Nothing in evolution makes sense except in the light of code biology

This article highlights the potential contribution of biological codes to the course and dynamics of evolution. The concept of organic codes, developed by Marcello Barbieri, has fundamentally changed our view of how living systems function. The notion that molecular interactions built on adaptors th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BioSystems Ročník 229; s. 104907
Hlavní autor: Prinz, Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ireland Elsevier B.V 01.07.2023
Témata:
ISSN:0303-2647, 1872-8324, 1872-8324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article highlights the potential contribution of biological codes to the course and dynamics of evolution. The concept of organic codes, developed by Marcello Barbieri, has fundamentally changed our view of how living systems function. The notion that molecular interactions built on adaptors that arbitrarily link molecules from different “worlds” in a conventional, i.e., rule-based way, departs significantly from the law-based constraints imposed on livening things by physical and chemical mechanisms. In other words, living entities and non-living things behave like rules and laws, respectively, but this important distinction is rarely considered in current evolutionary theory. The many known codes allow quantification of codes that relate to a cell, or comparisons between different biological systems and may pave the way to a quantitative and empirical research agenda in code biology. A starting point for such an endeavour is the introduction of a simple dichotomous classification of structural and regulatory codes. This classification can be used as a tool to analyse and quantify key organising principles of the living world, such as modularity, hierarchy, and robustness, based on organic codes. The implications for evolutionary research are related to the unique dynamics of codes, or 'Eigendynamics' (self-momentum) and how they determine the behaviour of biological systems from inside, whereas physical constraints are imposed mainly from outside. A speculation on the drivers of macroevolution in light of codes is followed by the conclusion that a meaningful and comprehensive understanding of evolution depends on including codes into the equation of life.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0303-2647
1872-8324
1872-8324
DOI:10.1016/j.biosystems.2023.104907