Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China
Ozone (O3) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level. Large-scale and long-term studies of O3 pollution in China are few due to highly limited direct ground and satellite measurements. This study off...
Uloženo v:
| Vydáno v: | Remote sensing of environment Ročník 270; s. 112775 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Inc
01.03.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ozone (O3) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level. Large-scale and long-term studies of O3 pollution in China are few due to highly limited direct ground and satellite measurements. This study offers a new perspective to estimate ground-level O3 from solar radiation intensity and surface temperature by employing an extended ensemble learning of the space-time extremely randomized trees (STET) model, together with ground-based observations, remote sensing products, atmospheric reanalysis, and an emission inventory. A full-coverage (100%), high-resolution (10 km) and high-quality daily maximum 8-h average (MDA8) ground-level O3 dataset covering China (called ChinaHighO3) from 2013 to 2020 was generated. Our MDA8 O3 estimates (predictions) are reliable, with an average out-of-sample (out-of-station) coefficient of determination of 0.87 (0.80) and root-mean-square error of 17.10 (21.10) μg/m3 in China. The unique advantage of the full coverage of our dataset allowed us to accurately capture a short-term severe O3 pollution exposure event that took place from 23 April to 8 May in 2020. Also, a rapid increase and recovery of O3 concentrations associated with variations in anthropogenic emissions were seen during and after the COVID-19 lockdown, respectively. Trends in O3 concentration showed an average growth rate of 2.49 μg/m3/yr (p < 0.001) from 2013 to 2020, along with the continuous expansion of polluted areas exceeding the daily O3 standard (i.e., MDA8 O3 = 160 μg/m3). Summertime O3 concentrations and the probability of occurrence of daily O3 pollution have significantly increased since 2015, especially in the North China Plain and the main air pollution transmission belt (i.e., the “2 + 26” cities). However, a decline in both was seen in 2020, mainly due to the coordinated control of air pollution and ongoing COVID-19 effects. This carefully vetted and smoothed dataset is valuable for studies on air pollution and environmental health in China.
•A full-coverage of daily MDA8 O3 dataset (10 km) from 2013 to 2020 in China is generated.•The ChinaHighO3 dataset yields a high-quality information (CV-R2 = 0.87, RMSE = 17.10 μg/m3).•Ground-level O3 showed a significant increasing trend of 2.49 μg/m3/yr (p < 0.001) during 2013–2020.•Rapid O3 increase and recovery were observed during and after the COVID-19 lockdown. |
|---|---|
| AbstractList | Ozone (O₃) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level. Large-scale and long-term studies of O₃ pollution in China are few due to highly limited direct ground and satellite measurements. This study offers a new perspective to estimate ground-level O₃ from solar radiation intensity and surface temperature by employing an extended ensemble learning of the space-time extremely randomized trees (STET) model, together with ground-based observations, remote sensing products, atmospheric reanalysis, and an emission inventory. A full-coverage (100%), high-resolution (10 km) and high-quality daily maximum 8-h average (MDA8) ground-level O₃ dataset covering China (called ChinaHighO₃) from 2013 to 2020 was generated. Our MDA8 O₃ estimates (predictions) are reliable, with an average out-of-sample (out-of-station) coefficient of determination of 0.87 (0.80) and root-mean-square error of 17.10 (21.10) μg/m³ in China. The unique advantage of the full coverage of our dataset allowed us to accurately capture a short-term severe O₃ pollution exposure event that took place from 23 April to 8 May in 2020. Also, a rapid increase and recovery of O₃ concentrations associated with variations in anthropogenic emissions were seen during and after the COVID-19 lockdown, respectively. Trends in O₃ concentration showed an average growth rate of 2.49 μg/m³/yr (p < 0.001) from 2013 to 2020, along with the continuous expansion of polluted areas exceeding the daily O₃ standard (i.e., MDA8 O₃ = 160 μg/m³). Summertime O₃ concentrations and the probability of occurrence of daily O₃ pollution have significantly increased since 2015, especially in the North China Plain and the main air pollution transmission belt (i.e., the “2 + 26” cities). However, a decline in both was seen in 2020, mainly due to the coordinated control of air pollution and ongoing COVID-19 effects. This carefully vetted and smoothed dataset is valuable for studies on air pollution and environmental health in China. Ozone (O3) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level. Large-scale and long-term studies of O3 pollution in China are few due to highly limited direct ground and satellite measurements. This study offers a new perspective to estimate ground-level O3 from solar radiation intensity and surface temperature by employing an extended ensemble learning of the space-time extremely randomized trees (STET) model, together with ground-based observations, remote sensing products, atmospheric reanalysis, and an emission inventory. A full-coverage (100%), high-resolution (10 km) and high-quality daily maximum 8-h average (MDA8) ground-level O3 dataset covering China (called ChinaHighO3) from 2013 to 2020 was generated. Our MDA8 O3 estimates (predictions) are reliable, with an average out-of-sample (out-of-station) coefficient of determination of 0.87 (0.80) and root-mean-square error of 17.10 (21.10) μg/m3 in China. The unique advantage of the full coverage of our dataset allowed us to accurately capture a short-term severe O3 pollution exposure event that took place from 23 April to 8 May in 2020. Also, a rapid increase and recovery of O3 concentrations associated with variations in anthropogenic emissions were seen during and after the COVID-19 lockdown, respectively. Trends in O3 concentration showed an average growth rate of 2.49 μg/m3/yr (p < 0.001) from 2013 to 2020, along with the continuous expansion of polluted areas exceeding the daily O3 standard (i.e., MDA8 O3 = 160 μg/m3). Summertime O3 concentrations and the probability of occurrence of daily O3 pollution have significantly increased since 2015, especially in the North China Plain and the main air pollution transmission belt (i.e., the "2 + 26" cities). However, a decline in both was seen in 2020, mainly due to the coordinated control of air pollution and ongoing COVID-19 effects. This carefully vetted and smoothed dataset is valuable for studies on air pollution and environmental health in China. Ozone (O3) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level. Large-scale and long-term studies of O3 pollution in China are few due to highly limited direct ground and satellite measurements. This study offers a new perspective to estimate ground-level O3 from solar radiation intensity and surface temperature by employing an extended ensemble learning of the space-time extremely randomized trees (STET) model, together with ground-based observations, remote sensing products, atmospheric reanalysis, and an emission inventory. A full-coverage (100%), high-resolution (10 km) and high-quality daily maximum 8-h average (MDA8) ground-level O3 dataset covering China (called ChinaHighO3) from 2013 to 2020 was generated. Our MDA8 O3 estimates (predictions) are reliable, with an average out-of-sample (out-of-station) coefficient of determination of 0.87 (0.80) and root-mean-square error of 17.10 (21.10) μg/m3 in China. The unique advantage of the full coverage of our dataset allowed us to accurately capture a short-term severe O3 pollution exposure event that took place from 23 April to 8 May in 2020. Also, a rapid increase and recovery of O3 concentrations associated with variations in anthropogenic emissions were seen during and after the COVID-19 lockdown, respectively. Trends in O3 concentration showed an average growth rate of 2.49 μg/m3/yr (p < 0.001) from 2013 to 2020, along with the continuous expansion of polluted areas exceeding the daily O3 standard (i.e., MDA8 O3 = 160 μg/m3). Summertime O3 concentrations and the probability of occurrence of daily O3 pollution have significantly increased since 2015, especially in the North China Plain and the main air pollution transmission belt (i.e., the “2 + 26” cities). However, a decline in both was seen in 2020, mainly due to the coordinated control of air pollution and ongoing COVID-19 effects. This carefully vetted and smoothed dataset is valuable for studies on air pollution and environmental health in China. •A full-coverage of daily MDA8 O3 dataset (10 km) from 2013 to 2020 in China is generated.•The ChinaHighO3 dataset yields a high-quality information (CV-R2 = 0.87, RMSE = 17.10 μg/m3).•Ground-level O3 showed a significant increasing trend of 2.49 μg/m3/yr (p < 0.001) during 2013–2020.•Rapid O3 increase and recovery were observed during and after the COVID-19 lockdown. |
| ArticleNumber | 112775 |
| Author | Cribb, Maureen Xue, Wenhao Liu, Xiong Wei, Jing Pinker, Rachel T. Li, Ke Sun, Lin Dickerson, Russell R. Wang, Jun Li, Zhanqing |
| Author_xml | – sequence: 1 givenname: Jing surname: Wei fullname: Wei, Jing email: weijing_rs@163.com organization: Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA – sequence: 2 givenname: Zhanqing surname: Li fullname: Li, Zhanqing email: zli@atmos.umd.edu organization: Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA – sequence: 3 givenname: Ke surname: Li fullname: Li, Ke organization: Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Russell R. surname: Dickerson fullname: Dickerson, Russell R. organization: Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA – sequence: 5 givenname: Rachel T. surname: Pinker fullname: Pinker, Rachel T. organization: Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA – sequence: 6 givenname: Jun surname: Wang fullname: Wang, Jun organization: Department of Chemical and Biochemical Engineering, Iowa Technology Institute, and Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA – sequence: 7 givenname: Xiong surname: Liu fullname: Liu, Xiong organization: Atomic and Molecular Physics Division, Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA – sequence: 8 givenname: Lin surname: Sun fullname: Sun, Lin organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China – sequence: 9 givenname: Wenhao surname: Xue fullname: Xue, Wenhao organization: School of Economics, Qingdao University, Qingdao, China – sequence: 10 givenname: Maureen surname: Cribb fullname: Cribb, Maureen organization: Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA |
| BookMark | eNp9kcFq3DAQhkVIoJukD9CboJf04O1Ilq2InsrStIFALu1ZyPJ4o0WWXMne0jx95WxPOeQ0IL5PzPz_JTkPMSAhHxhsGbD282GbMm45cLZljEvZnJENu5WqAgninGwAalEJ3sh35DLnAwBrbiXbkD93i_eVjUdMZo90NNPkwp6a0NM8mdnFGccpJuPp0SS3PoRM40D3KS6hrzwe0dP4XJahN4_1JzpF75eVokOKI-XAajrHMjlQY1PMme6eXDDX5GIwPuP7__OK_Lr79nP3o3p4_H6_-_pQWcHFXIkGhBRSMiWhkX3XqY4LwzrZ885aO9RDCzig6nvobCdqpbCcD1Kahtu2FfUVuTn9O6X4e8E869Fli96bgHHJmrd1KxRrFC_ox1foIS4plO1WSpUAFV8pdqJejkk46Cm50aS_moFeq9AHXarQaxX6VEVx5CvHuvklyzkZ5980v5xMLBkdHSadrcNgsXcJ7az76N6w_wEjuKQT |
| CitedBy_id | crossref_primary_10_1016_j_ecoenv_2024_116356 crossref_primary_10_1016_j_ecoenv_2023_115420 crossref_primary_10_1007_s00420_025_02127_w crossref_primary_10_1029_2022GH000700 crossref_primary_10_1016_j_envpol_2025_126958 crossref_primary_10_1016_j_envres_2024_118512 crossref_primary_10_1016_j_scitotenv_2024_174038 crossref_primary_10_1016_j_jhazmat_2024_136047 crossref_primary_10_1007_s11111_024_00454_7 crossref_primary_10_1021_acs_est_5c02153 crossref_primary_10_1016_j_cej_2024_150693 crossref_primary_10_1038_s41598_024_82148_6 crossref_primary_10_1080_15481603_2025_2482272 crossref_primary_10_3390_atmos15091020 crossref_primary_10_1016_j_rsase_2024_101395 crossref_primary_10_1016_j_psep_2025_107313 crossref_primary_10_3390_ijerph19095752 crossref_primary_10_1016_j_jhazmat_2025_138747 crossref_primary_10_1029_2022EF002936 crossref_primary_10_3389_fenvs_2024_1509460 crossref_primary_10_1186_s12889_023_16518_6 crossref_primary_10_1016_j_jad_2024_06_007 crossref_primary_10_1016_j_jtrangeo_2022_103498 crossref_primary_10_1029_2024JD043027 crossref_primary_10_1016_j_sleep_2024_07_007 crossref_primary_10_1161_CIRCULATIONAHA_122_063504 crossref_primary_10_1016_j_jes_2025_06_011 crossref_primary_10_1016_j_envpol_2025_126269 crossref_primary_10_1016_j_envint_2024_109212 crossref_primary_10_1007_s11356_022_20025_3 crossref_primary_10_1016_j_ecoenv_2024_116008 crossref_primary_10_3390_atmos15020198 crossref_primary_10_1029_2024GL109520 crossref_primary_10_1016_j_apr_2024_102114 crossref_primary_10_1016_j_apr_2024_102354 crossref_primary_10_1265_ehpm_24_00381 crossref_primary_10_1016_j_envpol_2025_126025 crossref_primary_10_1016_j_envres_2025_121419 crossref_primary_10_1016_j_uclim_2023_101689 crossref_primary_10_1016_j_atmosenv_2023_120269 crossref_primary_10_1021_acs_est_5c01974 crossref_primary_10_1016_j_jncc_2025_06_005 crossref_primary_10_1093_gerona_glaf114 crossref_primary_10_5194_amt_17_1891_2024 crossref_primary_10_1016_j_scitotenv_2023_165830 crossref_primary_10_1016_j_envres_2023_115417 crossref_primary_10_3390_toxics12120861 crossref_primary_10_1016_j_scitotenv_2023_164065 crossref_primary_10_1016_j_envres_2022_114372 crossref_primary_10_1016_j_ecoenv_2025_117944 crossref_primary_10_1016_j_envpol_2025_126493 crossref_primary_10_3390_atmos14030432 crossref_primary_10_1016_j_eehl_2025_01_001 crossref_primary_10_1016_j_jenvman_2025_125912 crossref_primary_10_1016_j_jes_2023_09_001 crossref_primary_10_1016_j_scitotenv_2022_160204 crossref_primary_10_1007_s00894_024_06253_z crossref_primary_10_1016_j_atmosenv_2024_120587 crossref_primary_10_1016_j_ecoenv_2025_118915 crossref_primary_10_1016_j_atmosenv_2024_120347 crossref_primary_10_1016_j_apr_2023_101678 crossref_primary_10_1016_j_buildenv_2023_110930 crossref_primary_10_1016_j_scitotenv_2023_163401 crossref_primary_10_1155_2022_1837492 crossref_primary_10_1016_j_envpol_2024_124705 crossref_primary_10_1016_j_scs_2025_106411 crossref_primary_10_1016_j_jhazmat_2025_138647 crossref_primary_10_5572_KOSAE_2025_41_2_179 crossref_primary_10_1016_j_rse_2024_114459 crossref_primary_10_3389_fendo_2023_1221325 crossref_primary_10_1016_j_jhazmat_2024_136507 crossref_primary_10_1186_s12884_025_07874_9 crossref_primary_10_1088_1748_9326_adb8fe crossref_primary_10_1016_j_envint_2025_109536 crossref_primary_10_1016_j_eiar_2024_107630 crossref_primary_10_1080_17538963_2023_2300868 crossref_primary_10_1007_s12145_023_01211_4 crossref_primary_10_1016_j_rse_2024_114108 crossref_primary_10_1016_j_ecoenv_2025_118106 crossref_primary_10_1016_j_atmosres_2024_107261 crossref_primary_10_1265_ehpm_24_00168 crossref_primary_10_1038_s41612_023_00407_1 crossref_primary_10_1016_j_envpol_2024_124722 crossref_primary_10_1016_j_scitotenv_2022_159592 crossref_primary_10_1080_13658816_2025_2507232 crossref_primary_10_3390_toxics13080702 crossref_primary_10_1186_s12916_024_03316_z crossref_primary_10_1016_j_scs_2024_106122 crossref_primary_10_5194_acp_25_4639_2025 crossref_primary_10_1109_JSTARS_2024_3468918 crossref_primary_10_1016_j_envres_2025_121607 crossref_primary_10_1016_j_scitotenv_2024_174634 crossref_primary_10_1021_acs_est_5c02190 crossref_primary_10_1186_s12889_025_23211_3 crossref_primary_10_5194_acp_23_1511_2023 crossref_primary_10_1021_acsestair_5c00111 crossref_primary_10_1016_j_ecoenv_2023_114893 crossref_primary_10_1016_j_scitotenv_2024_172453 crossref_primary_10_1183_23120541_00972_2023 crossref_primary_10_1016_j_envpol_2025_125704 crossref_primary_10_3389_fpubh_2022_876615 crossref_primary_10_1016_j_jag_2023_103284 crossref_primary_10_1088_1748_9326_ad2022 crossref_primary_10_3724_EE_1672_9250_2025_53_039 crossref_primary_10_1016_j_apr_2025_102546 crossref_primary_10_1038_s41598_025_04289_6 crossref_primary_10_5194_acp_25_6663_2025 crossref_primary_10_1016_j_apr_2024_102308 crossref_primary_10_1016_j_envint_2023_107919 crossref_primary_10_1016_j_jenvman_2025_126597 crossref_primary_10_1016_j_uclim_2024_101917 crossref_primary_10_1016_j_atmosenv_2023_120198 crossref_primary_10_1016_j_atmosres_2022_106539 crossref_primary_10_1016_j_envint_2022_107519 crossref_primary_10_1016_j_rsase_2024_101359 crossref_primary_10_1016_j_ecoenv_2023_115181 crossref_primary_10_3233_JAD_231186 crossref_primary_10_1016_j_jhazmat_2024_134505 crossref_primary_10_1093_gerona_glaf167 crossref_primary_10_3390_ijerph19148461 crossref_primary_10_3390_toxics12070519 crossref_primary_10_1186_s12889_025_23743_8 crossref_primary_10_1016_j_ecolind_2025_113936 crossref_primary_10_1016_j_envpol_2023_121293 crossref_primary_10_1016_j_atmosres_2023_106892 crossref_primary_10_1016_j_envint_2023_108341 crossref_primary_10_1016_j_envint_2024_109132 crossref_primary_10_3389_fpubh_2025_1551851 crossref_primary_10_1016_j_ecoenv_2025_118842 crossref_primary_10_1016_j_ese_2024_100515 crossref_primary_10_1016_j_rse_2025_114901 crossref_primary_10_1016_j_envpol_2022_120020 crossref_primary_10_1016_j_ecoenv_2024_116328 crossref_primary_10_1186_s12889_025_24088_y crossref_primary_10_1007_s41810_024_00274_0 crossref_primary_10_3390_atmos14111637 crossref_primary_10_1016_j_apr_2023_101720 crossref_primary_10_1111_ene_15343 crossref_primary_10_1016_j_rse_2024_114482 crossref_primary_10_1136_jech_2022_219676 crossref_primary_10_1016_j_jhazmat_2025_137865 crossref_primary_10_1016_j_ecoenv_2022_113851 crossref_primary_10_1016_j_envres_2022_113016 crossref_primary_10_1109_JSTARS_2023_3298996 crossref_primary_10_1186_s12889_024_20342_x crossref_primary_10_3390_rs17172982 crossref_primary_10_1029_2023GH000930 crossref_primary_10_1016_j_jclepro_2023_139238 crossref_primary_10_1016_j_jes_2025_08_059 crossref_primary_10_1038_s41467_024_55450_0 crossref_primary_10_1038_s41598_022_26575_3 crossref_primary_10_3390_rs15194871 crossref_primary_10_1088_1748_9326_ac6c3c crossref_primary_10_1016_j_apr_2025_102643 crossref_primary_10_1016_j_eiar_2023_107248 crossref_primary_10_1016_j_atmosres_2023_106889 crossref_primary_10_1007_s10661_024_12416_5 crossref_primary_10_1016_j_envres_2025_121748 crossref_primary_10_1016_j_uclim_2025_102503 crossref_primary_10_1016_j_scs_2024_106061 crossref_primary_10_1016_j_envpol_2022_120348 crossref_primary_10_1080_17538947_2025_2506492 crossref_primary_10_1016_j_envpol_2023_122725 crossref_primary_10_3389_fpubh_2025_1533315 crossref_primary_10_1016_j_jhazmat_2023_132945 crossref_primary_10_1186_s12879_024_09011_x crossref_primary_10_1109_TGRS_2022_3187095 crossref_primary_10_1016_j_ecoenv_2024_117540 crossref_primary_10_1016_j_jhazmat_2023_131859 crossref_primary_10_1021_envhealth_5c00233 crossref_primary_10_1007_s10980_024_01838_8 crossref_primary_10_1080_09603123_2024_2355278 crossref_primary_10_1016_j_scitotenv_2023_165061 crossref_primary_10_1016_j_envint_2025_109459 crossref_primary_10_3390_rs16122048 crossref_primary_10_1016_j_envres_2022_113350 crossref_primary_10_5194_essd_16_5287_2024 crossref_primary_10_1016_j_jag_2025_104506 crossref_primary_10_1016_j_envres_2024_118165 crossref_primary_10_1029_2023GL105209 crossref_primary_10_1016_j_envpol_2024_123677 crossref_primary_10_1016_j_scitotenv_2025_179360 crossref_primary_10_1016_j_ecolind_2025_113390 crossref_primary_10_1109_TGRS_2024_3358397 crossref_primary_10_1016_j_atmosenv_2022_119478 crossref_primary_10_1016_j_buildenv_2024_111159 crossref_primary_10_1016_j_envint_2022_107606 crossref_primary_10_1007_s11356_023_30178_4 crossref_primary_10_1029_2024GL109991 crossref_primary_10_1016_j_atmosenv_2024_120939 crossref_primary_10_5194_acp_24_8441_2024 crossref_primary_10_1021_acsestengg_5c00181 crossref_primary_10_1016_j_envres_2024_118609 crossref_primary_10_5194_acp_24_345_2024 crossref_primary_10_1016_j_ecoenv_2023_115384 crossref_primary_10_5194_acp_23_3311_2023 crossref_primary_10_1016_j_ecoenv_2024_117289 crossref_primary_10_1016_j_scitotenv_2022_155117 crossref_primary_10_1016_j_ecoenv_2024_116634 crossref_primary_10_1016_j_envres_2022_113343 crossref_primary_10_1038_s41612_025_01007_x crossref_primary_10_1016_j_ecoenv_2024_116753 crossref_primary_10_1029_2022JD037749 crossref_primary_10_3390_rs14081916 crossref_primary_10_1016_j_jhydrol_2024_131410 crossref_primary_10_1016_j_apr_2025_102466 crossref_primary_10_3390_atmos16070819 crossref_primary_10_1016_j_jhazmat_2025_138222 crossref_primary_10_3390_atmos14091458 crossref_primary_10_1016_j_envint_2023_107961 crossref_primary_10_3390_toxics13040322 crossref_primary_10_1016_j_oneear_2024_08_005 crossref_primary_10_1016_j_jenvman_2023_119725 crossref_primary_10_1029_2022GL097947 crossref_primary_10_1016_j_gecco_2025_e03824 crossref_primary_10_1016_j_landurbplan_2023_104881 crossref_primary_10_3390_future1010005 crossref_primary_10_3390_atmos14101591 crossref_primary_10_1007_s40726_022_00229_4 crossref_primary_10_1016_j_envint_2024_109176 crossref_primary_10_1080_15481603_2023_2174280 crossref_primary_10_11922_11_6035_csd_2024_0049_zh crossref_primary_10_1155_2023_5519469 crossref_primary_10_1016_j_atmosenv_2025_121546 crossref_primary_10_1021_envhealth_4c00020 crossref_primary_10_1016_j_atmosenv_2022_119180 crossref_primary_10_1016_j_scitotenv_2023_161868 crossref_primary_10_1080_09603123_2024_2380353 crossref_primary_10_1021_envhealth_4c00133 crossref_primary_10_1109_JSTARS_2025_3561499 crossref_primary_10_1016_j_ecoenv_2022_113931 crossref_primary_10_1186_s12302_024_00869_x crossref_primary_10_1007_s40726_025_00355_9 crossref_primary_10_1016_j_ecoenv_2022_113498 crossref_primary_10_3390_rs15245705 crossref_primary_10_1016_j_rse_2023_113697 crossref_primary_10_1038_s41597_024_03302_3 crossref_primary_10_1016_j_scitotenv_2023_167054 crossref_primary_10_1016_j_ecoenv_2023_115371 crossref_primary_10_1016_j_jenvman_2023_118663 crossref_primary_10_1038_s41612_023_00475_3 crossref_primary_10_3389_fenvs_2022_925979 crossref_primary_10_1016_j_lanwpc_2024_101222 crossref_primary_10_1016_j_scitotenv_2024_178219 crossref_primary_10_1016_j_envres_2024_120697 crossref_primary_10_3390_su17114836 crossref_primary_10_1016_j_envint_2024_109087 crossref_primary_10_1186_s12916_024_03596_5 crossref_primary_10_1016_j_scitotenv_2023_168017 crossref_primary_10_1016_j_envres_2024_119463 crossref_primary_10_1016_j_scitotenv_2022_154363 crossref_primary_10_1016_j_chemosphere_2023_140993 crossref_primary_10_1016_j_apr_2023_101950 crossref_primary_10_1016_j_apr_2025_102449 crossref_primary_10_5194_acp_23_6525_2023 crossref_primary_10_1016_j_atmosenv_2024_120745 crossref_primary_10_1016_j_envres_2025_122230 crossref_primary_10_1016_j_ecoenv_2022_113901 crossref_primary_10_1016_j_jhazmat_2023_132222 crossref_primary_10_1016_j_annepidem_2022_05_011 crossref_primary_10_3390_rs16213970 crossref_primary_10_1016_j_scs_2024_105689 crossref_primary_10_1016_j_ecoenv_2025_118992 crossref_primary_10_5194_essd_15_1419_2023 crossref_primary_10_1016_j_ypmed_2024_108217 crossref_primary_10_1016_j_atmosenv_2024_121020 crossref_primary_10_1016_j_jag_2025_104661 crossref_primary_10_1186_s12889_024_20454_4 crossref_primary_10_1016_j_envpol_2023_122880 crossref_primary_10_1016_j_jhazmat_2025_138254 crossref_primary_10_1007_s11869_025_01722_7 crossref_primary_10_1136_jech_2025_223967 crossref_primary_10_3390_atmos16040397 crossref_primary_10_3390_toxics13080669 crossref_primary_10_1016_j_jare_2025_03_044 crossref_primary_10_1016_j_scitotenv_2022_158784 crossref_primary_10_1109_TGRS_2025_3548600 crossref_primary_10_1007_s00484_024_02664_y crossref_primary_10_1016_j_chemosphere_2023_138548 crossref_primary_10_1016_j_envpol_2024_124318 crossref_primary_10_1016_j_jhazmat_2024_134158 crossref_primary_10_1021_envhealth_4c00279 crossref_primary_10_3390_atmos13101706 crossref_primary_10_1016_j_ecoenv_2022_114442 crossref_primary_10_3390_ijerph19148511 crossref_primary_10_1016_j_jhazmat_2024_134714 crossref_primary_10_1016_j_lanwpc_2024_101244 crossref_primary_10_1016_j_envint_2025_109705 crossref_primary_10_1029_2024JD042781 crossref_primary_10_1186_s12879_023_08769_w crossref_primary_10_1016_j_ecoenv_2024_117006 crossref_primary_10_1016_j_ecoinf_2025_103024 crossref_primary_10_1080_0886022X_2025_2508295 crossref_primary_10_1016_j_ijheh_2024_114474 crossref_primary_10_1186_s12916_024_03783_4 crossref_primary_10_1021_acs_est_5c07241 crossref_primary_10_1016_j_heliyon_2024_e26694 crossref_primary_10_1016_j_apr_2025_102704 crossref_primary_10_3390_su16010123 crossref_primary_10_1029_2024GH001234 crossref_primary_10_1016_j_scitotenv_2022_157860 crossref_primary_10_1029_2023JD039591 crossref_primary_10_1016_j_jhazmat_2025_139515 crossref_primary_10_1016_j_ecoenv_2023_115451 crossref_primary_10_3390_rs14071640 crossref_primary_10_1265_ehpm_24_00340 crossref_primary_10_1016_j_envres_2022_114860 crossref_primary_10_1021_acsestair_5c00067 crossref_primary_10_1016_j_chemosphere_2024_142445 crossref_primary_10_1016_j_envres_2023_117634 crossref_primary_10_1186_s12916_025_04133_8 crossref_primary_10_1186_s13098_025_01638_3 crossref_primary_10_3390_su16114851 crossref_primary_10_1016_j_eiar_2022_106840 crossref_primary_10_1016_j_envpol_2024_123811 crossref_primary_10_1016_j_jclepro_2022_130607 crossref_primary_10_5194_acp_24_11775_2024 crossref_primary_10_1016_j_envres_2025_122668 crossref_primary_10_3390_rs17132318 crossref_primary_10_3390_su16062475 crossref_primary_10_1016_j_jhazmat_2023_132330 crossref_primary_10_1007_s10661_025_14095_2 crossref_primary_10_1016_j_scitotenv_2022_158046 crossref_primary_10_1038_s41612_025_00966_5 crossref_primary_10_1016_j_atmosenv_2022_119535 crossref_primary_10_1016_j_scs_2025_106606 crossref_primary_10_1016_j_scib_2024_03_028 crossref_primary_10_1016_j_scitotenv_2024_171527 crossref_primary_10_3390_rs17030528 crossref_primary_10_5194_acp_23_1131_2023 crossref_primary_10_1016_j_envres_2025_120818 crossref_primary_10_1016_j_apr_2025_102482 crossref_primary_10_3390_rs17091534 crossref_primary_10_1016_j_envpol_2023_122334 crossref_primary_10_3390_su16041641 crossref_primary_10_5194_acp_24_4177_2024 crossref_primary_10_3389_fpubh_2025_1543602 crossref_primary_10_1016_j_ecoenv_2023_115803 crossref_primary_10_59717_j_xinn_med_2025_100148 crossref_primary_10_1007_s10661_025_13955_1 crossref_primary_10_1016_j_accre_2025_08_007 crossref_primary_10_3390_app14125026 crossref_primary_10_1007_s11783_025_2039_y crossref_primary_10_1038_s41598_024_73485_7 crossref_primary_10_1016_j_jad_2024_01_036 crossref_primary_10_1186_s12916_023_02734_9 crossref_primary_10_3390_atmos13020301 crossref_primary_10_1111_resp_14864 crossref_primary_10_1016_j_ecoenv_2024_116861 crossref_primary_10_1016_j_scitotenv_2024_175556 crossref_primary_10_1016_j_atmosenv_2023_119819 crossref_primary_10_3389_fpubh_2022_1019965 crossref_primary_10_1016_j_eehl_2025_100169 crossref_primary_10_1016_j_ijheh_2025_114520 crossref_primary_10_1016_j_jhazmat_2025_138452 crossref_primary_10_1016_j_atmosenv_2025_121369 crossref_primary_10_1016_j_plantsci_2023_111924 crossref_primary_10_1016_j_atmosenv_2024_120658 crossref_primary_10_1016_j_envres_2025_122440 crossref_primary_10_1016_j_scitotenv_2023_162501 crossref_primary_10_1016_j_envres_2025_122201 crossref_primary_10_1016_j_scitotenv_2022_159952 crossref_primary_10_1016_j_jhazmat_2025_137369 crossref_primary_10_1016_j_ecoenv_2024_116060 crossref_primary_10_1016_j_jenvman_2025_124480 crossref_primary_10_1289_EHP15660 |
| Cites_doi | 10.1016/j.scitotenv.2020.141780 10.1016/j.scitotenv.2016.10.081 10.1080/10962247.2016.1200159 10.5194/acp-19-6551-2019 10.5194/acp-18-14095-2018 10.1007/s40011-012-0032-2 10.1016/j.scitotenv.2014.10.070 10.1073/pnas.1907956116 10.5194/acp-20-11423-2020 10.1029/2005JD006196 10.1029/2020GL088070 10.1164/rccm.201508-1633OC 10.1073/pnas.1812168116 10.1109/TGRS.2020.2966780 10.1016/S2542-5196(20)30224-2 10.1016/j.envres.2011.01.024 10.1109/TPAMI.2009.187 10.1002/2017GL075710 10.1002/qj.3803 10.1093/nsr/nwaa032 10.1021/acs.estlett.0c00171 10.1016/j.envpol.2017.01.050 10.1016/j.atmosenv.2020.117259 10.1126/science.278.5339.827 10.1164/rccm.201806-1161OC 10.1016/j.atmosres.2007.09.004 10.1029/2006JD008051 10.1016/j.atmosenv.2006.04.069 10.1038/nclimate1835 10.1146/annurev-arplant-042110-103829 10.1001/jama.292.19.2372 10.1016/j.atmosenv.2013.11.008 10.5194/acp-20-14523-2020 10.1016/j.envint.2020.106290 10.1029/96JD03710 10.1016/j.envres.2017.07.010 10.1029/JD093iD12p15879 10.3402/tellusb.v66.23455 10.5194/acp-20-6159-2020 10.1016/j.atmosenv.2007.05.048 10.1289/ehp.11257 10.4209/aaqr.2019.05.0235 10.5194/acp-20-3273-2020 10.1016/j.jclepro.2020.123742 10.1016/j.envint.2020.105823 10.1029/2009GL037308 10.1289/ehp.1306566 10.1016/j.rse.2020.112136 10.4209/aaqr.2017.10.0368 10.1016/S1001-0742(10)60557-8 10.1038/nature06059 10.1186/1471-2105-10-S1-S65 10.1525/elementa.291 10.5194/acp-21-7863-2021 10.1007/s10994-006-6226-1 10.1148/radiol.2020200490 10.1016/j.envpol.2017.10.029 10.1029/2007JD008999 10.1016/j.envres.2015.04.014 10.1016/j.scitotenv.2021.147739 10.1016/j.atmosenv.2011.04.003 10.1023/A:1010933404324 10.1002/2017GL076770 10.1126/science.abb6105 10.1525/elementa.302 10.1016/j.envpol.2021.116456 10.5194/acp-16-10333-2016 10.5194/acp-19-7183-2019 10.5194/acp-10-2521-2010 10.1016/j.scitotenv.2018.05.144 10.1029/2020GL090041 10.1016/j.scitotenv.2008.11.048 10.1021/acs.est.5b06001 10.1021/acs.est.0c03098 10.1021/acs.estlett.8b00366 10.5194/acp-17-935-2017 10.1002/2017GL074532 10.1016/j.scitotenv.2020.143868 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Mar 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Mar 1, 2022 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| DOI | 10.1016/j.rse.2021.112775 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2021_112775 S0034425721004958 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c424t-45047477197057dbb9b24a1b7d2bcccf3f60efe9dd0bcb4399e112077a52c6643 |
| ISICitedReferencesCount | 437 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759732100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Wed Oct 01 14:27:08 EDT 2025 Wed Aug 13 11:21:05 EDT 2025 Sat Nov 29 07:31:04 EST 2025 Tue Nov 18 22:15:24 EST 2025 Fri Feb 23 02:39:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 Ozone Air pollution Ensemble learning China |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c424t-45047477197057dbb9b24a1b7d2bcccf3f60efe9dd0bcb4399e112077a52c6643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2639034922 |
| PQPubID | 2045405 |
| ParticipantIDs | proquest_miscellaneous_2636491592 proquest_journals_2639034922 crossref_primary_10_1016_j_rse_2021_112775 crossref_citationtrail_10_1016_j_rse_2021_112775 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112775 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Goldberg, Loughner, Tzortziou, Stehr, Pickering, Marufu, Dickerson (bb0105) 2014; 84 Wang, Zhang, Ma, Zhu, Shen, Wang, Zhang (bb0340) 2021; 756 Li, Zhang, Kurokawa, Woo, He, Lu, Ohara, Song, Streets, Carmichael, Cheng, Hong, Huo, Jiang, Kang, Liu, Su, Zheng (bb0160) 2017; 17 Xiang (bb0380) 2020; 224 Rai, Agrawal (bb0255) 2012; 82 Son (bb0295) 2018; 639 Zdaniuk (bb0390) 2014 Li, Zhao, Zhou, Meng, Zhang, Fu (bb0180) 2020; 20 Qiao, Guo, Wang, Tang, Ying, Zhao, Deng, Zhang (bb0250) 2019; 19 Beelen, Hoek, Pebesma, Vienneau, de Hoogh, Briggs (bb0020) 2009; 407 Li, Jacob, Shen, Lu, De Smedt, Liao (bb0175) 2020; 20 Turner (bb0315) 2015; 193 Shen, Jacob, Liu, Huang, Li, Liao, Wang (bb0270) 2019; 19 Liu, Bhartia, Chance, Spurr, Kurosu (bb0200) 2010; 10 Chen, Liao, Seinfeld (bb0055) 2007; 112 Almeida, Casimiro, Calheiros (bb0015) 2011; 111 Wang (bb0335) 2020; 7 Hersbach, Bell, Berrisford (bb0120) 2020; 146 Zhan, Luo, Deng, Grieneisen, Zhang, Di (bb0395) 2018; 233 Shindell, Faluvegi, Nazarenko, Bowman, Lamarque, Voulgarakis, Schmidt, Pechony, Ruedy (bb0280) 2013; 3 Huang, Zhang, Bi (bb0130) 2017; 158 Sitch, Cox, Collins, Huntingford (bb0290) 2007; 448 Lu, Zhang, Wang, Gao, Li, Zhang, Yue, Zhang (bb0220) 2020; 7 Wei, Peng, Mahmood, Sun, Guo (bb0345) 2019; 19 Dickerson, Kondragunta, Stenchikov (bb0075) 1997; 278 Tian (bb0310) 2020; 368 Rodriguez, Perez, Lozano (bb0260) 2010; 32 Wu, Huang, Wang, He, Wang, Yan, Lao, Zhang, Liu, Du (bb0375) 2021; 273 Wang (bb0325) 2016; 50 Hu, Chen, Ying, Zhang (bb0125) 2016; 16 Liu, Wang, Stavrakou, Elguindi, Doumbia, Granier, Bouarar, Gaubert, Brasseur (bb0195) 2021; 789 Liu, Ma, Liu, Shao, Zhao, Bi (bb0205) 2020; 142 Zhang, Zhao, Cheng, Chen (bb0405) 2020; 58 Kerckhoffs, Wang, Meliefste, Malmqvist, Fischer, Janssen, Beelen, Hoek (bb0140) 2015; 140 Meleux, Solmon, Giorgi (bb0230) 2007; 41 Li, Jacob, Liao, Shen, Zhang, Bates (bb0170) 2019; 116 Bell, McDermott, Zeger, Samet, Dominici (bb0025) 2004; 292 Krotkov, Lok, Sergey, Edward, Eric, William, Joanna, and the OMI core team (bb0150) 2019 Zu, Jiang, Xu, Chen, Ni, Lu, Zhang (bb0415) 2020; 296 Breiman (bb0040) 2001; 45 Checa-Garcia, Hegglin, Kinnison, Plummer, Shine (bb0050) 2018; 45 Wei, Li, Pinker, Wang, Sun, Xue, Li, Cribb (bib416) 2021; 21 Adam-Poupart, Brand, Fournier, Jerrett, Smargiassi (bb0005) 2014; 122 Bloomer, Stehr, Piety, Salawitch, Dickerson (bb0035) 2009; 36 Duan, Tan, Yang, Wu, Hao (bb0085) 2008; 88 Breiman, Friedman, Olshen, Stone (bb0045) 1984 Pawan (bb0245) 2012 Sánchez-Ccoyllo, Ynoue, Martins, de Fátima Andrade (bb0265) 2006; 40 Wei, Li, Cribb, Huang, Xue, Sun, Guo, Peng, Li, Lyapustin, Liu, Wu, Song (bb0350) 2020; 20 Gong, Hong, Jaffe (bb0110) 2018; 18 Xue, Zhang, Zhong, Li, Wei (bib417) 2021; 279 Ma, Zhang, Xu, Zhao, Meng (bb0225) 2011; 23 Wong, Vichit-Vadakan, Kan, Qian (bb0370) 2007; 116 Jiang, Tang, Wu, Fu (bb0135) 2009; 10 Lin, Trainer, Liu (bb0190) 1988; 93 Geurts, Ernst, Wehenkel (bb0095) 2006; 63 WHO (bb0365) 2020 Lim (bb0185) 2019; 200 Sinha, Toumi (bb0285) 1997; 102 Li, Shen, Yuan, Zhang, Zhang (bb0165) 2017; 44 Wei, Li, Lyapustin, Sun, Peng, Xue, Su, Cribb (bb0355) 2021; 252 Lu (bb0215) 2018; 5 Xue (bb0385) 2020; 54 Giani, Castruccio, Anav, Howard, Hu, Crippa (bb0100) 2020; 4 Ainsworth, Yendrek, Sitch, Collins, Emberson (bb0010) 2012; 63 Chen (bb0060) 2020; 752 Taubman, Hains, Thompson, Marufu, Doddridge, Stehr, Piety, Dickerson (bb0305) 2006; 111 Gaudel, Cooper, Ancellet, Barret, Ziemke (bb0090) 2018; 6 Wang, Xue, Brimblecombe, Lam, Li, Zhang (bb0330) 2016; 575 Shi, Brasseur (bb0275) 2020; 47 Mills (bb0235) 2018; 6 Wei, Li, Xue, Sun, Fan, Liu, Su, Cribb (bb0360) 2021; 146 Zheng, Tong, Li, Liu, Hong, Geng, Li, Li, Peng, Qi, Yan, Zhang, Zhao, Zheng, He, Zhang (bb0410) 2018; 18 Su, Li, Zheng, Luan, Guo (bb0300) 2020; 47 Knowland, Ott, Duncan, Wargan (bb0145) 2017; 44 Benish, He, Ren, Roberts, Salawitch, Li, Wang, Wang, Zhang, Shao, Lu, Dickerson (bb0030) 2020; 20 Wang, Guo, Jiang, Ling, Wang (bb0320) 2015; 505 Loughner, Allen, Pickering, Zhang, Shou, Dickerson (bb0210) 2011; 45 Zhang (bb0400) 2019; 116 Di, Rowland, Koutrakis, Schwartz (bb0070) 2017; 67 Dickerson (bb0080) 2007; 112 Lee, Shindell, Faluvegi, Wenig, Lam, Ning, Hao, Lai (bb0155) 2014; 66 He, Gong, Yu, Yu, Wu, Mao, Song, Zhao, Liu, Li, Li (bb0115) 2017; 223 Ministry of Ecology and Environment (MEE) (bb0240) 2018 Bloomer (10.1016/j.rse.2021.112775_bb0035) 2009; 36 Shi (10.1016/j.rse.2021.112775_bb0275) 2020; 47 Lin (10.1016/j.rse.2021.112775_bb0190) 1988; 93 Mills (10.1016/j.rse.2021.112775_bb0235) 2018; 6 Gong (10.1016/j.rse.2021.112775_bb0110) 2018; 18 Sánchez-Ccoyllo (10.1016/j.rse.2021.112775_bb0265) 2006; 40 Goldberg (10.1016/j.rse.2021.112775_bb0105) 2014; 84 Jiang (10.1016/j.rse.2021.112775_bb0135) 2009; 10 Lu (10.1016/j.rse.2021.112775_bb0220) 2020; 7 Turner (10.1016/j.rse.2021.112775_bb0315) 2015; 193 Chen (10.1016/j.rse.2021.112775_bb0055) 2007; 112 Rodriguez (10.1016/j.rse.2021.112775_bb0260) 2010; 32 Shindell (10.1016/j.rse.2021.112775_bb0280) 2013; 3 Wang (10.1016/j.rse.2021.112775_bb0325) 2016; 50 Zhan (10.1016/j.rse.2021.112775_bb0395) 2018; 233 Li (10.1016/j.rse.2021.112775_bb0175) 2020; 20 Lim (10.1016/j.rse.2021.112775_bb0185) 2019; 200 Ainsworth (10.1016/j.rse.2021.112775_bb0010) 2012; 63 Breiman (10.1016/j.rse.2021.112775_bb0045) 1984 Beelen (10.1016/j.rse.2021.112775_bb0020) 2009; 407 Duan (10.1016/j.rse.2021.112775_bb0085) 2008; 88 Li (10.1016/j.rse.2021.112775_bb0160) 2017; 17 Xue (10.1016/j.rse.2021.112775_bib417) 2021; 279 He (10.1016/j.rse.2021.112775_bb0115) 2017; 223 Zu (10.1016/j.rse.2021.112775_bb0415) 2020; 296 Liu (10.1016/j.rse.2021.112775_bb0195) 2021; 789 Pawan (10.1016/j.rse.2021.112775_bb0245) 2012 Wu (10.1016/j.rse.2021.112775_bb0375) 2021; 273 Hu (10.1016/j.rse.2021.112775_bb0125) 2016; 16 Huang (10.1016/j.rse.2021.112775_bb0130) 2017; 158 Wong (10.1016/j.rse.2021.112775_bb0370) 2007; 116 Geurts (10.1016/j.rse.2021.112775_bb0095) 2006; 63 Bell (10.1016/j.rse.2021.112775_bb0025) 2004; 292 Zhang (10.1016/j.rse.2021.112775_bb0405) 2020; 58 Xue (10.1016/j.rse.2021.112775_bb0385) 2020; 54 Chen (10.1016/j.rse.2021.112775_bb0060) 2020; 752 Wei (10.1016/j.rse.2021.112775_bb0345) 2019; 19 Knowland (10.1016/j.rse.2021.112775_bb0145) 2017; 44 Gaudel (10.1016/j.rse.2021.112775_bb0090) 2018; 6 Qiao (10.1016/j.rse.2021.112775_bb0250) 2019; 19 Son (10.1016/j.rse.2021.112775_bb0295) 2018; 639 Shen (10.1016/j.rse.2021.112775_bb0270) 2019; 19 Tian (10.1016/j.rse.2021.112775_bb0310) 2020; 368 Li (10.1016/j.rse.2021.112775_bb0170) 2019; 116 Wang (10.1016/j.rse.2021.112775_bb0320) 2015; 505 Li (10.1016/j.rse.2021.112775_bb0180) 2020; 20 Wei (10.1016/j.rse.2021.112775_bib416) 2021; 21 Wang (10.1016/j.rse.2021.112775_bb0340) 2021; 756 Loughner (10.1016/j.rse.2021.112775_bb0210) 2011; 45 Ma (10.1016/j.rse.2021.112775_bb0225) 2011; 23 Li (10.1016/j.rse.2021.112775_bb0165) 2017; 44 Su (10.1016/j.rse.2021.112775_bb0300) 2020; 47 WHO (10.1016/j.rse.2021.112775_bb0365) Benish (10.1016/j.rse.2021.112775_bb0030) 2020; 20 Sinha (10.1016/j.rse.2021.112775_bb0285) 1997; 102 Wei (10.1016/j.rse.2021.112775_bb0355) 2021; 252 Wang (10.1016/j.rse.2021.112775_bb0330) 2016; 575 Adam-Poupart (10.1016/j.rse.2021.112775_bb0005) 2014; 122 Wang (10.1016/j.rse.2021.112775_bb0335) 2020; 7 Almeida (10.1016/j.rse.2021.112775_bb0015) 2011; 111 Zdaniuk (10.1016/j.rse.2021.112775_bb0390) 2014 Giani (10.1016/j.rse.2021.112775_bb0100) 2020; 4 Wei (10.1016/j.rse.2021.112775_bb0350) 2020; 20 Dickerson (10.1016/j.rse.2021.112775_bb0080) 2007; 112 Checa-Garcia (10.1016/j.rse.2021.112775_bb0050) 2018; 45 Zheng (10.1016/j.rse.2021.112775_bb0410) 2018; 18 Rai (10.1016/j.rse.2021.112775_bb0255) 2012; 82 Zhang (10.1016/j.rse.2021.112775_bb0400) 2019; 116 Taubman (10.1016/j.rse.2021.112775_bb0305) 2006; 111 Meleux (10.1016/j.rse.2021.112775_bb0230) 2007; 41 Liu (10.1016/j.rse.2021.112775_bb0205) 2020; 142 Di (10.1016/j.rse.2021.112775_bb0070) 2017; 67 Krotkov (10.1016/j.rse.2021.112775_bb0150) 2019 Breiman (10.1016/j.rse.2021.112775_bb0040) 2001; 45 Lee (10.1016/j.rse.2021.112775_bb0155) 2014; 66 Dickerson (10.1016/j.rse.2021.112775_bb0075) 1997; 278 Xiang (10.1016/j.rse.2021.112775_bb0380) 2020; 224 Sitch (10.1016/j.rse.2021.112775_bb0290) 2007; 448 Ministry of Ecology and Environment (MEE) (10.1016/j.rse.2021.112775_bb0240) Kerckhoffs (10.1016/j.rse.2021.112775_bb0140) 2015; 140 Hersbach (10.1016/j.rse.2021.112775_bb0120) 2020; 146 Wei (10.1016/j.rse.2021.112775_bb0360) 2021; 146 Lu (10.1016/j.rse.2021.112775_bb0215) 2018; 5 Liu (10.1016/j.rse.2021.112775_bb0200) 2010; 10 |
| References_xml | – volume: 41 start-page: 7577 year: 2007 end-page: 7587 ident: bb0230 article-title: Increase in summer European ozone amounts due to climate change publication-title: Atmos. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0040 article-title: Random forests publication-title: Mach. Learn. – volume: 112 year: 2007 ident: bb0080 article-title: Aircraft observations of dust and pollutants over Northeast China: insight into the meteorological mechanisms of transport publication-title: J. Geophys. Res. Atmos. – volume: 18 start-page: 14095 year: 2018 end-page: 14111 ident: bb0410 article-title: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions publication-title: Atmos. Chem. Phys. – year: 2020 ident: bb0365 article-title: The World Health Organization. Coronavirus Disease (COVID-19) Pandemic – year: 1984 ident: bb0045 article-title: Classification and Regression Trees – volume: 6 start-page: 39 year: 2018 ident: bb0090 article-title: Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation publication-title: Elem. Sci. Anth. – volume: 10 start-page: 135 year: 2009 ident: bb0135 article-title: A random forest approach to the detection of epistatic interactions in case-control studies publication-title: BMC Bioinform. – volume: 19 start-page: 6551 year: 2019 end-page: 6560 ident: bb0270 article-title: An evaluation of the ability of the ozone monitoring instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005–2017 ozone trends publication-title: Atmos. Chem. Phys. – volume: 200 year: 2019 ident: bb0185 article-title: Long-term exposure to ozone and cause-specific mortality risk in the U.S publication-title: Am. J. Respir. Crit. Care Med. – volume: 66 start-page: 23455 year: 2014 ident: bb0155 article-title: Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China publication-title: Tellus Ser. B Chem. Phys. Meteorol. – volume: 88 start-page: 25 year: 2008 end-page: 35 ident: bb0085 article-title: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing publication-title: Atmos. Res. – volume: 44 start-page: 11,985 year: 2017 end-page: 11,993 ident: bb0165 article-title: Estimating ground-level PM publication-title: Geophys. Res. Lett. – volume: 21 start-page: 7863 year: 2021 end-page: 7880 ident: bib416 article-title: Himawari-8-derived diurnal variations of ground-level PM publication-title: Atmos. Chem. Phys. – volume: 252 start-page: 112136 year: 2021 ident: bb0355 article-title: Reconstructing 1-km-resolution high-quality PM publication-title: Remote Sens. Environ. – volume: 102 start-page: 10,667 year: 1997 end-page: 10,672 ident: bb0285 article-title: Tropospheric ozone, lightning, and climate change publication-title: J. Geophys. Res. Atmos. – volume: 82 start-page: 241 year: 2012 end-page: 257 ident: bb0255 article-title: Impact of tropospheric ozone on crop plants publication-title: Proc. Natl. Acad. Sci. India Section B: Biol. Sci. – volume: 407 start-page: 1852 year: 2009 end-page: 1867 ident: bb0020 article-title: Mapping of background air pollution at a fine spatial scale across the European Union publication-title: Sci. Total Environ. – year: 2012 ident: bb0245 article-title: OMI/Aura Ozone (O3) Total Column Daily L2 Global Gridded 0.25 degree x 0.25 degree V3, Goddard Earth Sciences Data and Information Services Center (GES DISC) – volume: 116 start-page: 1195 year: 2007 end-page: 1202 ident: bb0370 article-title: Public health and air pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality publication-title: Environ. Health Perspect. – volume: 67 start-page: 39 year: 2017 end-page: 52 ident: bb0070 article-title: A hybrid model for spatially and temporally resolved ozone exposures in the continental United States publication-title: J. Air Waste Manage. Assoc. – volume: 7 start-page: 1331 year: 2020 end-page: 1339 ident: bb0335 article-title: Contrasting trends of PM publication-title: Natl. Sci. Rev. – year: 2019 ident: bb0150 article-title: OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) – volume: 36 year: 2009 ident: bb0035 article-title: Observed relationships of ozone air pollution with temperature and emissions publication-title: Geophys. Res. Lett. – volume: 4 start-page: E474 year: 2020 end-page: E482 ident: bb0100 article-title: Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: a modelling study publication-title: Lancet Planet. Health – volume: 17 start-page: 935 year: 2017 end-page: 963 ident: bb0160 article-title: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP publication-title: Atmos. Chem. Phys. – volume: 575 start-page: 1582 year: 2016 end-page: 1596 ident: bb0330 article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects publication-title: Sci. Total Environ. – volume: 7 start-page: 240 year: 2020 end-page: 247 ident: bb0220 article-title: Rapid increases in warm-season surface ozone and resulting health impact in China since 2013 publication-title: Environ. Sci. Technol. Lett. – volume: 20 start-page: 14523 year: 2020 end-page: 14545 ident: bb0030 article-title: Measurement report: aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China publication-title: Atmos. Chem. Phys. – year: 2014 ident: bb0390 article-title: Ordinary Least-Squares (OLS) Model – volume: 112 year: 2007 ident: bb0055 article-title: Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases publication-title: J. Geophys. Res. Atmos. – volume: 5 start-page: 487 year: 2018 end-page: 494 ident: bb0215 article-title: Severe surface ozone pollution in China: a global perspective publication-title: Environ. Sci. Technol. Lett. – volume: 448 start-page: 791 year: 2007 end-page: 794 ident: bb0290 article-title: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink publication-title: Nature – volume: 111 year: 2006 ident: bb0305 article-title: Aircraft vertical profiles of trace gas and aerosol pollution over the mid-Atlantic United States: statistics and meteorological cluster analysis publication-title: J. Geophys. Res. Atmos. – volume: 278 start-page: 827 year: 1997 end-page: 830 ident: bb0075 article-title: The impact of aerosols on solar ultraviolet radiation and photochemical smog publication-title: Science – volume: 789 year: 2021 ident: bb0195 article-title: Diverse response of surface ozone to COVID-19 lockdown in China publication-title: Sci. Total Environ. – volume: 368 start-page: 638 year: 2020 end-page: 642 ident: bb0310 article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China publication-title: Science – year: 2018 ident: bb0240 article-title: Revision of the Ambien air quality standards (GB 3095–2012) (in Chinese) – volume: 116 start-page: 24,463 year: 2019 end-page: 24,469 ident: bb0400 article-title: Drivers of improved PM publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 58 start-page: 4754 year: 2020 end-page: 4763 ident: bb0405 article-title: Estimating ground-level ozone concentrations in eastern China using satellite-based precursors publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 20 start-page: 11,423 year: 2020 end-page: 11,433 ident: bb0175 article-title: Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences publication-title: Atmos. Chem. Phys. – volume: 233 start-page: 464 year: 2018 end-page: 473 ident: bb0395 article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment publication-title: Environ. Pollut. – volume: 47 year: 2020 ident: bb0300 article-title: Abnormally shallow boundary layer associated with severe air pollution during the COVID-19 lockdown in China publication-title: Geophys. Res. Lett. – volume: 279 year: 2021 ident: bib417 article-title: Spatiotemporal PM publication-title: J. Clean Prod. – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: bb0120 article-title: The ERA5 global reanalysis publication-title: Q. J. Roy. Meteor. Soc. – volume: 93 start-page: 15879 year: 1988 end-page: 15888 ident: bb0190 article-title: On the nonlinearity of the tropospheric ozone production publication-title: J. Geophys. Res. Atmos. – volume: 6 start-page: 47 year: 2018 ident: bb0235 article-title: Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation publication-title: Elem. Sci. Anth. – volume: 116 start-page: 422 year: 2019 end-page: 427 ident: bb0170 article-title: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 140 start-page: 440 year: 2015 end-page: 448 ident: bb0140 article-title: A national fine spatial scale land-use regression model for ozone publication-title: Environ. Res. – volume: 47 start-page: 11 year: 2020 ident: bb0275 article-title: The response in air quality to the reduction of Chinese economic activities during the COVID outbreak publication-title: Geophys. Res. Lett. – volume: 639 start-page: 40 year: 2018 end-page: 48 ident: bb0295 article-title: Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters publication-title: Sci. Total Environ. – volume: 10 start-page: 2521 year: 2010 end-page: 2537 ident: bb0200 article-title: Ozone profile retrievals from the ozone monitoring instrument publication-title: Atmos. Chem. Phys. – volume: 40 start-page: 552 year: 2006 end-page: 562 ident: bb0265 article-title: Impacts of ozone precursor limitation and meteorological variables on ozone concentration in São Paulo, Brazil publication-title: Atmos. Environ. – volume: 50 start-page: 5111 year: 2016 end-page: 5118 ident: bb0325 article-title: Combining land-use regression and chemical transport modeling in a spatiotemporal geostatistical model for ozone and PM publication-title: Environ. Sci. Technol. – volume: 146 start-page: 106290 year: 2021 ident: bb0360 article-title: The ChinaHighPM publication-title: Environ. Int. – volume: 44 start-page: 10,691 year: 2017 end-page: 10,701 ident: bb0145 article-title: Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis publication-title: Geophys. Res. Lett. – volume: 63 start-page: 637 year: 2012 end-page: 661 ident: bb0010 article-title: The effects of tropospheric ozone on net primary productivity and implications for climate change publication-title: Annu. Rev. Plant Biol. – volume: 273 start-page: 116456 year: 2021 ident: bb0375 article-title: Spatiotemporal mapping and assessment of daily ground NO publication-title: Environ. Pollut. – volume: 224 start-page: 117259 year: 2020 ident: bb0380 article-title: Control of both PM publication-title: Atmos. Environ. – volume: 193 start-page: 1134 year: 2015 end-page: 1142 ident: bb0315 article-title: Long-term ozone exposure and mortality in a large prospective study publication-title: Am. J. Respir. Crit. Care Med. – volume: 18 start-page: 2287 year: 2018 end-page: 2300 ident: bb0110 article-title: Ozone in China: spatial distribution and leading meteorological factors controlling O publication-title: Aerosol Air Qual. Res. – volume: 505 start-page: 939 year: 2015 end-page: 951 ident: bb0320 article-title: Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model publication-title: Sci. Total Environ. – volume: 84 start-page: 9 year: 2014 end-page: 19 ident: bb0105 article-title: Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: observations and models from the DISCOVER-AQ and CBODAQ campaigns publication-title: Atmos. Environ. – volume: 122 start-page: 970 year: 2014 end-page: 976 ident: bb0005 article-title: Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches publication-title: Environ. Health Perspect. – volume: 223 start-page: 484 year: 2017 end-page: 496 ident: bb0115 article-title: Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities publication-title: Environ. Pollut. – volume: 158 start-page: 542 year: 2017 end-page: 552 ident: bb0130 article-title: Development of land use regression models for PM publication-title: China. Environ. Res. – volume: 45 start-page: 4060 year: 2011 end-page: 4072 ident: bb0210 article-title: Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation publication-title: Atmos. Environ. – volume: 292 start-page: 2372 year: 2004 end-page: 2378 ident: bb0025 article-title: Ozone and short-term mortality in 95 US urban communities, 1987–2000 publication-title: JAMA – volume: 19 start-page: 7183 year: 2019 end-page: 7207 ident: bb0345 article-title: Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products publication-title: Atmos. Chem. Phys. – volume: 20 start-page: 3273 year: 2020 end-page: 3289 ident: bb0350 article-title: Improved 1-km resolution PM publication-title: Atmos. Chem. Phys. – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bb0095 article-title: Extremely randomized trees publication-title: Machine Lean. – volume: 142 start-page: 105823 year: 2020 ident: bb0205 article-title: Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach publication-title: Environ. Int. – volume: 45 start-page: 3264 year: 2018 end-page: 3273 ident: bb0050 article-title: Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database publication-title: Geophys. Res. Lett. – volume: 16 start-page: 10333 year: 2016 end-page: 10350 ident: bb0125 article-title: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system publication-title: Atmos. Chem. Phys. – volume: 32 start-page: 569 year: 2010 end-page: 575 ident: bb0260 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 111 start-page: 406 year: 2011 end-page: 410 ident: bb0015 article-title: Short-term association between exposure to ozone and mortality in Oporto, Portugal publication-title: Environ. Res. – volume: 54 start-page: 14,877 year: 2020 end-page: 14,888 ident: bb0385 article-title: Estimating spatiotemporal variation in ambient ozone exposure during 2013–2017 using a data-fusion model publication-title: Environ. Sci. Technol. – volume: 20 start-page: 6159 year: 2020 end-page: 6175 ident: bb0180 article-title: Developing a novel hybrid model for the estimation of surface 8h ozone (O publication-title: Atmos. Chem. Phys. – volume: 3 start-page: 567 year: 2013 end-page: 570 ident: bb0280 article-title: Attribution of historical ozone forcing to anthropogenic emissions publication-title: Nat. Clim. Chang. – volume: 752 start-page: 141780 year: 2020 ident: bb0060 article-title: A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land-use regression and Bayesian maximum entropy publication-title: Sci. Total Environ. – volume: 756 start-page: 143868 year: 2021 ident: bb0340 article-title: Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta publication-title: Sci. Total Environ. – volume: 296 start-page: 200490 year: 2020 ident: bb0415 article-title: Coronavirus disease 2019 (COVID-19): a perspective from China publication-title: Radiology – volume: 23 start-page: 1316 year: 2011 end-page: 1324 ident: bb0225 article-title: Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn publication-title: J. Environ. Sci. – volume: 19 start-page: 2308 year: 2019 end-page: 2319 ident: bb0250 article-title: Fine particulate matter and ozone pollution in the 18 cities of the Sichuan Basin in southwestern China: model performance and characteristics publication-title: Aerosol Air Qual. Res. – volume: 752 start-page: 141780 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0060 article-title: A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land-use regression and Bayesian maximum entropy publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141780 – volume: 575 start-page: 1582 year: 2016 ident: 10.1016/j.rse.2021.112775_bb0330 article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.081 – volume: 67 start-page: 39 issue: 1 year: 2017 ident: 10.1016/j.rse.2021.112775_bb0070 article-title: A hybrid model for spatially and temporally resolved ozone exposures in the continental United States publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10962247.2016.1200159 – volume: 19 start-page: 6551 year: 2019 ident: 10.1016/j.rse.2021.112775_bb0270 article-title: An evaluation of the ability of the ozone monitoring instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005–2017 ozone trends publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-6551-2019 – volume: 18 start-page: 14095 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0410 article-title: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-14095-2018 – volume: 82 start-page: 241 year: 2012 ident: 10.1016/j.rse.2021.112775_bb0255 article-title: Impact of tropospheric ozone on crop plants publication-title: Proc. Natl. Acad. Sci. India Section B: Biol. Sci. doi: 10.1007/s40011-012-0032-2 – volume: 505 start-page: 939 year: 2015 ident: 10.1016/j.rse.2021.112775_bb0320 article-title: Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.10.070 – volume: 116 start-page: 24,463 issue: 49 year: 2019 ident: 10.1016/j.rse.2021.112775_bb0400 article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1907956116 – volume: 20 start-page: 11,423 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0175 article-title: Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-11423-2020 – volume: 111 issue: D10 year: 2006 ident: 10.1016/j.rse.2021.112775_bb0305 article-title: Aircraft vertical profiles of trace gas and aerosol pollution over the mid-Atlantic United States: statistics and meteorological cluster analysis publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2005JD006196 – volume: 47 start-page: 11 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0275 article-title: The response in air quality to the reduction of Chinese economic activities during the COVID outbreak publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL088070 – volume: 193 start-page: 1134 issue: 10 year: 2015 ident: 10.1016/j.rse.2021.112775_bb0315 article-title: Long-term ozone exposure and mortality in a large prospective study publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201508-1633OC – volume: 116 start-page: 422 issue: 2 year: 2019 ident: 10.1016/j.rse.2021.112775_bb0170 article-title: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1812168116 – volume: 58 start-page: 4754 issue: 7 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0405 article-title: Estimating ground-level ozone concentrations in eastern China using satellite-based precursors publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2966780 – volume: 4 start-page: E474 issue: 10 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0100 article-title: Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: a modelling study publication-title: Lancet Planet. Health doi: 10.1016/S2542-5196(20)30224-2 – volume: 111 start-page: 406 issue: 3 year: 2011 ident: 10.1016/j.rse.2021.112775_bb0015 article-title: Short-term association between exposure to ozone and mortality in Oporto, Portugal publication-title: Environ. Res. doi: 10.1016/j.envres.2011.01.024 – volume: 32 start-page: 569 issue: 3 year: 2010 ident: 10.1016/j.rse.2021.112775_bb0260 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 44 start-page: 11,985 issue: 23 year: 2017 ident: 10.1016/j.rse.2021.112775_bb0165 article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075710 – volume: 146 start-page: 1999 issue: 730 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0120 article-title: The ERA5 global reanalysis publication-title: Q. J. Roy. Meteor. Soc. doi: 10.1002/qj.3803 – volume: 7 start-page: 1331 issue: 8 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0335 article-title: Contrasting trends of PM2.5 and surface ozone concentrations in China from 2013 to 2017 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa032 – volume: 7 start-page: 240 issue: 4 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0220 article-title: Rapid increases in warm-season surface ozone and resulting health impact in China since 2013 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.0c00171 – volume: 223 start-page: 484 year: 2017 ident: 10.1016/j.rse.2021.112775_bb0115 article-title: Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.050 – volume: 224 start-page: 117259 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0380 article-title: Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117259 – volume: 278 start-page: 827 issue: 5339 year: 1997 ident: 10.1016/j.rse.2021.112775_bb0075 article-title: The impact of aerosols on solar ultraviolet radiation and photochemical smog publication-title: Science doi: 10.1126/science.278.5339.827 – volume: 200 issue: 8 year: 2019 ident: 10.1016/j.rse.2021.112775_bb0185 article-title: Long-term exposure to ozone and cause-specific mortality risk in the U.S publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201806-1161OC – volume: 88 start-page: 25 year: 2008 ident: 10.1016/j.rse.2021.112775_bb0085 article-title: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2007.09.004 – volume: 112 issue: D14 year: 2007 ident: 10.1016/j.rse.2021.112775_bb0055 article-title: Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2006JD008051 – volume: 40 start-page: 552 year: 2006 ident: 10.1016/j.rse.2021.112775_bb0265 article-title: Impacts of ozone precursor limitation and meteorological variables on ozone concentration in São Paulo, Brazil publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.04.069 – volume: 3 start-page: 567 issue: 6 year: 2013 ident: 10.1016/j.rse.2021.112775_bb0280 article-title: Attribution of historical ozone forcing to anthropogenic emissions publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1835 – volume: 63 start-page: 637 year: 2012 ident: 10.1016/j.rse.2021.112775_bb0010 article-title: The effects of tropospheric ozone on net primary productivity and implications for climate change publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103829 – volume: 292 start-page: 2372 issue: 19 year: 2004 ident: 10.1016/j.rse.2021.112775_bb0025 article-title: Ozone and short-term mortality in 95 US urban communities, 1987–2000 publication-title: JAMA doi: 10.1001/jama.292.19.2372 – volume: 84 start-page: 9 year: 2014 ident: 10.1016/j.rse.2021.112775_bb0105 article-title: Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: observations and models from the DISCOVER-AQ and CBODAQ campaigns publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.11.008 – volume: 20 start-page: 14523 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0030 article-title: Measurement report: aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-14523-2020 – volume: 146 start-page: 106290 year: 2021 ident: 10.1016/j.rse.2021.112775_bb0360 article-title: The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106290 – volume: 102 start-page: 10,667 issue: D9 year: 1997 ident: 10.1016/j.rse.2021.112775_bb0285 article-title: Tropospheric ozone, lightning, and climate change publication-title: J. Geophys. Res. Atmos. doi: 10.1029/96JD03710 – volume: 158 start-page: 542 year: 2017 ident: 10.1016/j.rse.2021.112775_bb0130 article-title: Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing publication-title: China. Environ. Res. doi: 10.1016/j.envres.2017.07.010 – volume: 93 start-page: 15879 issue: D12 year: 1988 ident: 10.1016/j.rse.2021.112775_bb0190 article-title: On the nonlinearity of the tropospheric ozone production publication-title: J. Geophys. Res. Atmos. doi: 10.1029/JD093iD12p15879 – volume: 66 start-page: 23455 year: 2014 ident: 10.1016/j.rse.2021.112775_bb0155 article-title: Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China publication-title: Tellus Ser. B Chem. Phys. Meteorol. doi: 10.3402/tellusb.v66.23455 – volume: 20 start-page: 6159 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0180 article-title: Developing a novel hybrid model for the estimation of surface 8h ozone (O3) across the remote Tibetan Plateau during 2005–2018 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-6159-2020 – volume: 41 start-page: 7577 year: 2007 ident: 10.1016/j.rse.2021.112775_bb0230 article-title: Increase in summer European ozone amounts due to climate change publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.05.048 – volume: 116 start-page: 1195 issue: 9 year: 2007 ident: 10.1016/j.rse.2021.112775_bb0370 article-title: Public health and air pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality publication-title: Environ. Health Perspect. doi: 10.1289/ehp.11257 – volume: 19 start-page: 2308 year: 2019 ident: 10.1016/j.rse.2021.112775_bb0250 article-title: Fine particulate matter and ozone pollution in the 18 cities of the Sichuan Basin in southwestern China: model performance and characteristics publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2019.05.0235 – volume: 20 start-page: 3273 issue: 6 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0350 article-title: Improved 1-km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-3273-2020 – volume: 279 year: 2021 ident: 10.1016/j.rse.2021.112775_bib417 article-title: Spatiotemporal PM2.5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2020.123742 – volume: 142 start-page: 105823 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0205 article-title: Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105823 – volume: 36 issue: 9 year: 2009 ident: 10.1016/j.rse.2021.112775_bb0035 article-title: Observed relationships of ozone air pollution with temperature and emissions publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL037308 – volume: 122 start-page: 970 issue: 9 year: 2014 ident: 10.1016/j.rse.2021.112775_bb0005 article-title: Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1306566 – ident: 10.1016/j.rse.2021.112775_bb0240 – year: 2012 ident: 10.1016/j.rse.2021.112775_bb0245 – year: 2019 ident: 10.1016/j.rse.2021.112775_bb0150 – volume: 252 start-page: 112136 year: 2021 ident: 10.1016/j.rse.2021.112775_bb0355 article-title: Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112136 – ident: 10.1016/j.rse.2021.112775_bb0365 – volume: 18 start-page: 2287 issue: 9 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0110 article-title: Ozone in China: spatial distribution and leading meteorological factors controlling O3 in 16 Chinese cities publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2017.10.0368 – volume: 23 start-page: 1316 year: 2011 ident: 10.1016/j.rse.2021.112775_bb0225 article-title: Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(10)60557-8 – volume: 448 start-page: 791 issue: 7155 year: 2007 ident: 10.1016/j.rse.2021.112775_bb0290 article-title: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink publication-title: Nature doi: 10.1038/nature06059 – volume: 10 start-page: 135 year: 2009 ident: 10.1016/j.rse.2021.112775_bb0135 article-title: A random forest approach to the detection of epistatic interactions in case-control studies publication-title: BMC Bioinform. doi: 10.1186/1471-2105-10-S1-S65 – volume: 6 start-page: 39 issue: 1 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0090 article-title: Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation publication-title: Elem. Sci. Anth. doi: 10.1525/elementa.291 – volume: 21 start-page: 7863 issue: 10 year: 2021 ident: 10.1016/j.rse.2021.112775_bib416 article-title: Himawari-8-derived diurnal variations of ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM). publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-7863-2021 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.rse.2021.112775_bb0095 article-title: Extremely randomized trees publication-title: Machine Lean. doi: 10.1007/s10994-006-6226-1 – volume: 296 start-page: 200490 issue: 2 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0415 article-title: Coronavirus disease 2019 (COVID-19): a perspective from China publication-title: Radiology doi: 10.1148/radiol.2020200490 – volume: 233 start-page: 464 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0395 article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.029 – volume: 112 issue: D24 year: 2007 ident: 10.1016/j.rse.2021.112775_bb0080 article-title: Aircraft observations of dust and pollutants over Northeast China: insight into the meteorological mechanisms of transport publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2007JD008999 – volume: 140 start-page: 440 year: 2015 ident: 10.1016/j.rse.2021.112775_bb0140 article-title: A national fine spatial scale land-use regression model for ozone publication-title: Environ. Res. doi: 10.1016/j.envres.2015.04.014 – volume: 789 year: 2021 ident: 10.1016/j.rse.2021.112775_bb0195 article-title: Diverse response of surface ozone to COVID-19 lockdown in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147739 – volume: 45 start-page: 4060 issue: 24 year: 2011 ident: 10.1016/j.rse.2021.112775_bb0210 article-title: Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.04.003 – year: 2014 ident: 10.1016/j.rse.2021.112775_bb0390 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rse.2021.112775_bb0040 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 45 start-page: 3264 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0050 article-title: Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076770 – volume: 368 start-page: 638 issue: 6491 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0310 article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China publication-title: Science doi: 10.1126/science.abb6105 – volume: 6 start-page: 47 issue: 1 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0235 article-title: Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation publication-title: Elem. Sci. Anth. doi: 10.1525/elementa.302 – volume: 273 start-page: 116456 year: 2021 ident: 10.1016/j.rse.2021.112775_bb0375 article-title: Spatiotemporal mapping and assessment of daily ground NO2 concentrations in China using high-resolution TROPOMI retrievals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116456 – volume: 16 start-page: 10333 year: 2016 ident: 10.1016/j.rse.2021.112775_bb0125 article-title: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-10333-2016 – volume: 19 start-page: 7183 year: 2019 ident: 10.1016/j.rse.2021.112775_bb0345 article-title: Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-7183-2019 – volume: 10 start-page: 2521 year: 2010 ident: 10.1016/j.rse.2021.112775_bb0200 article-title: Ozone profile retrievals from the ozone monitoring instrument publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-2521-2010 – volume: 639 start-page: 40 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0295 article-title: Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.144 – volume: 47 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0300 article-title: Abnormally shallow boundary layer associated with severe air pollution during the COVID-19 lockdown in China publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL090041 – volume: 407 start-page: 1852 issue: 6 year: 2009 ident: 10.1016/j.rse.2021.112775_bb0020 article-title: Mapping of background air pollution at a fine spatial scale across the European Union publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.11.048 – year: 1984 ident: 10.1016/j.rse.2021.112775_bb0045 – volume: 50 start-page: 5111 issue: 10 year: 2016 ident: 10.1016/j.rse.2021.112775_bb0325 article-title: Combining land-use regression and chemical transport modeling in a spatiotemporal geostatistical model for ozone and PM2.5 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b06001 – volume: 54 start-page: 14,877 year: 2020 ident: 10.1016/j.rse.2021.112775_bb0385 article-title: Estimating spatiotemporal variation in ambient ozone exposure during 2013–2017 using a data-fusion model publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c03098 – volume: 5 start-page: 487 issue: 8 year: 2018 ident: 10.1016/j.rse.2021.112775_bb0215 article-title: Severe surface ozone pollution in China: a global perspective publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00366 – volume: 17 start-page: 935 year: 2017 ident: 10.1016/j.rse.2021.112775_bb0160 article-title: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-935-2017 – volume: 44 start-page: 10,691 issue: 20 year: 2017 ident: 10.1016/j.rse.2021.112775_bb0145 article-title: Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074532 – volume: 756 start-page: 143868 year: 2021 ident: 10.1016/j.rse.2021.112775_bb0340 article-title: Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143868 |
| SSID | ssj0015871 |
| Score | 2.7323043 |
| Snippet | Ozone (O3) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level.... Ozone (O₃) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological environment and human health at the ground level.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112775 |
| SubjectTerms | Air pollution Air pollution control Anthropogenic factors China Coronaviruses Coverage COVID-19 COVID-19 infection data collection Datasets Disease transmission Emission inventories Emissions Ensemble learning environment Environmental health Greenhouse gases Ground level Ground-based observation Growth rate human health inventories Ozone probability Radiant flux density Remote sensing satellites Solar radiation Surface temperature |
| Title | Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China |
| URI | https://dx.doi.org/10.1016/j.rse.2021.112775 https://www.proquest.com/docview/2639034922 https://www.proquest.com/docview/2636491592 |
| Volume | 270 |
| WOSCitedRecordID | wos000759732100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBoIXBIWJwkBGQgioMqWuU8ePE3SDMbVo6lDfrMRJpE0l7Zq2DH4Qv5NzYjtpB0zwwEtUOZda-b6ci30uhLyIwEZIRAYIMPBNeBTAN5fIxItjGWadFCRgZJpNiMEgHI_lp0bjh8uFWU1EnoeXl3L2X6GGMQAbU2f_Ae7qoTAAvwF0OALscPwr4NGp9DRGZmI4zpdoNnN5iEUZPW2LUU3aK3CT60A4TO_IE2-CQUTt6fepMT6HuBCLnRzMjE02CmjzLtqsDIzAdlTq2boPt7N0T1IgQdouMEDeBFav5dTV-0FlMMGR058YGVSO4Dr2xS-jHysWvjvDcBBXHGBZFLgEebK-hAHebxXDZdbVqtyaz-uiuss9FChGURnpHArMuDL9ip34ZqbxiBXAnd-qBbNCcb43L7AyKutg4pQwHVs2S3APhurg9PhYjfrj0cvZhYfdyXAX37ZquUG2mQgkSM_t_Q_98VG1XxWEwvRmtJN2--dlJOGVf_2TBXTFFigNnNE9ctd6JnTfMOo-aaR5k-z0a9DgpNUERZPcPkxtsfMmuXVYtof-9oB83SAfteSjQD66ST5ak49OM7pOPlqSj74adl_TingUiUeReHQxpUg8aohHS-I9JKcH_dHb955t7eFpzvjC44HPwZEVHSnAYUhAMsSMR51YJCzWWmfdrOenWSqTxI91jD5zCi_PFwKEie6BFb1DtnKYzCNCwYXpxYzFkehmXIJGyWSk_SjgPckC7Yct4rvXrbSte4_tVybKBTieK0BIIULKINQib6pbZqboy3UXc4ehslarsUYVsO-623Yd3spKj0Ix8BewYBRjLfK8Og0CH3fxojydLstrelyCF8IeX_-IJ-RO_bHtkq3FfJk-JTf1anFWzJ9ZBv8EXm3Jzg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-coverage+mapping+and+spatiotemporal+variations+of+ground-level+ozone+%28O3%29+pollution+from+2013+to+2020+across+China&rft.jtitle=Remote+sensing+of+environment&rft.au=Wei%2C+Jing&rft.au=Li%2C+Zhanqing&rft.au=Li%2C+Ke&rft.au=Dickerson%2C+Russell+R&rft.date=2022-03-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=270&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2021.112775&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |