A dimension reduction assisted credit scoring method for big data with categorical features
In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk expo...
Saved in:
| Published in: | Financial innovation (Heidelberg) Vol. 11; no. 1; pp. 29 - 30 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Heidelberg
Springer Nature B.V
01.12.2025
SpringerOpen |
| Subjects: | |
| ISSN: | 2199-4730, 2199-4730 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure. Despite continuing efforts, the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data. We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction. To contribute to the field of financial innovation, this study proposes a Dimension Reduction Assisted Credit Scoring (DRA-CS) method via distance covariance-based sufficient dimension reduction (DCOV-SDR) in Majorization-Minimization (MM) algorithm. First, in the presence of a large number of variables, the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction. Second, when the DRA-CS method is employed with logistic regression, it outperforms existing methods based on different variable selection techniques. This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods. |
|---|---|
| AbstractList | In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure. Despite continuing efforts, the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data. We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction. To contribute to the field of financial innovation, this study proposes a Dimension Reduction Assisted Credit Scoring (DRA-CS) method via distance covariance-based sufficient dimension reduction (DCOV-SDR) in Majorization-Minimization (MM) algorithm. First, in the presence of a large number of variables, the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction. Second, when the DRA-CS method is employed with logistic regression, it outperforms existing methods based on different variable selection techniques. This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods. Abstract In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure. Despite continuing efforts, the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data. We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction. To contribute to the field of financial innovation, this study proposes a Dimension Reduction Assisted Credit Scoring (DRA-CS) method via distance covariance-based sufficient dimension reduction (DCOV-SDR) in Majorization-Minimization (MM) algorithm. First, in the presence of a large number of variables, the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction. Second, when the DRA-CS method is employed with logistic regression, it outperforms existing methods based on different variable selection techniques. This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods. |
| ArticleNumber | 29 |
| Author | Wang, Pei Miljkovic, Tatjana |
| Author_xml | – sequence: 1 givenname: Tatjana orcidid: 0000-0001-5436-9733 surname: Miljkovic fullname: Miljkovic, Tatjana – sequence: 2 givenname: Pei surname: Wang fullname: Wang, Pei |
| BookMark | eNp9UU1rWzEQFCWBuEn-QE6CnF-rj_chHYNJW4Mhl_TUg1hJK0fGfkolmdJ_X9luoeSQw7LLMjM77HwkF3OakZA7zj5xrsbPpWdq6DsmWrFR6Y5_IAvBte76SbKL_-YrclvKljEmGrEX44L8eKA-7nEuMc00oz-4epyglFgqeuraLlZaXMpx3tA91pfkaUiZ2rihHirQX7G-UAcVNw3jYEcDQj1kLDfkMsCu4O3ffk2-f3l8Xn7r1k9fV8uHded60ddOqgmtVDJojUF5PU4jjE5asBM4hqG3qIXoGapJusl75ycfNGdWguMauLwmq7OuT7A1rznuIf82CaI5LVLeGMg1uh2a0E6y9g3N2-mBKS2tsEzYQQWtBuma1v1Z6zWnnwcs1WzTIc_NvpF84A00at1Q6oxyOZWSMRgXKxw_VzPEneHMHJMx52RMS8ackjFHs-IN9Z_hd0h_AFFskr4 |
| CitedBy_id | crossref_primary_10_3390_jrfm18080442 crossref_primary_10_1016_j_aej_2025_05_043 crossref_primary_10_1016_j_dajour_2025_100626 |
| Cites_doi | 10.1109/TSP.2016.2601299 10.1093/sysbio/syv019 10.1080/10618600.2015.1026601 10.1080/10920277.2021.1911668 10.1109/LSP.2014.2337276 10.1016/j.ejor.2004.03.031 10.1002/9780470171431 10.1002/9780470979174 10.1016/j.eswa.2011.11.011 10.1137/1.9780898719468 10.1080/01621459.1991.10475035 10.1016/j.csda.2020.107089 10.1214/009053607000000505 10.1016/j.techsoc.2020.101413 10.1198/016214506000000735 10.1198/016214503000000927 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.jbankfin.2010.06.001 10.1080/14786440109462720 10.1080/03610918.2023.2234677 10.1021/ie990110i 10.1214/aos/1176348109 10.1016/j.ejor.2021.03.006 10.1016/j.ejor.2021.06.053 10.1016/j.jfds.2022.07.002 10.1057/palgrave.jors.2601976 10.1016/j.csda.2008.03.003 10.1111/jofi.12044 10.1186/s40854-021-00305-6 10.1111/j.1467-985X.1997.00078.x 10.1002/9780470316931 10.1080/00401706.2017.1321583 10.1007/s11634-022-00524-4 10.1016/j.jmva.2013.07.003 10.1016/j.csda.2021.107285 10.1111/j.1467-9868.2005.00503.x 10.1080/00036846.2014.962222 10.1080/08839519508945477 10.1186/s40854-021-00295-5 10.3390/math9070746 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Dec 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Dec 2025 |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s40854-024-00689-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 2199-4730 |
| EndPage | 30 |
| ExternalDocumentID | oai_doaj_org_article_fc4201999142450893b2b02b58f9853c 10_1186_s40854_024_00689_1 |
| GroupedDBID | 0R~ 7WY 8FL AAFWJ AAKKN AAYXX ABEEZ ABUWG ACACY ACGFS ACULB ADBBV AFFHD AFGXO AFKRA AFPKN AHBYD AHQJS AHYZX AKVCP ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR BEZIV BPHCQ C24 C6C CCPQU CITATION DWQXO EBS EBU FRNLG GROUPED_DOAJ IAO IBB ITC K60 K6~ M0C M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ 3V. 7XB 8FK AZQEC L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c424t-387eb383f99ef8d9676a6c3bab7ac0ef4be92240e873c7ddcd7df910b3ac19a13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001390580700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4730 |
| IngestDate | Fri Oct 03 12:52:46 EDT 2025 Sat Oct 11 13:40:41 EDT 2025 Thu Oct 30 07:34:11 EDT 2025 Tue Nov 18 22:18:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-387eb383f99ef8d9676a6c3bab7ac0ef4be92240e873c7ddcd7df910b3ac19a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5436-9733 |
| OpenAccessLink | https://doaj.org/article/fc4201999142450893b2b02b58f9853c |
| PQID | 3151985699 |
| PQPubID | 2044336 |
| PageCount | 30 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fc4201999142450893b2b02b58f9853c proquest_journals_3151985699 crossref_citationtrail_10_1186_s40854_024_00689_1 crossref_primary_10_1186_s40854_024_00689_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Financial innovation (Heidelberg) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Nature B.V – name: SpringerOpen |
| References | E Dumitrescu (689_CR6) 2022; 297 KC Li (689_CR16) 1991; 86 AE Khandani (689_CR13) 2010; 34 689_CR24 R Matignon (689_CR19) 2007 Q Wang (689_CR39) 2008; 52 W Sheng (689_CR27) 2013; 122 Q Wang (689_CR38) 2023; 17 MO Ulfarsson (689_CR34) 2014; 22 Y Sun (689_CR29) 2016; 65 689_CR22 689_CR44 PK Roy (689_CR25) 2021; 7 689_CR7 BR Gunnarsson (689_CR11) 2021; 295 S Sadatrasoul (689_CR26) 2015; 12 N Duan (689_CR5) 1991; 19 S Viaene (689_CR37) 2005; 166 P Giannouli (689_CR9) 2021; 7 P Wang (689_CR41) 2021; 163 R Wu (689_CR43) 2021; 155 H Zou (689_CR46) 2006; 101 R Tibshirani (689_CR31) 1996; 58 RD Cook (689_CR3) 1991; 86 L Guiso (689_CR10) 2013; 68 RD King (689_CR14) 1995; 9 A Markov (689_CR18) 2022; 8 J Wang (689_CR40) 2012; 39 EO Ogundimu (689_CR21) 2022; 24 GJ Székely (689_CR30) 2007; 35 S Valle (689_CR36) 1999; 38 H Woo (689_CR42) 2022; 8 DJ Hand (689_CR12) 1997; 160 X Deng (689_CR4) 2023 Y Liu (689_CR17) 2005; 56 H Zou (689_CR47) 2005; 67 RD Cook (689_CR2) 1998 S Tufféry (689_CR33) 2011 SK Trivedi (689_CR32) 2020; 63 K Pearson (689_CR23) 1901; 2 W Sheng (689_CR28) 2016; 25 X Chen (689_CR1) 2018; 60 Z Ye (689_CR45) 2003; 98 J Laborda (689_CR15) 2021; 9 R Emekter (689_CR8) 2015; 47 JC Uyeda (689_CR35) 2015; 64 T Miljkovic (689_CR20) 2021; 25 |
| References_xml | – volume: 65 start-page: 794 issue: 3 year: 2016 ident: 689_CR29 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2016.2601299 – volume: 64 start-page: 677 issue: 4 year: 2015 ident: 689_CR35 publication-title: Syst Biol doi: 10.1093/sysbio/syv019 – volume: 25 start-page: 91 issue: 1 year: 2016 ident: 689_CR28 publication-title: J Comput Gr Stat doi: 10.1080/10618600.2015.1026601 – volume: 25 start-page: 562 issue: 4 year: 2021 ident: 689_CR20 publication-title: North Am Act J doi: 10.1080/10920277.2021.1911668 – volume: 22 start-page: 239 issue: 2 year: 2014 ident: 689_CR34 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2014.2337276 – volume: 166 start-page: 212 issue: 1 year: 2005 ident: 689_CR37 publication-title: Euro J Oper Res doi: 10.1016/j.ejor.2004.03.031 – volume-title: Data mining using SAS enterprise miner year: 2007 ident: 689_CR19 doi: 10.1002/9780470171431 – volume-title: Data mining and statistics for decision making year: 2011 ident: 689_CR33 doi: 10.1002/9780470979174 – volume: 39 start-page: 6123 issue: 6 year: 2012 ident: 689_CR40 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2011.11.011 – ident: 689_CR22 doi: 10.1137/1.9780898719468 – volume: 86 start-page: 316 issue: 414 year: 1991 ident: 689_CR16 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1991.10475035 – volume: 155 start-page: 107089 year: 2021 ident: 689_CR43 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2020.107089 – volume: 35 start-page: 2769 issue: 6 year: 2007 ident: 689_CR30 publication-title: Ann Stat doi: 10.1214/009053607000000505 – volume: 63 start-page: 101413 year: 2020 ident: 689_CR32 publication-title: Technol Soc doi: 10.1016/j.techsoc.2020.101413 – volume: 101 start-page: 1418 year: 2006 ident: 689_CR46 publication-title: J Am Stat Assoc doi: 10.1198/016214506000000735 – volume: 98 start-page: 968 issue: 464 year: 2003 ident: 689_CR45 publication-title: J Am Stat Assoc doi: 10.1198/016214503000000927 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 689_CR31 publication-title: J R Stat Soc Ser B: Stat Method doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 34 start-page: 2767 issue: 11 year: 2010 ident: 689_CR13 publication-title: J Bank Finance doi: 10.1016/j.jbankfin.2010.06.001 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 689_CR23 publication-title: London, Edinburgh, and Dublin Phil Magaz J Sci doi: 10.1080/14786440109462720 – volume: 12 start-page: 138 issue: 2 year: 2015 ident: 689_CR26 publication-title: Int Arab J Info Technol (IAJIT) – year: 2023 ident: 689_CR4 publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2023.2234677 – volume: 38 start-page: 4389 issue: 11 year: 1999 ident: 689_CR36 publication-title: Industr Eng Chem Res doi: 10.1021/ie990110i – volume: 19 start-page: 505 year: 1991 ident: 689_CR5 publication-title: Ann Stat doi: 10.1214/aos/1176348109 – ident: 689_CR44 – volume: 295 start-page: 292 issue: 1 year: 2021 ident: 689_CR11 publication-title: Euro J Oper Res doi: 10.1016/j.ejor.2021.03.006 – volume: 297 start-page: 1178 issue: 3 year: 2022 ident: 689_CR6 publication-title: Euro J Oper Res doi: 10.1016/j.ejor.2021.06.053 – volume: 8 start-page: 180 year: 2022 ident: 689_CR18 publication-title: J Finance Data Sci doi: 10.1016/j.jfds.2022.07.002 – volume: 24 start-page: 147 year: 2022 ident: 689_CR21 publication-title: Stat Model – volume: 7 start-page: 545 issue: 4 year: 2021 ident: 689_CR9 publication-title: Commun Stat: Case Stud Data Anal Appl – volume: 56 start-page: 1099 issue: 9 year: 2005 ident: 689_CR17 publication-title: J Oper Res Soc doi: 10.1057/palgrave.jors.2601976 – volume: 52 start-page: 4512 issue: 9 year: 2008 ident: 689_CR39 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.03.003 – volume: 68 start-page: 1473 issue: 4 year: 2013 ident: 689_CR10 publication-title: J Finance doi: 10.1111/jofi.12044 – volume: 8 start-page: 1 issue: 1 year: 2022 ident: 689_CR42 publication-title: Financ Innov doi: 10.1186/s40854-021-00305-6 – volume: 160 start-page: 523 issue: 3 year: 1997 ident: 689_CR12 publication-title: J R Stat Soc: Ser A (Stat Soc) doi: 10.1111/j.1467-985X.1997.00078.x – volume-title: Regression graphics: ideas for studying regressions through graphics year: 1998 ident: 689_CR2 doi: 10.1002/9780470316931 – volume: 60 start-page: 161 issue: 2 year: 2018 ident: 689_CR1 publication-title: Technometrics doi: 10.1080/00401706.2017.1321583 – volume: 17 start-page: 777 issue: 3 year: 2023 ident: 689_CR38 publication-title: Adv Data Anal Class doi: 10.1007/s11634-022-00524-4 – volume: 122 start-page: 148 year: 2013 ident: 689_CR27 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2013.07.003 – volume: 163 start-page: 107285 year: 2021 ident: 689_CR41 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2021.107285 – ident: 689_CR7 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 689_CR47 publication-title: J R Stat Soc Ser B: Stat Method doi: 10.1111/j.1467-9868.2005.00503.x – volume: 47 start-page: 54 issue: 1 year: 2015 ident: 689_CR8 publication-title: Appl Econ doi: 10.1080/00036846.2014.962222 – volume: 9 start-page: 289 issue: 3 year: 1995 ident: 689_CR14 publication-title: Appl Artif Intell Int J doi: 10.1080/08839519508945477 – ident: 689_CR24 – volume: 7 start-page: 1 year: 2021 ident: 689_CR25 publication-title: Financ Innov doi: 10.1186/s40854-021-00295-5 – volume: 86 start-page: 328 issue: 414 year: 1991 ident: 689_CR3 publication-title: J Am Stat Assoc – volume: 9 start-page: 746 issue: 7 year: 2021 ident: 689_CR15 publication-title: Mathematics doi: 10.3390/math9070746 |
| SSID | ssj0002118426 |
| Score | 2.3306913 |
| Snippet | In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence... Abstract In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 29 |
| SubjectTerms | Accuracy Big Data Credit scoring Dimension reduction Financial institutions Logistic regression Majorization-minimization algorithm Methods |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60injxLdYXe_AmoUk2TXZPUovFgxYPKgUPS_ZVCtLWJvr7ndkkFRF68ZpsIMm3u_PN7Mw3hFxhVUqYGRuA8QUHxSY5LKmcBVokinMl8tRLCr0-ZMMhH43EUx1wK-q0ymZP9Bu1mWmMkXcYmCbBu6kQN_OPALtG4elq3UJjnWwgs8GUvsewv4yxgHPDwQI1tTI87RQo6JUEYJgCLI4QQfTLHnnZ_j-7sjc1g93_vuQe2alJJu1Vs2KfrNnpAdlqctwPyVuPGlT1x0gZXaB4K8JDgUcj6IaiiuikpIX22Xm06jJNgd5SNRlTTCqlGL-lmE01rkRGqLNeIrQ4Ii-Du-f-fVB3WQh0EicliuuCQ82ZE8I6bkSapXmqmcpVluvQukRZgXbf8ozpzBhtMuOAZCiW60jkETsmrelsak8I1RE3MXASmBfg1jggo1FkWeyUES4TcdomUfOvpa4lyLETxrv0rghPZYWPBHykx0dGbXK9fGZeCXCsHH2LEC5Honi2vzBbjGW9FqWDDw9RfgGr_ICgCqZiFcaqyx2Ax3SbnDfoynpFF_IH2tPVt8_Idow9gn3KyzlplYtPe0E29Vc5KRaXfoJ-A6EP7N0 priority: 102 providerName: ProQuest |
| Title | A dimension reduction assisted credit scoring method for big data with categorical features |
| URI | https://www.proquest.com/docview/3151985699 https://doaj.org/article/fc4201999142450893b2b02b58f9853c |
| Volume | 11 |
| WOSCitedRecordID | wos001390580700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: 7WY dateStart: 20190601 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: M0C dateStart: 20190601 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: BENPR dateStart: 20190601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: PIMPY dateStart: 20190601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: RSV dateStart: 20150101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IV7EJ66uSw7epNiXTXJUURTcZRGfeAjNSxZkle3q73cm7S4rgl689JCmtHyZ5JtJJ98AHNCplJhbFyH5YoDi8hKnVJlFRuZaCC3LIkgK3V_zXk88Psr-TKkvygmr5YFr4I68yZGjyI2hf3Qx0qtOdZzqY-ElUo2h1TfmciaYojUYwxqB3DM5JSOKo4qkvPIIKSmiYxEySr4xURDs_7EeB5K5WIPVxjtkJ_VXrcOcG27A8iQ5fROeT5glOX7a4mIjUl0lXBk6wDRalpH852DMKhPS6lhdHpqhX8r04IVRNiijjVdGaVAvtToI8y5oe1ZbcHdxfnt2GTXlESKEJB-TKi5GwiLzUjovrCx4URYm06XmpYmdz7WTRNhO8Mxwa43l1qN3oLPSJLJMsm1YGL4N3Q4wkwiLKOITBuMRj15kkrgs9dpKz2VatCCZQKVMox1OJSxeVYghRKFqeBXCqwK8KmnB4fSZ91o549fepzQC056keh0a0BZUYwvqL1toQXsyfqqZipXK0KfBu4WUu__xjj1YSakEcMhoacPCePTh9mHJfI4H1agD8_zhqQOLp-e9_k0n2CReu_EZtvWvuv2nL91P4kM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VBdFe-CqoCwV8gFMVNbHTxD5UaClUrbqsOJSqEgc3_lqtVO22m20r_lR_IzNOsggh9dYD18SJ5Ph53owz8wbgA1WlpKXzCZIvBig-r3BLVSKxKjdSGlUVUVLoZFiORvL0VH1fgduuFobSKjubGA21m1k6I98WSE1K7hRKfbq4TKhrFP1d7VpoNLA48r9uMGSrdw-_4Pp-5Hz_6_HeQdJ2FUhszvMFicliAClFUMoH6VRRFlVhhalMWdnUh9x4RTznZSls6Zx1pQtIqkZUNlNVJvC9D-BhnuP2oFTBdG95poPBlETG62pzZLFdk4BYniARJlSMoZLsL_6LbQL-YYFIbftP_7eP8gyetE40GzSofw4rfvoCHnc5_Ovwc8AcdS2gk0A2J3Fagh_DOIFA7RippE4WrLYx-5A1XbQZuu_MTMaMkmYZnU8zyhYbNyIqLPgogVq_hB_3MrVX0JvOpn4DmM2k4-hzIe4xbAvobGeZFzwYp0KpeNGHrFtbbVuJder0ca5jqCUL3eBBIx50xIPO-rC1fOaiERi5c_RngsxyJImDxwuz-Vi3tkYHnHhK8hJUxYgOuBKGm5SbHRkQLML2YbNDk24tVq3_QOn13bffw-rB8behHh6Ojt7AGqd-yDG9ZxN6i_mVfwuP7PViUs_fxc3B4Oy-gfcbkn1MgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dimension+reduction+assisted+credit+scoring+method+for+big+data+with+categorical+features&rft.jtitle=Financial+innovation+%28Heidelberg%29&rft.au=Miljkovic%2C+Tatjana&rft.au=Wang%2C+Pei&rft.date=2025-12-01&rft.issn=2199-4730&rft.eissn=2199-4730&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs40854-024-00689-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40854_024_00689_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4730&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4730&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4730&client=summon |