Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points
In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting, and saddle point avoiding. To handle constrained optimization, we first propose generalizations...
Gespeichert in:
| Veröffentlicht in: | Foundations of computational mathematics Jg. 22; H. 1; S. 35 - 76 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1615-3375, 1615-3383 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!