1016/0021-9991(89)90035-1
10.1017/S0022112087001046
10.1002/fld.1129
10.1006/jcph.2001.6809
10.1002/num.1690110606
10.1006/jcph.2000.6542
10.1007/978-3-322-89849-4_39
10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2006.06.002
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 56
ExternalDocumentID 18544169
10_1016_j_jcp_2006_06_002
S0021999106002725
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c424t-8b6bee8d9dbe72d2f6545547b0c2e29b20a05ea0b31be072a7b199ffced0e3383
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000244841300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Wed Oct 01 13:35:30 EDT 2025
Wed Oct 01 14:13:53 EDT 2025
Sat Sep 27 21:51:15 EDT 2025
Mon Jul 21 09:13:12 EDT 2025
Sat Nov 29 06:45:57 EST 2025
Tue Nov 18 22:29:53 EST 2025
Fri Feb 23 02:29:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Moving mesh
ALE
Fictitious boundary
Particulate flows
Multigrid
FEM
Partial differential equations
Tensor product
Digital simulation
Boundary conditions
Moving boundary method
Calculation methods
Incompressible flow
Operator splitting
Dirichlet problem
Calculation
Linear differential equations
Mesh method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-8b6bee8d9dbe72d2f6545547b0c2e29b20a05ea0b31be072a7b199ffced0e3383
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1082186647
PQPubID 23500
PageCount 29
ParticipantIDs proquest_miscellaneous_29245690
proquest_miscellaneous_1677955929
proquest_miscellaneous_1082186647
pascalfrancis_primary_18544169
crossref_citationtrail_10_1016_j_jcp_2006_06_002
crossref_primary_10_1016_j_jcp_2006_06_002
elsevier_sciencedirect_doi_10_1016_j_jcp_2006_06_002
PublicationCentury 2000
PublicationDate 2007-03-01
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational physics
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References G.P. Galdi, V. Heuveline, Lift and sedimentation of particles on the flow of a viscoelastic liquid in a channel. Available from
Huang (bib14) 2001; 171
Turek (bib24) 1996; 22
Turek (bib25) 1997; 143
Bochev, Liao, de la Pena (bib16) 1996; 12
S. Turek, FEATFLOW-finite element software for the incompressible Navier–Stokes equations: User Manual, Release 1.2, University of Dortmund, 1999.
Dacorogna, Moser (bib21) 1990; 7
M. Schäfer, S. Turek, Benchmark computations of laminar flow around cylinder, in: E.H. Hirschel (Ed.), Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 52, Vieweg, 1996, pp. 547–566.
Diaz-Goano, Minev, Nandakumar (bib29) 2001; vol. 2179
Ceniceros, Hou (bib15) 2001; 172
Cai, Fleitas, Jiang, Liao (bib19) 2004; 48
Fortes, Joseph, Lundgren (bib27) 1987; 177
Wan, Turek (bib11) 2006; 51
D.C. Wan, S. Turek, An efficient multigrid-FEM method for the simulation of liquid–solid two phase flows, J. Comput. Appl. Math. (in press).
Liu, Ji, Liao (bib18) 1998; 20
Wan, Turek, Rivkind (bib10) 2004
Liao, Semper (bib17) 1995; 11
M. Grajewski, M. Köster, S. Kilian, S. Turek, Numerical analysis and practical aspects of a robust and efficient grid deformation method in the finite element context. Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 294, FB Mathematik, Universität Dortmund, 2005. Available from
Turek (bib22) 1999
Patankar, Singh, Joseph, Glowinski, Pan (bib6) 2000; 26
Berger, Collela (bib13) 1989; 82
Glowinski (bib8) 2003; vol. IX
.
Maury (bib4) 1999; 156
Turek, Wan, Rivkind (bib9) 2003; vol. 35
Glowinski, Pan, Hesla, Joseph (bib5) 1999; 25
Glowinski, Pan, Hesla, Joseph, Periaux (bib7) 2001; 169
Singh, Hesla, Joseph (bib28) 2003; 29
Hu, Patankar, Zhu (bib2) 2001; 169
Hu, Joseph, Crochet (bib1) 1992; 3
Glowinski (10.1016/j.jcp.2006.06.002_bib5) 1999; 25
Glowinski (10.1016/j.jcp.2006.06.002_bib7) 2001; 169
Turek (10.1016/j.jcp.2006.06.002_bib25) 1997; 143
Dacorogna (10.1016/j.jcp.2006.06.002_bib21) 1990; 7
Diaz-Goano (10.1016/j.jcp.2006.06.002_bib29) 2001; vol. 2179
Liao (10.1016/j.jcp.2006.06.002_bib17) 1995; 11
Turek (10.1016/j.jcp.2006.06.002_bib9) 2003; vol. 35
Ceniceros (10.1016/j.jcp.2006.06.002_bib15) 2001; 172
Wan (10.1016/j.jcp.2006.06.002_bib10) 2004
Turek (10.1016/j.jcp.2006.06.002_bib24) 1996; 22
Berger (10.1016/j.jcp.2006.06.002_bib13) 1989; 82
Maury (10.1016/j.jcp.2006.06.002_bib4) 1999; 156
Singh (10.1016/j.jcp.2006.06.002_bib28) 2003; 29
Glowinski (10.1016/j.jcp.2006.06.002_bib8) 2003; vol. IX
Hu (10.1016/j.jcp.2006.06.002_bib1) 1992; 3
10.1016/j.jcp.2006.06.002_bib12
Fortes (10.1016/j.jcp.2006.06.002_bib27) 1987; 177
Patankar (10.1016/j.jcp.2006.06.002_bib6) 2000; 26
Wan (10.1016/j.jcp.2006.06.002_bib11) 2006; 51
Hu (10.1016/j.jcp.2006.06.002_bib2) 2001; 169
10.1016/j.jcp.2006.06.002_bib3
Huang (10.1016/j.jcp.2006.06.002_bib14) 2001; 171
Bochev (10.1016/j.jcp.2006.06.002_bib16) 1996; 12
Cai (10.1016/j.jcp.2006.06.002_bib19) 2004; 48
10.1016/j.jcp.2006.06.002_bib20
Liu (10.1016/j.jcp.2006.06.002_bib18) 1998; 20
10.1016/j.jcp.2006.06.002_bib26
Turek (10.1016/j.jcp.2006.06.002_bib22) 1999
10.1016/j.jcp.2006.06.002_bib23
References_xml – volume: vol. 35
  year: 2003
  ident: bib9
  article-title: The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations
  publication-title: Challenges in Scientific Computing
– volume: 25
  start-page: 755
  year: 1999
  end-page: 794
  ident: bib5
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiphase Flow
– volume: 26
  start-page: 1509
  year: 2000
  end-page: 1524
  ident: bib6
  article-title: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiphase Flow
– year: 1999
  ident: bib22
  article-title: Efficient Solvers for Incompressible Flow Problems
– volume: 12
  start-page: 489
  year: 1996
  ident: bib16
  article-title: Analysis and computation of adaptive moving grids by deformation
  publication-title: Numer. Methods Partial Differ. Equat.
– volume: 177
  start-page: 483
  year: 1987
  end-page: 497
  ident: bib27
  article-title: Nonlinear mechanics of fluidization of beds of spherical particles
  publication-title: J. Fluid Mech.
– reference: S. Turek, FEATFLOW-finite element software for the incompressible Navier–Stokes equations: User Manual, Release 1.2, University of Dortmund, 1999.
– volume: vol. 2179
  start-page: 409
  year: 2001
  end-page: 422
  ident: bib29
  article-title: A Lagrange multiplier/fictitious domain approach to particulate flows
  publication-title: Lecture Notes in Computer Science
– reference: M. Grajewski, M. Köster, S. Kilian, S. Turek, Numerical analysis and practical aspects of a robust and efficient grid deformation method in the finite element context. Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 294, FB Mathematik, Universität Dortmund, 2005. Available from:
– volume: 169
  start-page: 363
  year: 2001
  end-page: 426
  ident: bib7
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
– volume: 169
  start-page: 427
  year: 2001
  end-page: 462
  ident: bib2
  article-title: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian techniques
  publication-title: J. Comput. Phys.
– volume: 51
  start-page: 531
  year: 2006
  end-page: 566
  ident: bib11
  article-title: Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method
  publication-title: Int. J. Numer. Method Fluids
– volume: 20
  start-page: 811
  year: 1998
  end-page: 825
  ident: bib18
  article-title: An adaptive grid method and its application to steady Euler flow calculations
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 285
  year: 1992
  end-page: 306
  ident: bib1
  article-title: Direct simulation of fluid particle motions
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 82
  start-page: 64
  year: 1989
  end-page: 84
  ident: bib13
  article-title: Local adaptive mesh refinement for shock hydrodynamics
  publication-title: J. Comput. Phys.
– year: 2004
  ident: bib10
  article-title: An efficient multigrid FEM solution technique for incompressible flow with moving rigid bodies
  publication-title: Numerical Mathematics and Advanced Applications
– volume: 172
  start-page: 609
  year: 2001
  end-page: 639
  ident: bib15
  article-title: An efficient dynamically adaptive mesh for potentially singular solutions
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 987
  year: 1996
  end-page: 1011
  ident: bib24
  article-title: A comparative study of time stepping techniques for the incompressible Navier–Stokes equations: from fully implicit nonlinear schemes to semi-implicit projection methods
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 7
  start-page: 1
  year: 1990
  end-page: 26
  ident: bib21
  article-title: On a partial differential equation involving the Jacobian determinant
  publication-title: Annales de le Institut Henri Poincare
– volume: 11
  start-page: 603
  year: 1995
  end-page: 615
  ident: bib17
  article-title: A moving grid finite-element method using grid deformation
  publication-title: Numer. Methods Partial Differ. Equat.
– volume: 48
  start-page: 1077
  year: 2004
  end-page: 1086
  ident: bib19
  article-title: Adaptive grid generation based on least-squares finite-element method
  publication-title: Comput. Math. Appl.
– reference: G.P. Galdi, V. Heuveline, Lift and sedimentation of particles on the flow of a viscoelastic liquid in a channel. Available from:
– volume: 156
  start-page: 325
  year: 1999
  end-page: 351
  ident: bib4
  article-title: Direct simulations of 2D fluid-particle flows in biperiodic domains
  publication-title: J. Comput. Phys.
– volume: 143
  start-page: 271
  year: 1997
  end-page: 288
  ident: bib25
  article-title: On discrete projection methods for the incompressible Navier–Stokes equations: an algorithmical approach
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 171
  start-page: 753
  year: 2001
  end-page: 775
  ident: bib14
  article-title: Practical aspects of formulation and solution of moving mesh partial differential equations
  publication-title: J. Comput. Phys.
– volume: vol. IX
  start-page: 701
  year: 2003
  end-page: 769
  ident: bib8
  article-title: Finite element methods for incompressible viscous flow
  publication-title: Handbook of Numerical Analysis
– reference: D.C. Wan, S. Turek, An efficient multigrid-FEM method for the simulation of liquid–solid two phase flows, J. Comput. Appl. Math. (in press).
– reference: M. Schäfer, S. Turek, Benchmark computations of laminar flow around cylinder, in: E.H. Hirschel (Ed.), Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 52, Vieweg, 1996, pp. 547–566.
– reference: .
– volume: 29
  start-page: 495
  year: 2003
  end-page: 509
  ident: bib28
  article-title: Distributed Lagrange multiplier method for particulate flows with collisions
  publication-title: Int. J. Multiphase Flow
– year: 2004
  ident: 10.1016/j.jcp.2006.06.002_bib10
  article-title: An efficient multigrid FEM solution technique for incompressible flow with moving rigid bodies
– volume: 156
  start-page: 325
  year: 1999
  ident: 10.1016/j.jcp.2006.06.002_bib4
  article-title: Direct simulations of 2D fluid-particle flows in biperiodic domains
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6365
– volume: 7
  start-page: 1
  year: 1990
  ident: 10.1016/j.jcp.2006.06.002_bib21
  article-title: On a partial differential equation involving the Jacobian determinant
  publication-title: Annales de le Institut Henri Poincare
  doi: 10.1016/S0294-1449(16)30307-9
– volume: 143
  start-page: 271
  year: 1997
  ident: 10.1016/j.jcp.2006.06.002_bib25
  article-title: On discrete projection methods for the incompressible Navier–Stokes equations: an algorithmical approach
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01155-3
– volume: vol. 2179
  start-page: 409
  year: 2001
  ident: 10.1016/j.jcp.2006.06.002_bib29
  article-title: A Lagrange multiplier/fictitious domain approach to particulate flows
– volume: vol. 35
  year: 2003
  ident: 10.1016/j.jcp.2006.06.002_bib9
  article-title: The fictitious boundary method for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations
– volume: 3
  start-page: 285
  year: 1992
  ident: 10.1016/j.jcp.2006.06.002_bib1
  article-title: Direct simulation of fluid particle motions
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/BF00717645
– ident: 10.1016/j.jcp.2006.06.002_bib20
– volume: 26
  start-page: 1509
  year: 2000
  ident: 10.1016/j.jcp.2006.06.002_bib6
  article-title: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(99)00100-7
– volume: 48
  start-page: 1077
  issue: 7–8
  year: 2004
  ident: 10.1016/j.jcp.2006.06.002_bib19
  article-title: Adaptive grid generation based on least-squares finite-element method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2004.10.006
– volume: 25
  start-page: 755
  year: 1999
  ident: 10.1016/j.jcp.2006.06.002_bib5
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(98)00048-2
– volume: 172
  start-page: 609
  year: 2001
  ident: 10.1016/j.jcp.2006.06.002_bib15
  article-title: An efficient dynamically adaptive mesh for potentially singular solutions
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6844
– volume: 12
  start-page: 489
  year: 1996
  ident: 10.1016/j.jcp.2006.06.002_bib16
  article-title: Analysis and computation of adaptive moving grids by deformation
  publication-title: Numer. Methods Partial Differ. Equat.
  doi: 10.1002/(SICI)1098-2426(199607)12:4<489::AID-NUM5>3.0.CO;2-I
– volume: 169
  start-page: 427
  year: 2001
  ident: 10.1016/j.jcp.2006.06.002_bib2
  article-title: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian techniques
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6592
– volume: 29
  start-page: 495
  year: 2003
  ident: 10.1016/j.jcp.2006.06.002_bib28
  article-title: Distributed Lagrange multiplier method for particulate flows with collisions
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(02)00164-7
– volume: 20
  start-page: 811
  issue: 3
  year: 1998
  ident: 10.1016/j.jcp.2006.06.002_bib18
  article-title: An adaptive grid method and its application to steady Euler flow calculations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596305738
– volume: 82
  start-page: 64
  year: 1989
  ident: 10.1016/j.jcp.2006.06.002_bib13
  article-title: Local adaptive mesh refinement for shock hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90035-1
– volume: 177
  start-page: 483
  year: 1987
  ident: 10.1016/j.jcp.2006.06.002_bib27
  article-title: Nonlinear mechanics of fluidization of beds of spherical particles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087001046
– ident: 10.1016/j.jcp.2006.06.002_bib12
– year: 1999
  ident: 10.1016/j.jcp.2006.06.002_bib22
– volume: 51
  start-page: 531
  year: 2006
  ident: 10.1016/j.jcp.2006.06.002_bib11
  article-title: Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method
  publication-title: Int. J. Numer. Method Fluids
  doi: 10.1002/fld.1129
– volume: 171
  start-page: 753
  year: 2001
  ident: 10.1016/j.jcp.2006.06.002_bib14
  article-title: Practical aspects of formulation and solution of moving mesh partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6809
– volume: 11
  start-page: 603
  year: 1995
  ident: 10.1016/j.jcp.2006.06.002_bib17
  article-title: A moving grid finite-element method using grid deformation
  publication-title: Numer. Methods Partial Differ. Equat.
  doi: 10.1002/num.1690110606
– volume: 169
  start-page: 363
  year: 2001
  ident: 10.1016/j.jcp.2006.06.002_bib7
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6542
– ident: 10.1016/j.jcp.2006.06.002_bib26
  doi: 10.1007/978-3-322-89849-4_39
– ident: 10.1016/j.jcp.2006.06.002_bib23
– volume: vol. IX
  start-page: 701
  year: 2003
  ident: 10.1016/j.jcp.2006.06.002_bib8
  article-title: Finite element methods for incompressible viscous flow
– volume: 22
  start-page: 987
  year: 1996
  ident: 10.1016/j.jcp.2006.06.002_bib24
  article-title: A comparative study of time stepping techniques for the incompressible Navier–Stokes equations: from fully implicit nonlinear schemes to semi-implicit projection methods
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7
– ident: 10.1016/j.jcp.2006.06.002_bib3
SSID ssj0008548
Score 2.1618452
Snippet In this paper, we investigate the numerical simulation of particulate flows using a new moving mesh method combined with the multigrid fictitious boundary...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms ALE
Boundaries
Computation
Computational fluid dynamics
Computational techniques
Computer simulation
Exact sciences and technology
FEM
Fictitious boundary
Finite element method
Fluid flow
Mathematical methods in physics
Mathematical models
Moving mesh
Multigrid
Particulate flows
Physics
Wide area networks
Title Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows
URI https://dx.doi.org/10.1016/j.jcp.2006.06.002
https://www.proquest.com/docview/1082186647
https://www.proquest.com/docview/1677955929
https://www.proquest.com/docview/29245690
Volume 222
WOSCitedRecordID wos000244841300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEJ8UYsj8VIiANVkOtNYvu4Qq0AVYVDV_QW2Y4jWto0NC3an8_4kaRQ7Wo5cIkqy3aifl_H05nJfAi9EdIkmtqc4akqopgxFclEJRHPZSyZkZTlDukxm0z4bCa-hiL22skJsLLkFxei-q9QwxiAbV-d_Qe4201hAD4D6HAF2OF6LeBHc9-AaFf3ldNM2vgWSysfO1iZ-nvQja7bGsNy5xM3y349XwVBL-tGWtWsvF-5u9hh0y-W6-CGH3q02ilENNFFHzNpXfZvMtg3YEk4LV1Zx8b8CNVmRSBqE4NgXRFW-07AILKu5r5dpZQeEChYSb533vq-4geW3AcVFu8XugopI5s1ot2x1aTqJ1-y0fl4nE2Hs-nb6mdkBcVs4j2oq9xER5QlgvfQ0dmn4exze0zzJPbHdHj0JuXtiv_-uutlTsudStaATeE1UA6Oc-ejTO-juwEKfOZJ8QDdMOVDdC_80cDBjNePkO44ghuOYOAI9hzBliM4cAQDRzBwBLccwR1H8LrAjiN4jyPYceQxOh8Npx8-RkFtI9IxjbcRV6kyhuciV4bRnBYpONdJzBTR1FChKJEkMZKo04EyhFHJ1ECIotAmJ8YGOp6gXrkuzVOEC0GYYamGNQacn1wQnXBwFGOTJork4hiR5uvMdGhFbxVRlllTc7jIAAErkZpmru6SHqN37ZLK92G5anLcYJQFR9I7iBmw66plJ3_g2d2IW6W-FJ77dQNwBlbYptZkaQAr22bXirulMbtiTsqY7fdIYZ9Xl8yhwhYiCPLsGrs8R7e73-IL1NtuduYluqV_bef15iTQ_TdJ08cS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fictitious+boundary+and+moving+mesh+methods+for+the+numerical+simulation+of+rigid+particulate+flows&rft.jtitle=Journal+of+computational+physics&rft.au=Wan%2C+Decheng&rft.au=Turek%2C+Stefan&rft.date=2007-03-01&rft.issn=0021-9991&rft.volume=222&rft.issue=1&rft.spage=28&rft.epage=56&rft_id=info:doi/10.1016%2Fj.jcp.2006.06.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon