Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube

•Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked difference.•The mechanisms of deterioration are discussed at various mass flow rates.•A correlation is developed based on dimensionless para...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied thermal engineering Ročník 157; s. 113687
Hlavní autoři: Zhang, Shijie, Xu, Xiaoxiao, Liu, Chao, Liu, Xinxin, Dang, Chaobin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 05.07.2019
Elsevier BV
Témata:
ISSN:1359-4311, 1873-5606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked difference.•The mechanisms of deterioration are discussed at various mass flow rates.•A correlation is developed based on dimensionless parameters and experimental data. In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various ranges of mass flow rate in heated vertical-flow tube. The experimental results indicate that the heat transfer characteristics at the various mass flow rates have marked difference. Heat transfer deterioration (HTD) is not observed at the low-mass flow rate (G = 80–120 kg/(m2·s)) even with a higher q/G. While the obvious HTD is detected in moderate (G = 120–180 kg/(m2·s)) and high (G > 180 kg/(m2·s)) mass flow rate. HTD occurs firstly near the outlet of test section at moderate mass flow rate (where the bulk fluid temperature exceeds the pseudo-critical temperature), and it moves toward the upstream of the test section as the mass flow rate increases. The laminarization of the low-density fluid layer in the heated surface is an important mechanism of HTD. Based on the wall-to-bulk temperature differences generating the modification of properties gradient and shear stress, the impacts of properties gradient, buoyancy effect and flow acceleration as well as the laminarization of the low-density fluid layer on heat transfer are considered in dimensionless form. Consequently, a new correlation is developed based on the heat transfer data more than 2800 which sets from 10 independent experiments.
AbstractList •Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked difference.•The mechanisms of deterioration are discussed at various mass flow rates.•A correlation is developed based on dimensionless parameters and experimental data. In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various ranges of mass flow rate in heated vertical-flow tube. The experimental results indicate that the heat transfer characteristics at the various mass flow rates have marked difference. Heat transfer deterioration (HTD) is not observed at the low-mass flow rate (G = 80–120 kg/(m2·s)) even with a higher q/G. While the obvious HTD is detected in moderate (G = 120–180 kg/(m2·s)) and high (G > 180 kg/(m2·s)) mass flow rate. HTD occurs firstly near the outlet of test section at moderate mass flow rate (where the bulk fluid temperature exceeds the pseudo-critical temperature), and it moves toward the upstream of the test section as the mass flow rate increases. The laminarization of the low-density fluid layer in the heated surface is an important mechanism of HTD. Based on the wall-to-bulk temperature differences generating the modification of properties gradient and shear stress, the impacts of properties gradient, buoyancy effect and flow acceleration as well as the laminarization of the low-density fluid layer on heat transfer are considered in dimensionless form. Consequently, a new correlation is developed based on the heat transfer data more than 2800 which sets from 10 independent experiments.
In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various ranges of mass flow rate in heated vertical-flow tube. The experimental results indicate that the heat transfer characteristics at the various mass flow rates have marked difference. Heat transfer deterioration (HTD) is not observed at the low-mass flow rate (G = 80–120 kg/(m2·s)) even with a higher q/G. While the obvious HTD is detected in moderate (G = 120–180 kg/(m2·s)) and high (G > 180 kg/(m2·s)) mass flow rate. HTD occurs firstly near the outlet of test section at moderate mass flow rate (where the bulk fluid temperature exceeds the pseudo-critical temperature), and it moves toward the upstream of the test section as the mass flow rate increases. The laminarization of the low-density fluid layer in the heated surface is an important mechanism of HTD. Based on the wall-to-bulk temperature differences generating the modification of properties gradient and shear stress, the impacts of properties gradient, buoyancy effect and flow acceleration as well as the laminarization of the low-density fluid layer on heat transfer are considered in dimensionless form. Consequently, a new correlation is developed based on the heat transfer data more than 2800 which sets from 10 independent experiments.
ArticleNumber 113687
Author Zhang, Shijie
Liu, Xinxin
Dang, Chaobin
Liu, Chao
Xu, Xiaoxiao
Author_xml – sequence: 1
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 2
  givenname: Xiaoxiao
  surname: Xu
  fullname: Xu, Xiaoxiao
  email: xuxiaoxiao@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 3
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 4
  givenname: Xinxin
  surname: Liu
  fullname: Liu, Xinxin
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 5
  givenname: Chaobin
  orcidid: 0000-0001-9717-1444
  surname: Dang
  fullname: Dang, Chaobin
  organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan
BookMark eNqNkc1q3DAUhUVJoPl7B0G7tXtly7YM3bRD0hYC2TRrIcvXGQ0eyZXkafMOfejezHTTrgICSeic76JzLtmZDx4Zey-gFCDaD7vSLMuctxj3Zkb_VFYg-hJkCX33hl0I1dVF00J7Rue66QtZC_GWXaa0AxCV6uQF-337a8Ho9uizmbnzB0zZPZnsgue0iM23aDLP0fg0YeR2a6KxmTwktImHiaeVEDY6uhNj81BxMhxMdGFNfG9S4tMcfvJoMiYacQTiyA8Yj47i-JrXAa_Z-WTmhDd_9yv2eHf7ffO1uH_48m3z6b6wspK5aFGOEmzddLYFGOrJwjANCjroe9VNVphGSgDT9qIeUalRgVJN35hK2koOUF-xdyfuEsOPlX6sd2GNnkbqqmrbWkrikurzSWVjSCnipK3Lx2QoDDdrAfqlBb3T_7agX1rQIDW1QJCP_0EWStvE59fa7052pDgODqNO1qG3OLqINusxuNeB_gAwLrL2
CitedBy_id crossref_primary_10_1007_s44270_024_00005_3
crossref_primary_10_1016_j_applthermaleng_2023_120798
crossref_primary_10_1016_j_cja_2020_12_022
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124098
crossref_primary_10_3390_en14227773
crossref_primary_10_1016_j_icheatmasstransfer_2020_104706
crossref_primary_10_1016_j_applthermaleng_2024_123223
crossref_primary_10_1016_j_ijthermalsci_2023_108247
crossref_primary_10_1016_j_ijheatfluidflow_2024_109534
crossref_primary_10_1016_j_ijthermalsci_2025_109899
crossref_primary_10_1016_j_applthermaleng_2025_128436
crossref_primary_10_3390_en15093312
crossref_primary_10_1016_j_applthermaleng_2023_120198
crossref_primary_10_1016_j_applthermaleng_2022_119727
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121824
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124563
crossref_primary_10_1016_j_apenergy_2020_114962
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122103
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125013
crossref_primary_10_1016_j_ijthermalsci_2025_110256
crossref_primary_10_1007_s11431_020_1773_9
crossref_primary_10_3390_ma13030723
crossref_primary_10_1016_j_enconman_2022_115993
crossref_primary_10_1016_j_icheatmasstransfer_2025_108995
crossref_primary_10_1016_j_applthermaleng_2021_117839
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124647
crossref_primary_10_1016_j_icheatmasstransfer_2023_106831
crossref_primary_10_1016_j_anucene_2023_109825
crossref_primary_10_1016_j_icheatmasstransfer_2024_107766
crossref_primary_10_1016_j_icheatmasstransfer_2025_109428
crossref_primary_10_1016_j_energy_2023_129041
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119074
crossref_primary_10_1007_s11630_024_2039_4
crossref_primary_10_1016_j_applthermaleng_2020_115823
crossref_primary_10_1016_j_ijheatfluidflow_2025_109953
crossref_primary_10_12677_NST_2022_103015
crossref_primary_10_1016_j_applthermaleng_2025_125623
crossref_primary_10_2298_TSCI210719052Y
crossref_primary_10_1016_j_energy_2022_124628
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119233
crossref_primary_10_1016_j_ijthermalsci_2024_109632
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120833
crossref_primary_10_1016_j_icheatmasstransfer_2022_106242
crossref_primary_10_1016_j_supflu_2022_105644
crossref_primary_10_1016_j_applthermaleng_2023_121753
crossref_primary_10_1016_j_ijrefrig_2022_05_013
crossref_primary_10_1002_er_8131
crossref_primary_10_3390_en18143864
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119623
crossref_primary_10_1016_j_supflu_2025_106586
crossref_primary_10_1007_s13202_020_01052_7
crossref_primary_10_1016_j_ijthermalsci_2025_109965
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121919
crossref_primary_10_1016_j_ijthermalsci_2024_109425
crossref_primary_10_1007_s11630_025_2127_0
crossref_primary_10_1016_j_applthermaleng_2025_126285
crossref_primary_10_1007_s10494_024_00529_3
crossref_primary_10_1016_j_energy_2022_125845
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123437
crossref_primary_10_32604_fhmt_2024_058179
Cites_doi 10.1016/j.applthermaleng.2018.07.007
10.1016/0017-9310(73)90135-X
10.1017/jfm.2015.437
10.1016/j.nucengdes.2005.05.034
10.1016/j.supflu.2007.11.013
10.1016/j.ijheatmasstransfer.2017.03.063
10.1016/j.ijheatmasstransfer.2016.12.081
10.1016/j.pnucene.2007.11.065
10.1016/j.expthermflusci.2010.06.001
10.1016/j.supflu.2004.10.007
10.1016/j.ijheatmasstransfer.2016.10.093
10.1016/S0017-9310(02)00119-9
10.1115/1.3580115
10.1016/j.anucene.2018.05.009
10.1016/j.ijheatmasstransfer.2018.04.033
10.3390/app7121260
10.1016/j.supflu.2018.03.014
10.1016/j.expthermflusci.2010.04.005
10.1016/0017-9310(70)90118-3
10.1016/j.nucengdes.2014.09.017
10.1016/j.ijheatmasstransfer.2018.01.112
10.1016/j.applthermaleng.2017.12.042
10.1016/0894-1777(88)90043-X
10.1016/j.energy.2018.03.009
10.1016/j.nucengdes.2012.09.040
10.1016/j.ijheatmasstransfer.2011.01.008
10.1016/j.rser.2018.04.106
10.1016/j.supflu.2009.08.004
10.1016/j.applthermaleng.2015.11.110
10.1016/j.nucengdes.2015.04.013
10.1016/j.nucengdes.2013.02.048
10.1007/BF00826651
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jul 5, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 5, 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2019.04.097
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2019_04_097
S1359431118379572
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
HZ~
R2-
SEW
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
KR7
SSH
ID FETCH-LOGICAL-c424t-6e4d40c357c600b3fc0bfb80709987fc1a54400a6913de88d8088595a24c24b03
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475994000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Mon Jul 14 07:30:06 EDT 2025
Sat Nov 29 03:20:21 EST 2025
Tue Nov 18 21:50:47 EST 2025
Fri Feb 23 02:33:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat transfer correlation
Heat transfer deterioration
Supercritical CO2
Laminarization
Experimental investigation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-6e4d40c357c600b3fc0bfb80709987fc1a54400a6913de88d8088595a24c24b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9717-1444
PQID 2266344600
PQPubID 2045278
ParticipantIDs proquest_journals_2266344600
crossref_citationtrail_10_1016_j_applthermaleng_2019_04_097
crossref_primary_10_1016_j_applthermaleng_2019_04_097
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_04_097
PublicationCentury 2000
PublicationDate 2019-07-05
PublicationDateYYYYMMDD 2019-07-05
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-05
  day: 05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Koshizuka, Takano, Oka (b0090) 1995; 60
Pioro, Duffey (b0010) 2005; 235
Shiralkar, Griffith (b0115) 1969; 91
Mikielewicz, Shehata, Jackson (b0055) 2002; 45
Kafengaus, Fedorov (b0135) 1968; 15
Hiroaki, Ayao, Masaru (b0155) 1973; 16
Mohseni, Bazargan (b0140) 2012; 134
Zahlan, Groeneveld, Tavoularis (b0170) 2015; 289
Kraan, Peeters, Cid (b0025) 2005; 34
Yuan, Piomelli (b0065) 2015; 780
J.D. Jackson, W.B. Hall, Influences of buoyancy on heat transfer to fluid flowing in vertical tubes under turbulent conditions, 2, 1979, 613–640.
Liu, Huang, Liu (b0180) 2016; 106
Liu, Huang, Wang (b0035) 2016; 98
Huang, Li (b0130) 2018; 131
Xu, Luo, Jiang (b0030) 2017; 110
Moffat (b0105) 1988; 1
Jackson (b0160) 2013; 264
Bae, Kim, Kang (b0175) 2010; 34
Hall, Jackson (b0100) 1978; 7
B.S. Petukhov, A.F. Polyakov, B.E. Launder, Heat transfer in turbulent mixed convection, 1988.
Zhang, Xu, Liu (b0015) 2018; 125
Lei, Zhang, Zhang (b0070) 2017; 7
Zhao, Liu, Zhang (b0145) 2018; 138
Zhang, Li, Kong (b0165) 2018; 122
Xu, Zhang, Xiong (b0190) 2014; 280
Li, Jiang, Zhao (b0050) 2010; 34
McEligot, Coon, Perkins (b0060) 1970; 13
Song, Kim, Kim (b0075) 2008; 44
Kim, Kim, Song (b0045) 2008; 50
Shen, Yang, Wang (b0080) 2017; 108
Zhang, Zhu, Li (b0005) 2018; 151
Monjurul Ehsan, Guan, Klimenko (b0040) 2018; 92
Gupta, Saltanov, Mokry (b0085) 2013; 261
M. Bazargan, Forced convection heat transfer to turbulent flow of supercritical water in a round horizontal tube, 1961.
Wang, Leung, Wang (b0110) 2018; 142
Bazargan, Mohseni (b0125) 2009; 51
Hong-Bo, Meng, Zhen-Xiao (b0185) 2018; 119
Wang, Li, Yu (b0095) 2011; 54
Bae (10.1016/j.applthermaleng.2019.04.097_b0175) 2010; 34
Zhang (10.1016/j.applthermaleng.2019.04.097_b0165) 2018; 122
Kafengaus (10.1016/j.applthermaleng.2019.04.097_b0135) 1968; 15
Kraan (10.1016/j.applthermaleng.2019.04.097_b0025) 2005; 34
Monjurul Ehsan (10.1016/j.applthermaleng.2019.04.097_b0040) 2018; 92
Moffat (10.1016/j.applthermaleng.2019.04.097_b0105) 1988; 1
10.1016/j.applthermaleng.2019.04.097_b0020
10.1016/j.applthermaleng.2019.04.097_b0120
Song (10.1016/j.applthermaleng.2019.04.097_b0075) 2008; 44
Zhao (10.1016/j.applthermaleng.2019.04.097_b0145) 2018; 138
Hong-Bo (10.1016/j.applthermaleng.2019.04.097_b0185) 2018; 119
Liu (10.1016/j.applthermaleng.2019.04.097_b0035) 2016; 98
McEligot (10.1016/j.applthermaleng.2019.04.097_b0060) 1970; 13
Lei (10.1016/j.applthermaleng.2019.04.097_b0070) 2017; 7
Hiroaki (10.1016/j.applthermaleng.2019.04.097_b0155) 1973; 16
Shiralkar (10.1016/j.applthermaleng.2019.04.097_b0115) 1969; 91
Zhang (10.1016/j.applthermaleng.2019.04.097_b0005) 2018; 151
Gupta (10.1016/j.applthermaleng.2019.04.097_b0085) 2013; 261
Bazargan (10.1016/j.applthermaleng.2019.04.097_b0125) 2009; 51
Yuan (10.1016/j.applthermaleng.2019.04.097_b0065) 2015; 780
Wang (10.1016/j.applthermaleng.2019.04.097_b0095) 2011; 54
Jackson (10.1016/j.applthermaleng.2019.04.097_b0160) 2013; 264
Li (10.1016/j.applthermaleng.2019.04.097_b0050) 2010; 34
Shen (10.1016/j.applthermaleng.2019.04.097_b0080) 2017; 108
Hall (10.1016/j.applthermaleng.2019.04.097_b0100) 1978; 7
Pioro (10.1016/j.applthermaleng.2019.04.097_b0010) 2005; 235
Xu (10.1016/j.applthermaleng.2019.04.097_b0030) 2017; 110
Huang (10.1016/j.applthermaleng.2019.04.097_b0130) 2018; 131
Wang (10.1016/j.applthermaleng.2019.04.097_b0110) 2018; 142
Koshizuka (10.1016/j.applthermaleng.2019.04.097_b0090) 1995; 60
Liu (10.1016/j.applthermaleng.2019.04.097_b0180) 2016; 106
Mikielewicz (10.1016/j.applthermaleng.2019.04.097_b0055) 2002; 45
Kim (10.1016/j.applthermaleng.2019.04.097_b0045) 2008; 50
Mohseni (10.1016/j.applthermaleng.2019.04.097_b0140) 2012; 134
10.1016/j.applthermaleng.2019.04.097_b0150
Zhang (10.1016/j.applthermaleng.2019.04.097_b0015) 2018; 125
Zahlan (10.1016/j.applthermaleng.2019.04.097_b0170) 2015; 289
Xu (10.1016/j.applthermaleng.2019.04.097_b0190) 2014; 280
References_xml – volume: 54
  start-page: 1950
  year: 2011
  end-page: 1958
  ident: b0095
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 134
  start-page: 1
  year: 2012
  end-page: 7
  ident: b0140
  article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids
  publication-title: J. Heat Transf.
– volume: 15
  start-page: 825
  year: 1968
  end-page: 828
  ident: b0135
  article-title: Interrelation of temperature of cooled surface and frequency of natural pressure oscillations in turbulent heat transfer
  publication-title: J. Eng. Phys.
– volume: 151
  start-page: 386
  year: 2018
  ident: b0005
  article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO
  publication-title: Energy
– volume: 44
  start-page: 164
  year: 2008
  end-page: 171
  ident: b0075
  article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe
  publication-title: J. Supercrit. Fluids
– volume: 131
  start-page: 977
  year: 2018
  end-page: 987
  ident: b0130
  article-title: A brief review on the buoyancy criteria for supercritical fluids
  publication-title: Appl. Therm. Eng.
– volume: 106
  start-page: 1144
  year: 2016
  end-page: 1156
  ident: b0180
  article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes
  publication-title: Int. J. Heat Mass Transf.
– reference: J.D. Jackson, W.B. Hall, Influences of buoyancy on heat transfer to fluid flowing in vertical tubes under turbulent conditions, 2, 1979, 613–640.
– reference: B.S. Petukhov, A.F. Polyakov, B.E. Launder, Heat transfer in turbulent mixed convection, 1988.
– volume: 45
  start-page: 4333
  year: 2002
  end-page: 4352
  ident: b0055
  article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data
  publication-title: Int. J. Heat Mass Transf.
– volume: 7
  start-page: 1
  year: 1978
  end-page: 86
  ident: b0100
  article-title: Heat transfer near the critical point
  publication-title: Adv. Heat Transf.
– reference: M. Bazargan, Forced convection heat transfer to turbulent flow of supercritical water in a round horizontal tube, 1961.
– volume: 51
  start-page: 221
  year: 2009
  end-page: 229
  ident: b0125
  article-title: The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid
  publication-title: J. Supercrit. Fluids
– volume: 7
  start-page: 1260
  year: 2017
  ident: b0070
  article-title: Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes
  publication-title: Appl. Sci.
– volume: 780
  start-page: 192
  year: 2015
  end-page: 214
  ident: b0065
  article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness
  publication-title: J. Fluid Mech.
– volume: 60
  start-page: 3077
  year: 1995
  end-page: 3084
  ident: b0090
  article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water
  publication-title: Trans. Japan Soc. Mech. Eng.
– volume: 280
  start-page: 305
  year: 2014
  end-page: 315
  ident: b0190
  article-title: Experimental study on heat transfer of supercritical Freon flowing upward in a circular tube
  publication-title: Nucl. Eng. Des.
– volume: 261
  start-page: 116
  year: 2013
  end-page: 131
  ident: b0085
  article-title: Developing empirical heat-transfer correlations for supercritical CO
  publication-title: Nucl. Eng. Des.
– volume: 122
  start-page: 469
  year: 2018
  end-page: 482
  ident: b0165
  article-title: Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux
  publication-title: Int. J. Heat Mass Transf.
– volume: 119
  start-page: 240
  year: 2018
  end-page: 256
  ident: b0185
  article-title: Experimental study of supercritical water heat transfer deteriorations in different channels
  publication-title: Ann. Nucl. Energy
– volume: 34
  start-page: 1162
  year: 2010
  end-page: 1171
  ident: b0050
  article-title: Experimental investigation of convection heat transfer of CO
  publication-title: Exp. Therm. Fluid Sci.
– volume: 34
  start-page: 1295
  year: 2010
  end-page: 1308
  ident: b0175
  article-title: Forced and mixed convection heat transfer to supercritical CO
  publication-title: Exp. Therm Fluid Sci.
– volume: 108
  start-page: 1676
  year: 2017
  end-page: 1688
  ident: b0080
  article-title: Experimental and numerical analysis of heat transfer to water at supercritical pressures
  publication-title: Int. J. Heat Mass Transf.
– volume: 91
  start-page: 27
  year: 1969
  end-page: 36
  ident: b0115
  article-title: Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes
  publication-title: J. Heat Transf.
– volume: 16
  start-page: 1267
  year: 1973
  end-page: 1288
  ident: b0155
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criterian of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 13
  start-page: 431
  year: 1970
  end-page: 433
  ident: b0060
  article-title: Relaminarisation in tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 264
  start-page: 24
  year: 2013
  end-page: 40
  ident: b0160
  article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure
  publication-title: Nucl. Eng. Des.
– volume: 34
  start-page: 99
  year: 2005
  end-page: 105
  ident: b0025
  article-title: The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions
  publication-title: J. Supercrit. Fluids
– volume: 98
  start-page: 39
  year: 2016
  end-page: 48
  ident: b0035
  article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop
  publication-title: Appl. Therm. Eng.
– volume: 138
  year: 2018
  ident: b0145
  article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO
  publication-title: J. Supercrit. Fluids
– volume: 1
  start-page: 3
  year: 1988
  end-page: 17
  ident: b0105
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm. Fluid Sci.
– volume: 50
  start-page: 518
  year: 2008
  end-page: 525
  ident: b0045
  article-title: Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage
  publication-title: Prog. Nucl. Energy
– volume: 142
  start-page: 573
  year: 2018
  end-page: 596
  ident: b0110
  article-title: A review on recent heat transfer studies to supercritical pressure water in channels
  publication-title: Appl. Therm. Eng.
– volume: 110
  start-page: 576
  year: 2017
  end-page: 586
  ident: b0030
  article-title: Buoyancy effects on turbulent heat transfer of supercritical CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 125
  start-page: 274
  year: 2018
  end-page: 289
  ident: b0015
  article-title: The buoyancy force and flow acceleration effects of supercritical CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 289
  start-page: 92
  year: 2015
  end-page: 107
  ident: b0170
  article-title: Measurements of convective heat transfer to vertical upward flows of CO
  publication-title: Nucl. Eng. Des.
– volume: 92
  start-page: 658
  year: 2018
  end-page: 675
  ident: b0040
  article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 235
  start-page: 2407
  year: 2005
  end-page: 2430
  ident: b0010
  article-title: Experimental heat transfer in supercritical water flowing inside channels (survey)
  publication-title: Nucl. Eng. Des.
– volume: 60
  start-page: 3077
  issue: 16
  year: 1995
  ident: 10.1016/j.applthermaleng.2019.04.097_b0090
  article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water
  publication-title: Trans. Japan Soc. Mech. Eng.
– volume: 142
  start-page: 573
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0110
  article-title: A review on recent heat transfer studies to supercritical pressure water in channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.007
– volume: 16
  start-page: 1267
  issue: 6
  year: 1973
  ident: 10.1016/j.applthermaleng.2019.04.097_b0155
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criterian of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(73)90135-X
– volume: 780
  start-page: 192
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.04.097_b0065
  article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.437
– volume: 235
  start-page: 2407
  issue: 22
  year: 2005
  ident: 10.1016/j.applthermaleng.2019.04.097_b0010
  article-title: Experimental heat transfer in supercritical water flowing inside channels (survey)
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2005.05.034
– volume: 44
  start-page: 164
  issue: 2
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.04.097_b0075
  article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2007.11.013
– ident: 10.1016/j.applthermaleng.2019.04.097_b0020
– ident: 10.1016/j.applthermaleng.2019.04.097_b0150
– volume: 110
  start-page: 576
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.04.097_b0030
  article-title: Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.03.063
– volume: 108
  start-page: 1676
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.04.097_b0080
  article-title: Experimental and numerical analysis of heat transfer to water at supercritical pressures
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.12.081
– volume: 50
  start-page: 518
  issue: 2
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.04.097_b0045
  article-title: Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2007.11.065
– volume: 34
  start-page: 1295
  issue: 8
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.04.097_b0175
  article-title: Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.06.001
– volume: 34
  start-page: 99
  issue: 1
  year: 2005
  ident: 10.1016/j.applthermaleng.2019.04.097_b0025
  article-title: The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2004.10.007
– volume: 106
  start-page: 1144
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.04.097_b0180
  article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.093
– volume: 45
  start-page: 4333
  issue: 21
  year: 2002
  ident: 10.1016/j.applthermaleng.2019.04.097_b0055
  article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00119-9
– volume: 91
  start-page: 27
  issue: 1
  year: 1969
  ident: 10.1016/j.applthermaleng.2019.04.097_b0115
  article-title: Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3580115
– volume: 119
  start-page: 240
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0185
  article-title: Experimental study of supercritical water heat transfer deteriorations in different channels
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2018.05.009
– volume: 125
  start-page: 274
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0015
  article-title: The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.033
– volume: 7
  start-page: 1260
  issue: 12
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.04.097_b0070
  article-title: Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes
  publication-title: Appl. Sci.
  doi: 10.3390/app7121260
– volume: 138
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0145
  article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2018.03.014
– volume: 34
  start-page: 1162
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.04.097_b0050
  article-title: Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.04.005
– volume: 13
  start-page: 431
  year: 1970
  ident: 10.1016/j.applthermaleng.2019.04.097_b0060
  article-title: Relaminarisation in tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(70)90118-3
– volume: 280
  start-page: 305
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.04.097_b0190
  article-title: Experimental study on heat transfer of supercritical Freon flowing upward in a circular tube
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.09.017
– volume: 122
  start-page: 469
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0165
  article-title: Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.112
– volume: 131
  start-page: 977
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0130
  article-title: A brief review on the buoyancy criteria for supercritical fluids
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.042
– volume: 7
  start-page: 1
  year: 1978
  ident: 10.1016/j.applthermaleng.2019.04.097_b0100
  article-title: Heat transfer near the critical point
  publication-title: Adv. Heat Transf.
– volume: 1
  start-page: 3
  issue: 1
  year: 1988
  ident: 10.1016/j.applthermaleng.2019.04.097_b0105
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
– volume: 151
  start-page: 386
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0005
  article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.009
– volume: 264
  start-page: 24
  issue: 11
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.04.097_b0160
  article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2012.09.040
– volume: 54
  start-page: 1950
  issue: 9
  year: 2011
  ident: 10.1016/j.applthermaleng.2019.04.097_b0095
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.008
– volume: 92
  start-page: 658
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.04.097_b0040
  article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.106
– volume: 51
  start-page: 221
  issue: 2
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.04.097_b0125
  article-title: The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2009.08.004
– volume: 98
  start-page: 39
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.04.097_b0035
  article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.110
– volume: 289
  start-page: 92
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.04.097_b0170
  article-title: Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2015.04.013
– volume: 261
  start-page: 116
  issue: 8
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.04.097_b0085
  article-title: Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.02.048
– ident: 10.1016/j.applthermaleng.2019.04.097_b0120
– volume: 15
  start-page: 825
  issue: 3
  year: 1968
  ident: 10.1016/j.applthermaleng.2019.04.097_b0135
  article-title: Interrelation of temperature of cooled surface and frequency of natural pressure oscillations in turbulent heat transfer
  publication-title: J. Eng. Phys.
  doi: 10.1007/BF00826651
– volume: 134
  start-page: 1
  issue: 122503
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.04.097_b0140
  article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids
  publication-title: J. Heat Transf.
SSID ssj0012874
Score 2.5002425
Snippet •Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked...
In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113687
SubjectTerms Acceleration
Carbon dioxide
Critical temperature
Density
Experimental investigation
Heat conductivity
Heat transfer
Heat transfer correlation
Heat transfer deterioration
Laminarization
Mass flow rate
Shear stress
Supercritical CO2
Temperature effects
Temperature gradients
Thermodynamics
Title Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube
URI https://dx.doi.org/10.1016/j.applthermaleng.2019.04.097
https://www.proquest.com/docview/2266344600
Volume 157
WOSCitedRecordID wos000475994000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBahHWN7GLuybt3QQ9-Kh2LJlsUeRikZ2xjdYB34TciyzRxSpyRxlh-xp_3inWPLdpxSyBiD2AQZSbbPl3M-KedCyEkoWJ4IX3pYP8QTkjEv8QPjgalT3AjfRFmdMv-zvLiI4lh9HY1-t7Ew65ksy2izUdf_VdTQBsLG0Nm_EHc3KDTAdxA6nEHscN5L8JPtnP1Fn0YDiWHj04j6F2tDAGPNFhj6O0jZDOxxWcEQti2CcP7Fx5DHNayq0V_2Cuj2aT6b_zzFLBO1Oy0OCMS1Lu0MPbz66qpKBm5GLd9FxnkFw2Z9JsSbu9c_imnRQS6usC0uzHwDR-dCVFTOX2C3KS7KjUso7vYz6hAqjwX9JlsbaNN7NaFe5oHygOuMB4q7SW19wwg0-xHTN-gC4J4JHgnd-FST1lb2xq9zSfyGU-AMoOOkCiSY9UNfBgo05eHZx0n8qftvCisE1Mt4d0t3yUnvNXj7nLcRnx0KUPOay4fkgVuQ0LMGSI_IKCsfk_tbaSqfkF_bkKIDSFH4wI1QRABtIUV3IEXnOR1AigKkKHRwkKIIKYqgoTWkYAraQIoOIEURUk_J9_eTy_MPnqvi4Vnhi5UXZiIVzPJAWiDXCc8tS_IkAlMDK32Z27EJBBgSE6oxT7MoSiMwfIEKjC-sLxLGn5GDcl5mzwm1lhsmJbdhqERqhcnGzCSGpzZUYRqlR-Rt-4q1dSnusdLKTLe-jFM9FJBGAWkmNAjoiARd7-sm1cue_d610tSOtjZ0VAMg9xzhuAWBdppkqWFdFHIh4J29-OcJXpJ7_U_tmBysFlX2ityx61WxXLx2AP8DJZvZMA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+the+heat+transfer+characteristics+of+supercritical+CO2+at+various+mass+flow+rates+in+heated+vertical-flow+tube&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Liu%2C+Xinxin&rft.date=2019-07-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=157&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.04.097&rft.externalDocID=S1359431118379572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon