Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube
•Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked difference.•The mechanisms of deterioration are discussed at various mass flow rates.•A correlation is developed based on dimensionless para...
Gespeichert in:
| Veröffentlicht in: | Applied thermal engineering Jg. 157; S. 113687 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
05.07.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 1359-4311, 1873-5606 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked difference.•The mechanisms of deterioration are discussed at various mass flow rates.•A correlation is developed based on dimensionless parameters and experimental data.
In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various ranges of mass flow rate in heated vertical-flow tube. The experimental results indicate that the heat transfer characteristics at the various mass flow rates have marked difference. Heat transfer deterioration (HTD) is not observed at the low-mass flow rate (G = 80–120 kg/(m2·s)) even with a higher q/G. While the obvious HTD is detected in moderate (G = 120–180 kg/(m2·s)) and high (G > 180 kg/(m2·s)) mass flow rate. HTD occurs firstly near the outlet of test section at moderate mass flow rate (where the bulk fluid temperature exceeds the pseudo-critical temperature), and it moves toward the upstream of the test section as the mass flow rate increases. The laminarization of the low-density fluid layer in the heated surface is an important mechanism of HTD. Based on the wall-to-bulk temperature differences generating the modification of properties gradient and shear stress, the impacts of properties gradient, buoyancy effect and flow acceleration as well as the laminarization of the low-density fluid layer on heat transfer are considered in dimensionless form. Consequently, a new correlation is developed based on the heat transfer data more than 2800 which sets from 10 independent experiments. |
|---|---|
| AbstractList | •Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked difference.•The mechanisms of deterioration are discussed at various mass flow rates.•A correlation is developed based on dimensionless parameters and experimental data.
In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various ranges of mass flow rate in heated vertical-flow tube. The experimental results indicate that the heat transfer characteristics at the various mass flow rates have marked difference. Heat transfer deterioration (HTD) is not observed at the low-mass flow rate (G = 80–120 kg/(m2·s)) even with a higher q/G. While the obvious HTD is detected in moderate (G = 120–180 kg/(m2·s)) and high (G > 180 kg/(m2·s)) mass flow rate. HTD occurs firstly near the outlet of test section at moderate mass flow rate (where the bulk fluid temperature exceeds the pseudo-critical temperature), and it moves toward the upstream of the test section as the mass flow rate increases. The laminarization of the low-density fluid layer in the heated surface is an important mechanism of HTD. Based on the wall-to-bulk temperature differences generating the modification of properties gradient and shear stress, the impacts of properties gradient, buoyancy effect and flow acceleration as well as the laminarization of the low-density fluid layer on heat transfer are considered in dimensionless form. Consequently, a new correlation is developed based on the heat transfer data more than 2800 which sets from 10 independent experiments. In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various ranges of mass flow rate in heated vertical-flow tube. The experimental results indicate that the heat transfer characteristics at the various mass flow rates have marked difference. Heat transfer deterioration (HTD) is not observed at the low-mass flow rate (G = 80–120 kg/(m2·s)) even with a higher q/G. While the obvious HTD is detected in moderate (G = 120–180 kg/(m2·s)) and high (G > 180 kg/(m2·s)) mass flow rate. HTD occurs firstly near the outlet of test section at moderate mass flow rate (where the bulk fluid temperature exceeds the pseudo-critical temperature), and it moves toward the upstream of the test section as the mass flow rate increases. The laminarization of the low-density fluid layer in the heated surface is an important mechanism of HTD. Based on the wall-to-bulk temperature differences generating the modification of properties gradient and shear stress, the impacts of properties gradient, buoyancy effect and flow acceleration as well as the laminarization of the low-density fluid layer on heat transfer are considered in dimensionless form. Consequently, a new correlation is developed based on the heat transfer data more than 2800 which sets from 10 independent experiments. |
| ArticleNumber | 113687 |
| Author | Zhang, Shijie Liu, Xinxin Dang, Chaobin Liu, Chao Xu, Xiaoxiao |
| Author_xml | – sequence: 1 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 2 givenname: Xiaoxiao surname: Xu fullname: Xu, Xiaoxiao email: xuxiaoxiao@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 3 givenname: Chao surname: Liu fullname: Liu, Chao organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 4 givenname: Xinxin surname: Liu fullname: Liu, Xinxin organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 5 givenname: Chaobin orcidid: 0000-0001-9717-1444 surname: Dang fullname: Dang, Chaobin organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan |
| BookMark | eNqNkc1q3DAUhUVJoPl7B0G7tXtly7YM3bRD0hYC2TRrIcvXGQ0eyZXkafMOfejezHTTrgICSeic76JzLtmZDx4Zey-gFCDaD7vSLMuctxj3Zkb_VFYg-hJkCX33hl0I1dVF00J7Rue66QtZC_GWXaa0AxCV6uQF-337a8Ho9uizmbnzB0zZPZnsgue0iM23aDLP0fg0YeR2a6KxmTwktImHiaeVEDY6uhNj81BxMhxMdGFNfG9S4tMcfvJoMiYacQTiyA8Yj47i-JrXAa_Z-WTmhDd_9yv2eHf7ffO1uH_48m3z6b6wspK5aFGOEmzddLYFGOrJwjANCjroe9VNVphGSgDT9qIeUalRgVJN35hK2koOUF-xdyfuEsOPlX6sd2GNnkbqqmrbWkrikurzSWVjSCnipK3Lx2QoDDdrAfqlBb3T_7agX1rQIDW1QJCP_0EWStvE59fa7052pDgODqNO1qG3OLqINusxuNeB_gAwLrL2 |
| CitedBy_id | crossref_primary_10_1007_s44270_024_00005_3 crossref_primary_10_1016_j_applthermaleng_2023_120798 crossref_primary_10_1016_j_cja_2020_12_022 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124098 crossref_primary_10_3390_en14227773 crossref_primary_10_1016_j_icheatmasstransfer_2020_104706 crossref_primary_10_1016_j_applthermaleng_2024_123223 crossref_primary_10_1016_j_ijthermalsci_2023_108247 crossref_primary_10_1016_j_ijheatfluidflow_2024_109534 crossref_primary_10_1016_j_ijthermalsci_2025_109899 crossref_primary_10_1016_j_applthermaleng_2025_128436 crossref_primary_10_3390_en15093312 crossref_primary_10_1016_j_applthermaleng_2023_120198 crossref_primary_10_1016_j_applthermaleng_2022_119727 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121824 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124563 crossref_primary_10_1016_j_apenergy_2020_114962 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122103 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125013 crossref_primary_10_1016_j_ijthermalsci_2025_110256 crossref_primary_10_1007_s11431_020_1773_9 crossref_primary_10_3390_ma13030723 crossref_primary_10_1016_j_enconman_2022_115993 crossref_primary_10_1016_j_icheatmasstransfer_2025_108995 crossref_primary_10_1016_j_applthermaleng_2021_117839 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124647 crossref_primary_10_1016_j_icheatmasstransfer_2023_106831 crossref_primary_10_1016_j_anucene_2023_109825 crossref_primary_10_1016_j_icheatmasstransfer_2024_107766 crossref_primary_10_1016_j_icheatmasstransfer_2025_109428 crossref_primary_10_1016_j_energy_2023_129041 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119074 crossref_primary_10_1007_s11630_024_2039_4 crossref_primary_10_1016_j_applthermaleng_2020_115823 crossref_primary_10_1016_j_ijheatfluidflow_2025_109953 crossref_primary_10_12677_NST_2022_103015 crossref_primary_10_1016_j_applthermaleng_2025_125623 crossref_primary_10_2298_TSCI210719052Y crossref_primary_10_1016_j_energy_2022_124628 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119233 crossref_primary_10_1016_j_ijthermalsci_2024_109632 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120833 crossref_primary_10_1016_j_icheatmasstransfer_2022_106242 crossref_primary_10_1016_j_supflu_2022_105644 crossref_primary_10_1016_j_applthermaleng_2023_121753 crossref_primary_10_1016_j_ijrefrig_2022_05_013 crossref_primary_10_1002_er_8131 crossref_primary_10_3390_en18143864 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119623 crossref_primary_10_1016_j_supflu_2025_106586 crossref_primary_10_1007_s13202_020_01052_7 crossref_primary_10_1016_j_ijthermalsci_2025_109965 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121919 crossref_primary_10_1016_j_ijthermalsci_2024_109425 crossref_primary_10_1007_s11630_025_2127_0 crossref_primary_10_1016_j_applthermaleng_2025_126285 crossref_primary_10_1007_s10494_024_00529_3 crossref_primary_10_1016_j_energy_2022_125845 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123437 crossref_primary_10_32604_fhmt_2024_058179 |
| Cites_doi | 10.1016/j.applthermaleng.2018.07.007 10.1016/0017-9310(73)90135-X 10.1017/jfm.2015.437 10.1016/j.nucengdes.2005.05.034 10.1016/j.supflu.2007.11.013 10.1016/j.ijheatmasstransfer.2017.03.063 10.1016/j.ijheatmasstransfer.2016.12.081 10.1016/j.pnucene.2007.11.065 10.1016/j.expthermflusci.2010.06.001 10.1016/j.supflu.2004.10.007 10.1016/j.ijheatmasstransfer.2016.10.093 10.1016/S0017-9310(02)00119-9 10.1115/1.3580115 10.1016/j.anucene.2018.05.009 10.1016/j.ijheatmasstransfer.2018.04.033 10.3390/app7121260 10.1016/j.supflu.2018.03.014 10.1016/j.expthermflusci.2010.04.005 10.1016/0017-9310(70)90118-3 10.1016/j.nucengdes.2014.09.017 10.1016/j.ijheatmasstransfer.2018.01.112 10.1016/j.applthermaleng.2017.12.042 10.1016/0894-1777(88)90043-X 10.1016/j.energy.2018.03.009 10.1016/j.nucengdes.2012.09.040 10.1016/j.ijheatmasstransfer.2011.01.008 10.1016/j.rser.2018.04.106 10.1016/j.supflu.2009.08.004 10.1016/j.applthermaleng.2015.11.110 10.1016/j.nucengdes.2015.04.013 10.1016/j.nucengdes.2013.02.048 10.1007/BF00826651 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jul 5, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jul 5, 2019 |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1016/j.applthermaleng.2019.04.097 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5606 |
| ExternalDocumentID | 10_1016_j_applthermaleng_2019_04_097 S1359431118379572 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB HZ~ R2- SEW ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 KR7 SSH |
| ID | FETCH-LOGICAL-c424t-6e4d40c357c600b3fc0bfb80709987fc1a54400a6913de88d8088595a24c24b03 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475994000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Mon Jul 14 07:30:06 EDT 2025 Sat Nov 29 03:20:21 EST 2025 Tue Nov 18 21:50:47 EST 2025 Fri Feb 23 02:33:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heat transfer correlation Heat transfer deterioration Supercritical CO2 Laminarization Experimental investigation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c424t-6e4d40c357c600b3fc0bfb80709987fc1a54400a6913de88d8088595a24c24b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9717-1444 |
| PQID | 2266344600 |
| PQPubID | 2045278 |
| ParticipantIDs | proquest_journals_2266344600 crossref_citationtrail_10_1016_j_applthermaleng_2019_04_097 crossref_primary_10_1016_j_applthermaleng_2019_04_097 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_04_097 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-05 |
| PublicationDateYYYYMMDD | 2019-07-05 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Koshizuka, Takano, Oka (b0090) 1995; 60 Pioro, Duffey (b0010) 2005; 235 Shiralkar, Griffith (b0115) 1969; 91 Mikielewicz, Shehata, Jackson (b0055) 2002; 45 Kafengaus, Fedorov (b0135) 1968; 15 Hiroaki, Ayao, Masaru (b0155) 1973; 16 Mohseni, Bazargan (b0140) 2012; 134 Zahlan, Groeneveld, Tavoularis (b0170) 2015; 289 Kraan, Peeters, Cid (b0025) 2005; 34 Yuan, Piomelli (b0065) 2015; 780 J.D. Jackson, W.B. Hall, Influences of buoyancy on heat transfer to fluid flowing in vertical tubes under turbulent conditions, 2, 1979, 613–640. Liu, Huang, Liu (b0180) 2016; 106 Liu, Huang, Wang (b0035) 2016; 98 Huang, Li (b0130) 2018; 131 Xu, Luo, Jiang (b0030) 2017; 110 Moffat (b0105) 1988; 1 Jackson (b0160) 2013; 264 Bae, Kim, Kang (b0175) 2010; 34 Hall, Jackson (b0100) 1978; 7 B.S. Petukhov, A.F. Polyakov, B.E. Launder, Heat transfer in turbulent mixed convection, 1988. Zhang, Xu, Liu (b0015) 2018; 125 Lei, Zhang, Zhang (b0070) 2017; 7 Zhao, Liu, Zhang (b0145) 2018; 138 Zhang, Li, Kong (b0165) 2018; 122 Xu, Zhang, Xiong (b0190) 2014; 280 Li, Jiang, Zhao (b0050) 2010; 34 McEligot, Coon, Perkins (b0060) 1970; 13 Song, Kim, Kim (b0075) 2008; 44 Kim, Kim, Song (b0045) 2008; 50 Shen, Yang, Wang (b0080) 2017; 108 Zhang, Zhu, Li (b0005) 2018; 151 Monjurul Ehsan, Guan, Klimenko (b0040) 2018; 92 Gupta, Saltanov, Mokry (b0085) 2013; 261 M. Bazargan, Forced convection heat transfer to turbulent flow of supercritical water in a round horizontal tube, 1961. Wang, Leung, Wang (b0110) 2018; 142 Bazargan, Mohseni (b0125) 2009; 51 Hong-Bo, Meng, Zhen-Xiao (b0185) 2018; 119 Wang, Li, Yu (b0095) 2011; 54 Bae (10.1016/j.applthermaleng.2019.04.097_b0175) 2010; 34 Zhang (10.1016/j.applthermaleng.2019.04.097_b0165) 2018; 122 Kafengaus (10.1016/j.applthermaleng.2019.04.097_b0135) 1968; 15 Kraan (10.1016/j.applthermaleng.2019.04.097_b0025) 2005; 34 Monjurul Ehsan (10.1016/j.applthermaleng.2019.04.097_b0040) 2018; 92 Moffat (10.1016/j.applthermaleng.2019.04.097_b0105) 1988; 1 10.1016/j.applthermaleng.2019.04.097_b0020 10.1016/j.applthermaleng.2019.04.097_b0120 Song (10.1016/j.applthermaleng.2019.04.097_b0075) 2008; 44 Zhao (10.1016/j.applthermaleng.2019.04.097_b0145) 2018; 138 Hong-Bo (10.1016/j.applthermaleng.2019.04.097_b0185) 2018; 119 Liu (10.1016/j.applthermaleng.2019.04.097_b0035) 2016; 98 McEligot (10.1016/j.applthermaleng.2019.04.097_b0060) 1970; 13 Lei (10.1016/j.applthermaleng.2019.04.097_b0070) 2017; 7 Hiroaki (10.1016/j.applthermaleng.2019.04.097_b0155) 1973; 16 Shiralkar (10.1016/j.applthermaleng.2019.04.097_b0115) 1969; 91 Zhang (10.1016/j.applthermaleng.2019.04.097_b0005) 2018; 151 Gupta (10.1016/j.applthermaleng.2019.04.097_b0085) 2013; 261 Bazargan (10.1016/j.applthermaleng.2019.04.097_b0125) 2009; 51 Yuan (10.1016/j.applthermaleng.2019.04.097_b0065) 2015; 780 Wang (10.1016/j.applthermaleng.2019.04.097_b0095) 2011; 54 Jackson (10.1016/j.applthermaleng.2019.04.097_b0160) 2013; 264 Li (10.1016/j.applthermaleng.2019.04.097_b0050) 2010; 34 Shen (10.1016/j.applthermaleng.2019.04.097_b0080) 2017; 108 Hall (10.1016/j.applthermaleng.2019.04.097_b0100) 1978; 7 Pioro (10.1016/j.applthermaleng.2019.04.097_b0010) 2005; 235 Xu (10.1016/j.applthermaleng.2019.04.097_b0030) 2017; 110 Huang (10.1016/j.applthermaleng.2019.04.097_b0130) 2018; 131 Wang (10.1016/j.applthermaleng.2019.04.097_b0110) 2018; 142 Koshizuka (10.1016/j.applthermaleng.2019.04.097_b0090) 1995; 60 Liu (10.1016/j.applthermaleng.2019.04.097_b0180) 2016; 106 Mikielewicz (10.1016/j.applthermaleng.2019.04.097_b0055) 2002; 45 Kim (10.1016/j.applthermaleng.2019.04.097_b0045) 2008; 50 Mohseni (10.1016/j.applthermaleng.2019.04.097_b0140) 2012; 134 10.1016/j.applthermaleng.2019.04.097_b0150 Zhang (10.1016/j.applthermaleng.2019.04.097_b0015) 2018; 125 Zahlan (10.1016/j.applthermaleng.2019.04.097_b0170) 2015; 289 Xu (10.1016/j.applthermaleng.2019.04.097_b0190) 2014; 280 |
| References_xml | – volume: 54 start-page: 1950 year: 2011 end-page: 1958 ident: b0095 article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes publication-title: Int. J. Heat Mass Transf. – volume: 134 start-page: 1 year: 2012 end-page: 7 ident: b0140 article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids publication-title: J. Heat Transf. – volume: 15 start-page: 825 year: 1968 end-page: 828 ident: b0135 article-title: Interrelation of temperature of cooled surface and frequency of natural pressure oscillations in turbulent heat transfer publication-title: J. Eng. Phys. – volume: 151 start-page: 386 year: 2018 ident: b0005 article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO publication-title: Energy – volume: 44 start-page: 164 year: 2008 end-page: 171 ident: b0075 article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe publication-title: J. Supercrit. Fluids – volume: 131 start-page: 977 year: 2018 end-page: 987 ident: b0130 article-title: A brief review on the buoyancy criteria for supercritical fluids publication-title: Appl. Therm. Eng. – volume: 106 start-page: 1144 year: 2016 end-page: 1156 ident: b0180 article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes publication-title: Int. J. Heat Mass Transf. – reference: J.D. Jackson, W.B. Hall, Influences of buoyancy on heat transfer to fluid flowing in vertical tubes under turbulent conditions, 2, 1979, 613–640. – reference: B.S. Petukhov, A.F. Polyakov, B.E. Launder, Heat transfer in turbulent mixed convection, 1988. – volume: 45 start-page: 4333 year: 2002 end-page: 4352 ident: b0055 article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data publication-title: Int. J. Heat Mass Transf. – volume: 7 start-page: 1 year: 1978 end-page: 86 ident: b0100 article-title: Heat transfer near the critical point publication-title: Adv. Heat Transf. – reference: M. Bazargan, Forced convection heat transfer to turbulent flow of supercritical water in a round horizontal tube, 1961. – volume: 51 start-page: 221 year: 2009 end-page: 229 ident: b0125 article-title: The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid publication-title: J. Supercrit. Fluids – volume: 7 start-page: 1260 year: 2017 ident: b0070 article-title: Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes publication-title: Appl. Sci. – volume: 780 start-page: 192 year: 2015 end-page: 214 ident: b0065 article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness publication-title: J. Fluid Mech. – volume: 60 start-page: 3077 year: 1995 end-page: 3084 ident: b0090 article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water publication-title: Trans. Japan Soc. Mech. Eng. – volume: 280 start-page: 305 year: 2014 end-page: 315 ident: b0190 article-title: Experimental study on heat transfer of supercritical Freon flowing upward in a circular tube publication-title: Nucl. Eng. Des. – volume: 261 start-page: 116 year: 2013 end-page: 131 ident: b0085 article-title: Developing empirical heat-transfer correlations for supercritical CO publication-title: Nucl. Eng. Des. – volume: 122 start-page: 469 year: 2018 end-page: 482 ident: b0165 article-title: Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux publication-title: Int. J. Heat Mass Transf. – volume: 119 start-page: 240 year: 2018 end-page: 256 ident: b0185 article-title: Experimental study of supercritical water heat transfer deteriorations in different channels publication-title: Ann. Nucl. Energy – volume: 34 start-page: 1162 year: 2010 end-page: 1171 ident: b0050 article-title: Experimental investigation of convection heat transfer of CO publication-title: Exp. Therm. Fluid Sci. – volume: 34 start-page: 1295 year: 2010 end-page: 1308 ident: b0175 article-title: Forced and mixed convection heat transfer to supercritical CO publication-title: Exp. Therm Fluid Sci. – volume: 108 start-page: 1676 year: 2017 end-page: 1688 ident: b0080 article-title: Experimental and numerical analysis of heat transfer to water at supercritical pressures publication-title: Int. J. Heat Mass Transf. – volume: 91 start-page: 27 year: 1969 end-page: 36 ident: b0115 article-title: Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes publication-title: J. Heat Transf. – volume: 16 start-page: 1267 year: 1973 end-page: 1288 ident: b0155 article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criterian of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow publication-title: Int. J. Heat Mass Transf. – volume: 13 start-page: 431 year: 1970 end-page: 433 ident: b0060 article-title: Relaminarisation in tubes publication-title: Int. J. Heat Mass Transf. – volume: 264 start-page: 24 year: 2013 end-page: 40 ident: b0160 article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure publication-title: Nucl. Eng. Des. – volume: 34 start-page: 99 year: 2005 end-page: 105 ident: b0025 article-title: The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions publication-title: J. Supercrit. Fluids – volume: 98 start-page: 39 year: 2016 end-page: 48 ident: b0035 article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop publication-title: Appl. Therm. Eng. – volume: 138 year: 2018 ident: b0145 article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO publication-title: J. Supercrit. Fluids – volume: 1 start-page: 3 year: 1988 end-page: 17 ident: b0105 article-title: Describing the uncertainties in experimental results publication-title: Exp. Therm. Fluid Sci. – volume: 50 start-page: 518 year: 2008 end-page: 525 ident: b0045 article-title: Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage publication-title: Prog. Nucl. Energy – volume: 142 start-page: 573 year: 2018 end-page: 596 ident: b0110 article-title: A review on recent heat transfer studies to supercritical pressure water in channels publication-title: Appl. Therm. Eng. – volume: 110 start-page: 576 year: 2017 end-page: 586 ident: b0030 article-title: Buoyancy effects on turbulent heat transfer of supercritical CO publication-title: Int. J. Heat Mass Transf. – volume: 125 start-page: 274 year: 2018 end-page: 289 ident: b0015 article-title: The buoyancy force and flow acceleration effects of supercritical CO publication-title: Int. J. Heat Mass Transf. – volume: 289 start-page: 92 year: 2015 end-page: 107 ident: b0170 article-title: Measurements of convective heat transfer to vertical upward flows of CO publication-title: Nucl. Eng. Des. – volume: 92 start-page: 658 year: 2018 end-page: 675 ident: b0040 article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications publication-title: Renew. Sustain. Energy Rev. – volume: 235 start-page: 2407 year: 2005 end-page: 2430 ident: b0010 article-title: Experimental heat transfer in supercritical water flowing inside channels (survey) publication-title: Nucl. Eng. Des. – volume: 60 start-page: 3077 issue: 16 year: 1995 ident: 10.1016/j.applthermaleng.2019.04.097_b0090 article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water publication-title: Trans. Japan Soc. Mech. Eng. – volume: 142 start-page: 573 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0110 article-title: A review on recent heat transfer studies to supercritical pressure water in channels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.007 – volume: 16 start-page: 1267 issue: 6 year: 1973 ident: 10.1016/j.applthermaleng.2019.04.097_b0155 article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criterian of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(73)90135-X – volume: 780 start-page: 192 year: 2015 ident: 10.1016/j.applthermaleng.2019.04.097_b0065 article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.437 – volume: 235 start-page: 2407 issue: 22 year: 2005 ident: 10.1016/j.applthermaleng.2019.04.097_b0010 article-title: Experimental heat transfer in supercritical water flowing inside channels (survey) publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2005.05.034 – volume: 44 start-page: 164 issue: 2 year: 2008 ident: 10.1016/j.applthermaleng.2019.04.097_b0075 article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2007.11.013 – ident: 10.1016/j.applthermaleng.2019.04.097_b0020 – ident: 10.1016/j.applthermaleng.2019.04.097_b0150 – volume: 110 start-page: 576 year: 2017 ident: 10.1016/j.applthermaleng.2019.04.097_b0030 article-title: Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.03.063 – volume: 108 start-page: 1676 year: 2017 ident: 10.1016/j.applthermaleng.2019.04.097_b0080 article-title: Experimental and numerical analysis of heat transfer to water at supercritical pressures publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.12.081 – volume: 50 start-page: 518 issue: 2 year: 2008 ident: 10.1016/j.applthermaleng.2019.04.097_b0045 article-title: Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2007.11.065 – volume: 34 start-page: 1295 issue: 8 year: 2010 ident: 10.1016/j.applthermaleng.2019.04.097_b0175 article-title: Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2010.06.001 – volume: 34 start-page: 99 issue: 1 year: 2005 ident: 10.1016/j.applthermaleng.2019.04.097_b0025 article-title: The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2004.10.007 – volume: 106 start-page: 1144 year: 2016 ident: 10.1016/j.applthermaleng.2019.04.097_b0180 article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.093 – volume: 45 start-page: 4333 issue: 21 year: 2002 ident: 10.1016/j.applthermaleng.2019.04.097_b0055 article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00119-9 – volume: 91 start-page: 27 issue: 1 year: 1969 ident: 10.1016/j.applthermaleng.2019.04.097_b0115 article-title: Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes publication-title: J. Heat Transf. doi: 10.1115/1.3580115 – volume: 119 start-page: 240 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0185 article-title: Experimental study of supercritical water heat transfer deteriorations in different channels publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2018.05.009 – volume: 125 start-page: 274 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0015 article-title: The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.033 – volume: 7 start-page: 1260 issue: 12 year: 2017 ident: 10.1016/j.applthermaleng.2019.04.097_b0070 article-title: Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes publication-title: Appl. Sci. doi: 10.3390/app7121260 – volume: 138 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0145 article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2018.03.014 – volume: 34 start-page: 1162 year: 2010 ident: 10.1016/j.applthermaleng.2019.04.097_b0050 article-title: Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.04.005 – volume: 13 start-page: 431 year: 1970 ident: 10.1016/j.applthermaleng.2019.04.097_b0060 article-title: Relaminarisation in tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(70)90118-3 – volume: 280 start-page: 305 year: 2014 ident: 10.1016/j.applthermaleng.2019.04.097_b0190 article-title: Experimental study on heat transfer of supercritical Freon flowing upward in a circular tube publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.09.017 – volume: 122 start-page: 469 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0165 article-title: Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.01.112 – volume: 131 start-page: 977 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0130 article-title: A brief review on the buoyancy criteria for supercritical fluids publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.042 – volume: 7 start-page: 1 year: 1978 ident: 10.1016/j.applthermaleng.2019.04.097_b0100 article-title: Heat transfer near the critical point publication-title: Adv. Heat Transf. – volume: 1 start-page: 3 issue: 1 year: 1988 ident: 10.1016/j.applthermaleng.2019.04.097_b0105 article-title: Describing the uncertainties in experimental results publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(88)90043-X – volume: 151 start-page: 386 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0005 article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching publication-title: Energy doi: 10.1016/j.energy.2018.03.009 – volume: 264 start-page: 24 issue: 11 year: 2013 ident: 10.1016/j.applthermaleng.2019.04.097_b0160 article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2012.09.040 – volume: 54 start-page: 1950 issue: 9 year: 2011 ident: 10.1016/j.applthermaleng.2019.04.097_b0095 article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.01.008 – volume: 92 start-page: 658 year: 2018 ident: 10.1016/j.applthermaleng.2019.04.097_b0040 article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.106 – volume: 51 start-page: 221 issue: 2 year: 2009 ident: 10.1016/j.applthermaleng.2019.04.097_b0125 article-title: The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2009.08.004 – volume: 98 start-page: 39 year: 2016 ident: 10.1016/j.applthermaleng.2019.04.097_b0035 article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.110 – volume: 289 start-page: 92 year: 2015 ident: 10.1016/j.applthermaleng.2019.04.097_b0170 article-title: Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2015.04.013 – volume: 261 start-page: 116 issue: 8 year: 2013 ident: 10.1016/j.applthermaleng.2019.04.097_b0085 article-title: Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.02.048 – ident: 10.1016/j.applthermaleng.2019.04.097_b0120 – volume: 15 start-page: 825 issue: 3 year: 1968 ident: 10.1016/j.applthermaleng.2019.04.097_b0135 article-title: Interrelation of temperature of cooled surface and frequency of natural pressure oscillations in turbulent heat transfer publication-title: J. Eng. Phys. doi: 10.1007/BF00826651 – volume: 134 start-page: 1 issue: 122503 year: 2012 ident: 10.1016/j.applthermaleng.2019.04.097_b0140 article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids publication-title: J. Heat Transf. |
| SSID | ssj0012874 |
| Score | 2.5002425 |
| Snippet | •Experimental study is conducted on the heat transfer of SCO2 heated in vertical tube.•Heat transfer characteristics at the various mass flow rates have marked... In this paper, experimental study is performed to investigate the characteristics of abnormal heat transfer of supercritical carbon dioxide (SCO2) at various... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113687 |
| SubjectTerms | Acceleration Carbon dioxide Critical temperature Density Experimental investigation Heat conductivity Heat transfer Heat transfer correlation Heat transfer deterioration Laminarization Mass flow rate Shear stress Supercritical CO2 Temperature effects Temperature gradients Thermodynamics |
| Title | Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2019.04.097 https://www.proquest.com/docview/2266344600 |
| Volume | 157 |
| WOSCitedRecordID | wos000475994000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhhA8ID7FxkB-mHiZjNLEaWLxgKapE6Cp46FDebMSx9VSdWlpm64_gn_FH-Pe2EmaTkPlAamNKkd24txT32Pn-lxCjn0eaBXqLsP1QMZTlbDE1ZopxQV4OMUTV5XJJoLBIIwi8b3T-V3thVlNgjwP12sx-6-mhjIwNm6d_Qdz141CAfwGo8MRzA7HnQzf39TszxoZDSSGJqYRx1_MDQGMVc9x629LshnY46KAJlSVBOHs0sUtjyuYVWO87A3Q7ZPRZHp7gioTZTgtNgjEtUztDDVYeXZZJK0wo4rvIuO8gWZ1o4R4d_X6OhtnNeSiAsuiLJ6u4VuHEGWFjRfYLoqyfG0Fxe16RrmFijl-s8hWb7T5sTEse75gQHUMCrUpCwOPAV_rtcZyo3ZtR2PMV2Pc-R1HYdYsxh8xTMD2G7qNoX7CSN8GjYOsggIGl_L86uJCDvvR8MPsJ8PUZfiK3-ZxeUD23cAXMLTun37tR9_ql1mYUqCc99tOPCLHTZjh_TdwH1Pa4gwlERo-I0_tDIaeGuQ9Jx2dvyBPNnQtX5JfmxikLQxS-MCNUIQMrTBItzBIpyPawiAFDFKoYDFIEYMUUUZLDMIlqMEgbWGQIgZfkavz_vDsC7NpP5jiLl-ynuYpd5TnBwrYeOKNlJOMkhB8kxBhMFLd2OfgeeKe6HqpDsM0BE_pCz92uXJ54nivyV4-zfUbQoNUOF6oUtdRMS_V-7SC-YmLklABcN0D8ql6xFJZTXxMzTKRVfDjWLYNJNFA0uESDHRA_Lr2zGjD7Fjvc2VNaXmu4a8S0LljC0cVCKQdehYSJlI9j3N4Zod_P_2WPG7-eEdkbzkv9DvyUK2W2WL-3qL3D6e13k8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+the+heat+transfer+characteristics+of+supercritical+CO2+at+various+mass+flow+rates+in+heated+vertical-flow+tube&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Liu%2C+Xinxin&rft.date=2019-07-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=157&rft.spage=113687&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.04.097&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |