Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points

In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting, and saddle point avoiding. To handle constrained optimization, we first propose generalizations...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 22; číslo 1; s. 35 - 76
Hlavní autori: Balasubramanian, Krishnakumar, Ghadimi, Saeed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2022
Springer Nature B.V
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting, and saddle point avoiding. To handle constrained optimization, we first propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high dimensions, we explore the advantages of structural sparsity assumptions. Specifically, (i) we highlight an implicit regularization phenomenon where the standard stochastic gradient algorithm with zeroth-order information adapts to the sparsity of the problem at hand by just varying the step size and (ii) propose a truncated stochastic gradient algorithm with zeroth-order information, whose rate of convergence depends only poly-logarithmically on the dimensionality. We next focus on avoiding saddle points in nonconvex setting. Toward that, we interpret the Gaussian smoothing technique for estimating gradient based on zeroth-order information as an instantiation of first-order Stein’s identity. Based on this, we provide a novel linear-(in dimension) time estimator of the Hessian matrix of a function using only zeroth-order information, which is based on second-order Stein’s identity. We then provide a zeroth-order variant of cubic regularized Newton method for avoiding saddle points and discuss its rate of convergence to local minima.
AbstractList In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting, and saddle point avoiding. To handle constrained optimization, we first propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high dimensions, we explore the advantages of structural sparsity assumptions. Specifically, (i) we highlight an implicit regularization phenomenon where the standard stochastic gradient algorithm with zeroth-order information adapts to the sparsity of the problem at hand by just varying the step size and (ii) propose a truncated stochastic gradient algorithm with zeroth-order information, whose rate of convergence depends only poly-logarithmically on the dimensionality. We next focus on avoiding saddle points in nonconvex setting. Toward that, we interpret the Gaussian smoothing technique for estimating gradient based on zeroth-order information as an instantiation of first-order Stein’s identity. Based on this, we provide a novel linear-(in dimension) time estimator of the Hessian matrix of a function using only zeroth-order information, which is based on second-order Stein’s identity. We then provide a zeroth-order variant of cubic regularized Newton method for avoiding saddle points and discuss its rate of convergence to local minima.
Author Ghadimi, Saeed
Balasubramanian, Krishnakumar
Author_xml – sequence: 1
  givenname: Krishnakumar
  surname: Balasubramanian
  fullname: Balasubramanian, Krishnakumar
  organization: Department of Statistics, University of California
– sequence: 2
  givenname: Saeed
  surname: Ghadimi
  fullname: Ghadimi, Saeed
  email: sghadimi@uwaterloo.ca
  organization: Department of Management Sciences, University of Waterloo
BookMark eNp9kE1LAzEQhoNU0Fb_gKeAV1fzsdlkvUn9qFCsUL14CWmSbSPbpCZR1F_v1oqCh8LAzOF5hpm3D3o-eAvAEUanGCF-ljAiSBSI4ALVZV0XYgfs4wqzglJBe78zZ3ugn9IzQpjVuNwH7ZONIS-KSTQ2wrvgdfBv9h1Oc9ALlbLTcLLKbuk-VXbBn8OR8qZ1fg6HwacclfM5ncCRmy_gpVtanzpKtS5_nMCOhFNlTGvhfVhzB2C3UW2yhz99AB6vrx6Go2I8ubkdXowLXZIyF1xjMRNUqFKUnNSVtqw2hHTFMaPUUG4IE1XTCGOt0TPESz6boUowzhHmDR2A483eVQwvrzZl-RxeY3dWkqQijHHBWdlRYkPpGFKKtpHa5e8v12-1EiO5zlZuspVdtvI7Wyk6lfxTV9EtVfzYLtGNlDrYz238u2qL9QU9So6L
CitedBy_id crossref_primary_10_1007_s10915_025_02855_8
crossref_primary_10_1007_s10957_025_02647_y
crossref_primary_10_1287_ijoc_2023_0247
crossref_primary_10_1287_moor_2022_1302
crossref_primary_10_1016_j_automatica_2024_111528
crossref_primary_10_1016_j_neucom_2024_128606
crossref_primary_10_1287_ijoo_2022_0085
crossref_primary_10_1007_s10957_021_01994_w
crossref_primary_10_1007_s12532_023_00233_9
crossref_primary_10_1007_s10898_022_01160_0
crossref_primary_10_1146_annurev_control_042920_020021
crossref_primary_10_1109_TAC_2023_3341752
crossref_primary_10_1109_LCSYS_2023_3282647
crossref_primary_10_1137_22M1510261
crossref_primary_10_1007_s40305_025_00584_1
crossref_primary_10_1007_s10915_025_03066_x
crossref_primary_10_1016_j_eswa_2024_125781
crossref_primary_10_1109_JIOT_2025_3538508
crossref_primary_10_1137_24M1659911
crossref_primary_10_3150_21_BEJ1400
crossref_primary_10_1137_22M1494270
crossref_primary_10_1007_s10287_023_00479_7
Cites_doi 10.1016/j.jco.2019.101443
10.1017/CBO9780511804441
10.1007/s10959-008-0155-9
10.1016/j.jco.2011.01.004
10.1007/s10208-017-9365-9
10.1137/140992382
10.1214/17-AOS1642
10.1002/9781118631980
10.1134/S0005117917020035
10.1093/imaiai/iax008
10.1137/1.9781611974997
10.1007/s10107-009-0286-5
10.1007/s10208-015-9296-2
10.1007/s10107-009-0337-y
10.1007/s10107-019-01405-z
10.1109/TIT.2006.871582
10.1007/978-1-4419-8853-9
10.1007/978-3-319-40519-3_8
10.1137/17M1114296
10.1561/2200000024
10.1145/3128572.3140448
10.1109/ALLERTON.2016.7852377
10.1137/120880811
10.1007/s10107-017-1225-5
10.1007/s10107-019-01449-1
10.1137/1.9780898718768
10.1007/s00365-010-9105-8
10.1002/nav.3800030109
10.1561/2200000058
10.1145/3055399.3055403
10.1007/s10208-017-9363-y
10.1137/1.9780898718829
10.1214/aos/1176345632
10.1007/BF02592948
10.1007/s10107-006-0706-8
10.1109/TIT.2015.2409256
ContentType Journal Article
Copyright SFoCM 2021
SFoCM 2021.
Copyright_xml – notice: SFoCM 2021
– notice: SFoCM 2021.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-021-09499-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 76
ExternalDocumentID 10_1007_s10208_021_09499_8
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c424t-7c18b838a4847296ce59d22d2271533d37d2586ff8deedcb0747bb068577017f3
IEDL.DBID RSV
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000630642400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Jul 25 19:30:56 EDT 2025
Sat Nov 29 04:08:43 EST 2025
Tue Nov 18 22:43:18 EST 2025
Fri Feb 21 02:47:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonconvex optimization
65K05
90C56
Conditional gradient methods
Complexity bounds
90C15
90C26
49M15
Stochastic optimization
Zeroth-order methods
Newton method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-7c18b838a4847296ce59d22d2271533d37d2586ff8deedcb0747bb068577017f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2625578754
PQPubID 43692
PageCount 42
ParticipantIDs proquest_journals_2625578754
crossref_citationtrail_10_1007_s10208_021_09499_8
crossref_primary_10_1007_s10208_021_09499_8
springer_journals_10_1007_s10208_021_09499_8
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References XuPRoosta-KhorasaniFMahoneyMWNewton-type methods for non-convex optimization under inexact hessian informationMathematical Programming20201843570416354010.1007/s10107-019-01405-z
Mockus, J.: Bayesian approach to global optimization: theory and applications, vol. 37. Springer Science & Business Media (2012)
RioEMoment inequalities for sums of dependent random variables under projective conditionsJournal of Theoretical Probability2009221146163247201010.1007/s10959-008-0155-9
Conn, A., Scheinberg, K., Vicente, L.: Introduction to derivative-free optimization, vol. 8. Society of Industrial and Applied Mathematics (SIAM) (2009)
BoydSVandenbergheLConvex optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441
Akhavan, A., Pontil, M., Tsybakov, A.: Exploiting higher order smoothness in derivative-free optimization and continuous bandits. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
CartisCGouldNITointPLSecond-order optimality and beyond: Characterization and evaluation complexity in convexly constrained nonlinear optimizationFoundations of Computational Mathematics201818510731107385790510.1007/s10208-017-9363-y
FrankMWolfePAn algorithm for quadratic programmingNaval Research Logistics Quarterly19563951108910210.1002/nav.3800030109
Nocedal, J., Wright, S.J.: Numerical optimization. Springer Science & Business Media (2006)
Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning 5(1), 1–122 (2012)
Hu, X., Prashanth, L.A., György, A., Szepesvari, C.: (Bandit) Convex Optimization with Biased Noisy Gradient Oracles. In: The 19th International Conference on Artificial Intelligence and Statistics, pp. 3420–3428 (2016)
Mokhtari, A., Hassani, H., Karbasi, A.: Conditional gradient method for stochastic submodular maximization: Closing the gap. In: International Conference on Artificial Intelligence and Statistics, pp. 1886–1895 (2018)
Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. In: Advances in Neural Information Processing Systems, pp. 2973–2981 (2016)
DeVoreRPetrovaGWojtaszczykPApproximation of functions of few variables in high dimensionsConstructive Approximation2011331125143274705910.1007/s00365-010-9105-8
Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87. Springer Science & Business Media (2013)
GhadimiSLanGStochastic first- and zeroth-order methods for nonconvex stochastic programmingSIAM Journal on Optimization201323423412368313443910.1137/120880811
Bertsekas, D.P., Scientific, A.: Convex optimization algorithms. Athena Scientific Belmont (2015)
Dani, V., Kakade, S.M., Hayes, T.P.: The price of bandit information for online optimization. In: Advances in Neural Information Processing Systems, pp. 345–352 (2008)
ErdogduMANewton-Stein method: an optimization method for GLMs via Stein’s lemmaThe Journal of Machine Learning Research20161717565761635951501437.62292
MokhtariAHassaniHKarbasiAStochastic conditional gradient methods: From convex minimization to submodular maximizationJournal of Machine Learning Research202021149411917307255136
Reddi, S., Sra, S., Póczos, B., Smola, A.: Stochastic Frank-Wolfe Methods for Nonconvex Optimization. In: Proceedings of the 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1244–1251 (2016)
Sun, J., Qu, Q., Wright, J.: When are nonconvex problems not scary? arXiv:1510.06096
Snoek, J., Larochelle, H., Adams, R.: Practical bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, pp. 2951–2959 (2012)
Demyanov, V., Rubinov, A.: Approximate methods in optimization problems. American Elsevier Publishing (1970)
Elibol, M., Lei, L., Jordan, M.I.: Variance reduction with sparse gradients. In: Proceedings of the 8th International Conference on Learning Representations (ICLR), pp. 1058–1070 (2020)
HanCYuanMInformation based complexity for high dimensional sparse functionsJournal of Complexity202057101443405505810.1016/j.jco.2019.101443
Hazan, E., Kale, S.: Projection-free online learning. In: Proceedings of the 29th International Conference on International Conference on Machine Learning, pp. 1843–1850 (2012)
Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points efficiently. In: International Conference on Machine Learning, pp. 1724–1732 (2017)
CartisCGouldNITointPLAdaptive cubic regularisation methods for unconstrained optimization, Part I: Motivation, convergence and numerical resultsMathematical Programming20111272245295277670110.1007/s10107-009-0286-5
NesterovYPolyakBCubic regularization of newton method and its global performanceMathematical Programming20061081177205222945910.1007/s10107-006-0706-8
Bertsekas, D.P.: Nonlinear programming. Athena scientific Belmont (2016)
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory. The Regents of the University of California (1972)
Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (ZORO): Approximately sparse gradients and adaptive sampling (2020)
SpallJIntroduction to stochastic search and optimization: estimation, simulation, and control2005New JerseyJohn Wiley & Sons1088.90002
DuchiJJordanMWainwrightMWibisonoAOptimal rates for zero-order convex optimization: The power of two function evaluationsIEEE Transactions on Information Theory201561527882806334230710.1109/TIT.2015.2409256
Chen, L., Zhang, M., Hassani, H., Karbasi, A.: Black box submodular maximization: Discrete and continuous settings. In: S. Chiappa, R. Calandra (eds.) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 108, pp. 1058–1070 (2020)
RubinsteinRKroeseDSimulation and the Monte Carlo method2016New JerseyJohn Wiley & Sons10.1002/9781118631980
Bach, F., Perchet, V.: Highly-smooth zero-th order online optimization. In: V. Feldman, A. Rakhlin, O. Shamir (eds.) 29th Annual Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 49, pp. 257–283. PMLR (2016)
Reddi, S., Zaheer, M., Sra, S., Poczos, B., Bach, F., Salakhutdinov, R., Smola, A.: A generic approach for escaping saddle points. In: International Conference on Artificial Intelligence and Statistics, pp. 1233–1242 (2018)
Jaggi, M.: Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, pp. 427–435 (2013)
Tropp, J.A.: The expected norm of a sum of independent random matrices: An elementary approach. In: High Dimensional Probability VII, pp. 173–202. Springer (2016)
Hazan, E., Levy, K.: Bandit convex optimization: Towards tight bounds. In: Advances in Neural Information Processing Systems, pp. 784–792 (2014)
Beck, A.: First-Order Methods in Optimization, vol. 25. Society for Industrial and Applied Mathematics (SIAM) (2017)
Agarwal, A., Dekel, O., Xiao, L.: Optimal algorithms for online convex optimization with multi-point bandit feedback. In: Proceedings of The 23rd Conference on Learning Theory, pp. 28–40 (2010)
CarmonYDuchiJCHinderOSidfordAAccelerated methods for nonconvex optimizationSIAM Journal on Optimization201828217511772381402710.1137/17M1114296
WojtaszczykPComplexity of approximation of functions of few variables in high dimensionsJournal of Complexity2011272141150277648910.1016/j.jco.2011.01.004
Belloni, A., Liang, T., Narayanan, H., Rakhlin, A.: Escaping the local minima via simulated annealing: Optimization of approximately convex functions. In: P. Grunwald, E. Hazan, S. Kale (eds.) Proceedings of The 28th Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 40, pp. 240–265. PMLR (2015)
Jain, P., Kar, P.: Non-convex optimization for machine learning.Foundations and Trends® in Machine Learning 10(3-4), 142–336 (2017)
Lattimore, T.: Improved regret for zeroth-order adversarial bandit convex optimisation. arXiv:2006.00475
Tripuraneni, N., Stern, M., Jin, C., Regier, J., Jordan, M.: Stochastic cubic regularization for fast nonconvex optimization. In: Advances in Neural Information Processing Systems, pp. 2899–2908 (2018)
Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: Conference on Learning Theory, pp. 3–24 (2013)
HearnDThe gap function of a convex programOperations Research Letters19822951100486.90070
Stein, C.M.: Estimation of the mean of a multivariate normal distribution. The annals of Statistics pp. 1135–1151 (1981)
Jamieson, K., Nowak, R., Recht, B.: Query complexity of derivative-free optimization. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2012)
NesterovYIntroductory Lectures on Convex Optimization: a basic course2004MassachusettsKluwer Academic Publishers10.1007/978-1-4419-8853-9
Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM (2017)
Li, J., Balasubramanian, K., Ma, S.: Stochastic zeroth-order riemannian derivative estimation and optimization. arXiv:2003.11238 (2020)
LanGZhouYConditional gradient sliding for convex optimizationSIAM Journal on Optimization201626213791409351687110.1137/140992382
Hazan, E., Luo, H.: Variance-reduced and projection-free stochastic optimization. In: International Conference on Machine Learning, pp. 1263–1271 (2016)
TyagiHKyrillidisAGärtnerBKrauseAAlgorithms for learning sparse additive models with interactions in high dimensionsInformation and Inference: A Journal of the IMA201872183249381212010.1093/imaiai/iax008
SunJQuQWrightJA geometric analysis of phase retrieva
Y Nestrov (9499_CR62) 2021; 186
9499_CR39
9499_CR38
AS Nemirovski (9499_CR57) 1983
Y Carmon (9499_CR15) 2018; 28
9499_CR33
D Hearn (9499_CR40) 1982; 2
9499_CR32
9499_CR76
9499_CR31
9499_CR75
9499_CR74
9499_CR37
C Cartis (9499_CR18) 2018; 18
C Han (9499_CR36) 2020; 57
9499_CR79
R DeVore (9499_CR25) 2011; 33
9499_CR34
9499_CR78
S Ghadimi (9499_CR35) 2013; 23
9499_CR72
J Spall (9499_CR73) 2005
9499_CR71
J Duchi (9499_CR27) 2015; 61
9499_CR70
9499_CR5
9499_CR6
9499_CR3
Y Nesterov (9499_CR58) 2004
9499_CR4
9499_CR9
9499_CR7
9499_CR8
9499_CR49
9499_CR1
9499_CR2
DL Donoho (9499_CR26) 2006; 52
9499_CR44
9499_CR43
9499_CR42
9499_CR41
R Rubinstein (9499_CR68) 2016
9499_CR47
P Xu (9499_CR83) 2020; 184
9499_CR46
9499_CR45
A Mokhtari (9499_CR55) 2020; 21
Y Nesterov (9499_CR61) 2017; 17
E Rio (9499_CR67) 2009; 22
9499_CR81
P Wojtaszczyk (9499_CR82) 2011; 27
S Minsker (9499_CR52) 2018; 46
9499_CR19
9499_CR10
9499_CR54
9499_CR53
9499_CR59
Y Nesterov (9499_CR60) 2006; 108
S Boyd (9499_CR11) 2004
9499_CR14
G Raskutti (9499_CR64) 2012; 13
9499_CR13
9499_CR12
G Lan (9499_CR48) 2016; 26
C Cartis (9499_CR16) 2011; 127
9499_CR51
9499_CR50
KG Murty (9499_CR56) 1987; 39
J Sun (9499_CR77) 2018; 18
H Tyagi (9499_CR80) 2018; 7
M Frank (9499_CR30) 1956; 3
9499_CR28
9499_CR22
9499_CR66
9499_CR21
9499_CR65
9499_CR20
9499_CR63
9499_CR69
9499_CR24
9499_CR23
C Cartis (9499_CR17) 2011; 130
MA Erdogdu (9499_CR29) 2016; 17
References_xml – reference: CartisCGouldNITointPLAdaptive cubic regularisation methods for unconstrained optimization, Part II: Worst-case function-and derivative-evaluation complexityMathematical Programming20111302295319285587210.1007/s10107-009-0337-y
– reference: BoydSVandenbergheLConvex optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441
– reference: Hu, X., Prashanth, L.A., György, A., Szepesvari, C.: (Bandit) Convex Optimization with Biased Noisy Gradient Oracles. In: The 19th International Conference on Artificial Intelligence and Statistics, pp. 3420–3428 (2016)
– reference: Jaggi, M.: Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, pp. 427–435 (2013)
– reference: SunJQuQWrightJA geometric analysis of phase retrievalFoundations of Computational Mathematics201818511311198385790710.1007/s10208-017-9365-9
– reference: ErdogduMANewton-Stein method: an optimization method for GLMs via Stein’s lemmaThe Journal of Machine Learning Research20161717565761635951501437.62292
– reference: Ge, R., Huang, F., Jin, C., Yuan, Y.: Escaping from saddle points: Online stochastic gradient for tensor decomposition. In: Conference on Learning Theory, pp. 797–842 (2015)
– reference: NesterovYIntroductory Lectures on Convex Optimization: a basic course2004MassachusettsKluwer Academic Publishers10.1007/978-1-4419-8853-9
– reference: Tropp, J.A.: The expected norm of a sum of independent random matrices: An elementary approach. In: High Dimensional Probability VII, pp. 173–202. Springer (2016)
– reference: Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol. 2. Society for Industrial and Applied Mathematics (SIAM) (2001)
– reference: Hazan, E., Kale, S.: Projection-free online learning. In: Proceedings of the 29th International Conference on International Conference on Machine Learning, pp. 1843–1850 (2012)
– reference: Sun, J., Qu, Q., Wright, J.: When are nonconvex problems not scary? arXiv:1510.06096
– reference: Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning 5(1), 1–122 (2012)
– reference: RubinsteinRKroeseDSimulation and the Monte Carlo method2016New JerseyJohn Wiley & Sons10.1002/9781118631980
– reference: Belloni, A., Liang, T., Narayanan, H., Rakhlin, A.: Escaping the local minima via simulated annealing: Optimization of approximately convex functions. In: P. Grunwald, E. Hazan, S. Kale (eds.) Proceedings of The 28th Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 40, pp. 240–265. PMLR (2015)
– reference: CarmonYDuchiJCHinderOSidfordAAccelerated methods for nonconvex optimizationSIAM Journal on Optimization201828217511772381402710.1137/17M1114296
– reference: Gasnikov, A.V., Krymova, E.A., Lagunovskaya, A.A., Usmanova, I.N., Fedorenko, F.A.: Stochastic online optimization. single-point and multi-point non-linear multi-armed bandits. convex and strongly-convex case. Automation and remote control 78(2), 224–234 (2017)
– reference: Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. In: Advances in Neural Information Processing Systems, pp. 2973–2981 (2016)
– reference: MinskerSSub-gaussian estimators of the mean of a random matrix with heavy-tailed entriesThe Annals of Statistics2018466A28712903385175810.1214/17-AOS1642
– reference: Hazan, E., Luo, H.: Variance-reduced and projection-free stochastic optimization. In: International Conference on Machine Learning, pp. 1263–1271 (2016)
– reference: Bach, F., Perchet, V.: Highly-smooth zero-th order online optimization. In: V. Feldman, A. Rakhlin, O. Shamir (eds.) 29th Annual Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 49, pp. 257–283. PMLR (2016)
– reference: Bubeck, S., Lee, Y.T., Eldan, R.: Kernel-based methods for bandit convex optimization. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 72–85 (2017)
– reference: Allen-Zhu, Z.: Natasha 2: Faster non-convex optimization than SGD. In: Advances in Neural Information Processing Systems, pp. 2680–2691 (2018)
– reference: CartisCGouldNITointPLSecond-order optimality and beyond: Characterization and evaluation complexity in convexly constrained nonlinear optimizationFoundations of Computational Mathematics201818510731107385790510.1007/s10208-017-9363-y
– reference: Stein, C.M.: Estimation of the mean of a multivariate normal distribution. The annals of Statistics pp. 1135–1151 (1981)
– reference: DuchiJJordanMWainwrightMWibisonoAOptimal rates for zero-order convex optimization: The power of two function evaluationsIEEE Transactions on Information Theory201561527882806334230710.1109/TIT.2015.2409256
– reference: Tripuraneni, N., Stern, M., Jin, C., Regier, J., Jordan, M.: Stochastic cubic regularization for fast nonconvex optimization. In: Advances in Neural Information Processing Systems, pp. 2899–2908 (2018)
– reference: Bertsekas, D.P.: Nonlinear programming. Athena scientific Belmont (2016)
– reference: Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87. Springer Science & Business Media (2013)
– reference: NestrovYImplementable tensor methods in unconstrained convex optimizationMathematical Programming2021186157183421447910.1007/s10107-019-01449-1
– reference: TyagiHKyrillidisAGärtnerBKrauseAAlgorithms for learning sparse additive models with interactions in high dimensionsInformation and Inference: A Journal of the IMA201872183249381212010.1093/imaiai/iax008
– reference: Nocedal, J., Wright, S.J.: Numerical optimization. Springer Science & Business Media (2006)
– reference: RaskuttiGWainwrightMJYuBMinimax-optimal rates for sparse additive models over kernel classes via convex programmingThe Journal of Machine Learning Research201213138942729137041283.62071
– reference: Jamieson, K., Nowak, R., Recht, B.: Query complexity of derivative-free optimization. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2012)
– reference: SpallJIntroduction to stochastic search and optimization: estimation, simulation, and control2005New JerseyJohn Wiley & Sons1088.90002
– reference: Agarwal, A., Dekel, O., Xiao, L.: Optimal algorithms for online convex optimization with multi-point bandit feedback. In: Proceedings of The 23rd Conference on Learning Theory, pp. 28–40 (2010)
– reference: Saha, A., Tewari, A.: Improved regret guarantees for online smooth convex optimization with bandit feedback. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 636–642 (2011)
– reference: MurtyKGKabadiSNSome NP-complete problems in quadratic and nonlinear programmingMathematical Programming198739211712991600110.1007/BF02592948
– reference: NemirovskiASYudinDProblem complexity and method efficiency in optimization1983XVWiley-Interscience Series in Discrete Mathematics. John Wiley
– reference: XuPRoosta-KhorasaniFMahoneyMWNewton-type methods for non-convex optimization under inexact hessian informationMathematical Programming20201843570416354010.1007/s10107-019-01405-z
– reference: Jain, P., Kar, P.: Non-convex optimization for machine learning.Foundations and Trends® in Machine Learning 10(3-4), 142–336 (2017)
– reference: HanCYuanMInformation based complexity for high dimensional sparse functionsJournal of Complexity202057101443405505810.1016/j.jco.2019.101443
– reference: Demyanov, V., Rubinov, A.: Approximate methods in optimization problems. American Elsevier Publishing (1970)
– reference: NesterovYSpokoinyVRandom gradient-free minimization of convex functionsFoundations of Computational Mathematics201717527566362745610.1007/s10208-015-9296-2
– reference: Dani, V., Kakade, S.M., Hayes, T.P.: The price of bandit information for online optimization. In: Advances in Neural Information Processing Systems, pp. 345–352 (2008)
– reference: Jain, P., Tewari, A., Kar, P.: On iterative hard thresholding methods for high-dimensional m-estimation. In: Advances in Neural Information Processing Systems, pp. 685–693 (2014)
– reference: Bertsekas, D.P., Scientific, A.: Convex optimization algorithms. Athena Scientific Belmont (2015)
– reference: Ghadimi, S.: Conditional gradient type methods for composite nonlinear and stochastic optimization. Mathematical Programming (2018). https://doi.org/10.1007/s10107-017-1225-5
– reference: Lattimore, T.: Improved regret for zeroth-order adversarial bandit convex optimisation. arXiv:2006.00475
– reference: Conn, A., Scheinberg, K., Vicente, L.: Introduction to derivative-free optimization, vol. 8. Society of Industrial and Applied Mathematics (SIAM) (2009)
– reference: Mokhtari, A., Hassani, H., Karbasi, A.: Conditional gradient method for stochastic submodular maximization: Closing the gap. In: International Conference on Artificial Intelligence and Statistics, pp. 1886–1895 (2018)
– reference: Snoek, J., Larochelle, H., Adams, R.: Practical bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, pp. 2951–2959 (2012)
– reference: WojtaszczykPComplexity of approximation of functions of few variables in high dimensionsJournal of Complexity2011272141150277648910.1016/j.jco.2011.01.004
– reference: Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv:1703.03864
– reference: HearnDThe gap function of a convex programOperations Research Letters19822951100486.90070
– reference: DeVoreRPetrovaGWojtaszczykPApproximation of functions of few variables in high dimensionsConstructive Approximation2011331125143274705910.1007/s00365-010-9105-8
– reference: DonohoDLCompressed sensingIEEE Transactions on information theory200652412891306224118910.1109/TIT.2006.871582
– reference: Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points efficiently. In: International Conference on Machine Learning, pp. 1724–1732 (2017)
– reference: RioEMoment inequalities for sums of dependent random variables under projective conditionsJournal of Theoretical Probability2009221146163247201010.1007/s10959-008-0155-9
– reference: Beck, A.: First-Order Methods in Optimization, vol. 25. Society for Industrial and Applied Mathematics (SIAM) (2017)
– reference: GhadimiSLanGStochastic first- and zeroth-order methods for nonconvex stochastic programmingSIAM Journal on Optimization201323423412368313443910.1137/120880811
– reference: Hazan, E., Levy, K.: Bandit convex optimization: Towards tight bounds. In: Advances in Neural Information Processing Systems, pp. 784–792 (2014)
– reference: Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (ZORO): Approximately sparse gradients and adaptive sampling (2020)
– reference: LanGZhouYConditional gradient sliding for convex optimizationSIAM Journal on Optimization201626213791409351687110.1137/140992382
– reference: MokhtariAHassaniHKarbasiAStochastic conditional gradient methods: From convex minimization to submodular maximizationJournal of Machine Learning Research202021149411917307255136
– reference: Mockus, J.: Bayesian approach to global optimization: theory and applications, vol. 37. Springer Science & Business Media (2012)
– reference: Elibol, M., Lei, L., Jordan, M.I.: Variance reduction with sparse gradients. In: Proceedings of the 8th International Conference on Learning Representations (ICLR), pp. 1058–1070 (2020)
– reference: Li, J., Balasubramanian, K., Ma, S.: Stochastic zeroth-order riemannian derivative estimation and optimization. arXiv:2003.11238 (2020)
– reference: Reddi, S., Zaheer, M., Sra, S., Poczos, B., Bach, F., Salakhutdinov, R., Smola, A.: A generic approach for escaping saddle points. In: International Conference on Artificial Intelligence and Statistics, pp. 1233–1242 (2018)
– reference: Wang, Y., Du, S., Balakrishnan, S., Singh, A.: Stochastic zeroth-order optimization in high dimensions. In: A. Storkey, F. Perez-Cruz (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 84, pp. 1356–1365 (2018)
– reference: Reddi, S., Sra, S., Póczos, B., Smola, A.: Stochastic Frank-Wolfe Methods for Nonconvex Optimization. In: Proceedings of the 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1244–1251 (2016)
– reference: Chen, L., Zhang, M., Hassani, H., Karbasi, A.: Black box submodular maximization: Discrete and continuous settings. In: S. Chiappa, R. Calandra (eds.) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 108, pp. 1058–1070 (2020)
– reference: Choromanski, K., Rowland, M., Sindhwani, V., Turner, R., Weller, A.: Structured evolution with compact architectures for scalable policy optimization. In: Proceedings of the 35th International Conference on Machine Learning. PMLR (2018)
– reference: Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: Conference on Learning Theory, pp. 3–24 (2013)
– reference: FrankMWolfePAn algorithm for quadratic programmingNaval Research Logistics Quarterly19563951108910210.1002/nav.3800030109
– reference: Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM (2017)
– reference: Kawaguchi, K., Kaelbling, L.P.: Elimination of all bad local minima in deep learning. arXiv:1901.00279
– reference: Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive approach to reinforcement learning. In: Advances in Neural Information Processing Systems (2018)
– reference: CartisCGouldNITointPLAdaptive cubic regularisation methods for unconstrained optimization, Part I: Motivation, convergence and numerical resultsMathematical Programming20111272245295277670110.1007/s10107-009-0286-5
– reference: NesterovYPolyakBCubic regularization of newton method and its global performanceMathematical Programming20061081177205222945910.1007/s10107-006-0706-8
– reference: Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory. The Regents of the University of California (1972)
– reference: Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of local search for low rank matrix recovery. In: Advances in Neural Information Processing Systems, pp. 3873–3881 (2016)
– reference: Akhavan, A., Pontil, M., Tsybakov, A.: Exploiting higher order smoothness in derivative-free optimization and continuous bandits. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
– ident: 9499_CR33
– ident: 9499_CR81
– volume: 57
  start-page: 101443
  year: 2020
  ident: 9499_CR36
  publication-title: Journal of Complexity
  doi: 10.1016/j.jco.2019.101443
– volume: 13
  start-page: 389
  issue: 1
  year: 2012
  ident: 9499_CR64
  publication-title: The Journal of Machine Learning Research
– ident: 9499_CR10
– volume-title: Convex optimization
  year: 2004
  ident: 9499_CR11
  doi: 10.1017/CBO9780511804441
– ident: 9499_CR6
– ident: 9499_CR66
– volume: 22
  start-page: 146
  issue: 1
  year: 2009
  ident: 9499_CR67
  publication-title: Journal of Theoretical Probability
  doi: 10.1007/s10959-008-0155-9
– volume: 27
  start-page: 141
  issue: 2
  year: 2011
  ident: 9499_CR82
  publication-title: Journal of Complexity
  doi: 10.1016/j.jco.2011.01.004
– ident: 9499_CR2
– volume: 18
  start-page: 1131
  issue: 5
  year: 2018
  ident: 9499_CR77
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-017-9365-9
– ident: 9499_CR69
– volume: 26
  start-page: 1379
  issue: 2
  year: 2016
  ident: 9499_CR48
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/140992382
– ident: 9499_CR24
– volume: 46
  start-page: 2871
  issue: 6A
  year: 2018
  ident: 9499_CR52
  publication-title: The Annals of Statistics
  doi: 10.1214/17-AOS1642
– ident: 9499_CR53
– volume-title: Simulation and the Monte Carlo method
  year: 2016
  ident: 9499_CR68
  doi: 10.1002/9781118631980
– ident: 9499_CR72
– ident: 9499_CR31
  doi: 10.1134/S0005117917020035
– ident: 9499_CR59
– ident: 9499_CR76
– ident: 9499_CR32
– volume: 7
  start-page: 183
  issue: 2
  year: 2018
  ident: 9499_CR80
  publication-title: Information and Inference: A Journal of the IMA
  doi: 10.1093/imaiai/iax008
– ident: 9499_CR5
  doi: 10.1137/1.9781611974997
– volume: 127
  start-page: 245
  issue: 2
  year: 2011
  ident: 9499_CR16
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-009-0286-5
– ident: 9499_CR63
– volume: 17
  start-page: 527
  year: 2017
  ident: 9499_CR61
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-015-9296-2
– ident: 9499_CR28
– volume: 130
  start-page: 295
  issue: 2
  year: 2011
  ident: 9499_CR17
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-009-0337-y
– volume: 184
  start-page: 35
  year: 2020
  ident: 9499_CR83
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-019-01405-z
– ident: 9499_CR3
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 9499_CR26
  publication-title: IEEE Transactions on information theory
  doi: 10.1109/TIT.2006.871582
– ident: 9499_CR49
– volume-title: Introductory Lectures on Convex Optimization: a basic course
  year: 2004
  ident: 9499_CR58
  doi: 10.1007/978-1-4419-8853-9
– ident: 9499_CR79
  doi: 10.1007/978-3-319-40519-3_8
– volume: 28
  start-page: 1751
  issue: 2
  year: 2018
  ident: 9499_CR15
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/17M1114296
– ident: 9499_CR46
– ident: 9499_CR42
– ident: 9499_CR12
  doi: 10.1561/2200000024
– ident: 9499_CR21
– ident: 9499_CR14
– ident: 9499_CR20
  doi: 10.1145/3128572.3140448
– ident: 9499_CR65
  doi: 10.1109/ALLERTON.2016.7852377
– ident: 9499_CR39
– volume: 23
  start-page: 2341
  issue: 4
  year: 2013
  ident: 9499_CR35
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/120880811
– ident: 9499_CR34
  doi: 10.1007/s10107-017-1225-5
– volume: 186
  start-page: 157
  year: 2021
  ident: 9499_CR62
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-019-01449-1
– ident: 9499_CR8
– ident: 9499_CR4
– ident: 9499_CR1
– ident: 9499_CR22
  doi: 10.1137/1.9780898718768
– volume: 33
  start-page: 125
  issue: 1
  year: 2011
  ident: 9499_CR25
  publication-title: Constructive Approximation
  doi: 10.1007/s00365-010-9105-8
– volume: 3
  start-page: 95
  year: 1956
  ident: 9499_CR30
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800030109
– ident: 9499_CR19
– ident: 9499_CR45
– ident: 9499_CR70
– ident: 9499_CR41
– volume-title: Problem complexity and method efficiency in optimization
  year: 1983
  ident: 9499_CR57
– ident: 9499_CR38
– ident: 9499_CR43
  doi: 10.1561/2200000058
– ident: 9499_CR51
– ident: 9499_CR78
– ident: 9499_CR13
  doi: 10.1145/3055399.3055403
– ident: 9499_CR74
– volume: 18
  start-page: 1073
  issue: 5
  year: 2018
  ident: 9499_CR18
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-017-9363-y
– ident: 9499_CR7
  doi: 10.1137/1.9780898718829
– volume: 2
  start-page: 95
  year: 1982
  ident: 9499_CR40
  publication-title: Operations Research Letters
– ident: 9499_CR9
– volume: 21
  start-page: 1
  year: 2020
  ident: 9499_CR55
  publication-title: Journal of Machine Learning Research
– ident: 9499_CR75
  doi: 10.1214/aos/1176345632
– ident: 9499_CR47
– volume: 39
  start-page: 117
  issue: 2
  year: 1987
  ident: 9499_CR56
  publication-title: Mathematical Programming
  doi: 10.1007/BF02592948
– volume: 108
  start-page: 177
  issue: 1
  year: 2006
  ident: 9499_CR60
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-006-0706-8
– ident: 9499_CR71
– volume-title: Introduction to stochastic search and optimization: estimation, simulation, and control
  year: 2005
  ident: 9499_CR73
– ident: 9499_CR44
– ident: 9499_CR23
– volume: 17
  start-page: 7565
  issue: 1
  year: 2016
  ident: 9499_CR29
  publication-title: The Journal of Machine Learning Research
– volume: 61
  start-page: 2788
  issue: 5
  year: 2015
  ident: 9499_CR27
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2015.2409256
– ident: 9499_CR37
– ident: 9499_CR50
– ident: 9499_CR54
SSID ssj0015914
ssib031263371
Score 2.5678225
Snippet In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Applications of Mathematics
Computational geometry
Computer Science
Constraints
Convergence
Convexity
Economics
Hessian matrices
Image processing
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix Theory
Newton methods
Numerical Analysis
Optimization
Regularization
Saddle points
Smoothing
Sparsity
Title Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points
URI https://link.springer.com/article/10.1007/s10208-021-09499-8
https://www.proquest.com/docview/2625578754
Volume 22
WOSCitedRecordID wos000630642400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xmLTtYbBuE4WC_MDbailx7NjZ2wSreIAOqYCqvUSx44pJLJmagPjz53OddiCYBFKenIvl-Mf5s-_uO4CDLObaoQpNjdOElDNZUIcyNE2MSFVqY6t96oTLEzkeq-k0OwtBYU3n7d6ZJL2m_ifYjaGpnrnjLzKqUPUKNgSyzeAZfXK5tB2IzDN6I5ShSSJFCJV5vI7729EKYz4wi_rdZrT5snZuwfuALsm3xXT4AGu26sFmQJokrOPGFXXJHLqyHrzpQpTd63enSzLX5iNc_7TzGm9AkaWTjOvKe6rfkUlbm6sCeZ7JD6d4foeIzq_kGJkbXJMJZgP1OSjaZkjQo4QcYTKBBRGIg_9D4iTJpMA7EnJWo9wnuBh9Pz88piFJAzWc8ZZKEyutElVwt8-xLMWwrpIx90iEkmUiSyZUOpup0m3HRiNhv9ZRqoSUThvMks-wXtWV3QZiWSlTHhXcCLQfC51FlscZT7WJkqKwfYi7scpNYDDHn7jOV9zL2Pe56_vc932u-vBl-c2fBX_Hf6UH3RTIw1pucuaOiKjXBO_DsBvy1euna9t5nvguvGUYW-Fdwgew3s5v7B68Nrftr2a-7-f4X-7x88g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5tHVLhYQUGWkc3_MDbaqlxnNjhbWKrOq0tSAVU7SWKHVcglWZqsok_H5_rtBuCSZuUJ-diOf5x_uy7-w7gJAm4sqhCUW01IeVMZNSiDEVDHcUyNoFRLnXC9VCMx3I6TS58UFhZe7vXJkmnqX8LdmNoqmf2-IuMKlS-hFcc0-zgGX1yvbYdRIlj9EYoQ8NQRD5U5uk6_tyONhjzkVnU7Tb91v-1cxdee3RJPq2mwx68MIt9aHmkSfw6Lm1RncyhLtuHZh2ibF_vjNZkruUbmH83ywJvQJGlk4yLhfNUvyeTqtA3GfI8k3OreO58ROcpGSBzg20ywWygLgdFVXYJepSQz5hMYEUEYuF_l1hJMsnwjoRcFCh3AFf9L5dnA-qTNFDNGa-o0IFUMpQZt_scS2IM68oZs49AKJmHImeRjGczmdvtWCsk7FeqF8tICKsNZuEhNBbFwrwFYlguYt7LuI7QfhyppGd4kPBY6V6YZaYNQT1WqfYM5vgT83TDvYx9n9q-T13fp7INH9ff_Fjxd_xVulNPgdSv5TJl9oiIei3ibejWQ755_Xxt7_5N_Biag8vRMB1-HX87gm2GcRbOPbwDjWr507yHLf2rui2XH9x8fwBjtvas
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xMm3wwNgYojDAD3tbrTWOEzu8IUo1xCjVOqZpL1HsuGLSlkxNmPbnc-cm7YYGEpqUJ-diOf64D9_d7wB2k0Aa1CoMt8gJuRQq46hlGB7aKNaxC5zxpRNODtVopE9Pk_GtLH4f7d66JOc5DYTSVNT7V_l0_1bimyC3vUBTmNBVuF6BxxItGQrqOpqcLPwIUeLRvUmt4WGooiZt5v4-7oqmpb75h4vUS57hxsPH_ByeNVon-zjfJpvwyBVbsNFooKw53xU2tUUe2rYtWG9Tl_H1028LkNfqBVycuVlJN6OE3slGZeEj2G_YpC7tz4zwn9l3ZEiXTabnB3ZAiA44fEZVQn1tirrqMYo0YQMqMjAHCEGzoMeQkk0yujth45LotuHH8PPxpwPeFG_gVgpZc2UDbXSoM4nyTyQxpXvlQuCjSMXMQ5WLSMfTqc5RTFtDQP7G9GMdKYVcYhq-hE5RFu4VMCdyFct-Jm1EfuXIJH0ng0TGxvbDLHNdCNp1S22DbE4_cZEuMZlp7lOc-9TPfaq7sLf45mqO6_FP6p12O6TNGa9SgaYj8btIdqHXLv_y9d97e_1_5O9hbTwYpodfRl_fwBNB6Rc-anwHOvXsl3sLq_a6Pq9m7_zW_w1P7_-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeroth-Order+Nonconvex+Stochastic+Optimization%3A+Handling+Constraints%2C+High+Dimensionality%2C+and+Saddle+Points&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Balasubramanian+Krishnakumar&rft.au=Ghadimi+Saeed&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=22&rft.issue=1&rft.spage=35&rft.epage=76&rft_id=info:doi/10.1007%2Fs10208-021-09499-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon