A dimension reduction assisted credit scoring method for big data with categorical features

In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk expo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Financial innovation (Heidelberg) Ročník 11; číslo 1; s. 29 - 30
Hlavní autoři: Miljkovic, Tatjana, Wang, Pei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.12.2025
SpringerOpen
Témata:
ISSN:2199-4730, 2199-4730
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure. Despite continuing efforts, the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data. We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction. To contribute to the field of financial innovation, this study proposes a Dimension Reduction Assisted Credit Scoring (DRA-CS) method via distance covariance-based sufficient dimension reduction (DCOV-SDR) in Majorization-Minimization (MM) algorithm. First, in the presence of a large number of variables, the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction. Second, when the DRA-CS method is employed with logistic regression, it outperforms existing methods based on different variable selection techniques. This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods.
AbstractList In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure. Despite continuing efforts, the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data. We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction. To contribute to the field of financial innovation, this study proposes a Dimension Reduction Assisted Credit Scoring (DRA-CS) method via distance covariance-based sufficient dimension reduction (DCOV-SDR) in Majorization-Minimization (MM) algorithm. First, in the presence of a large number of variables, the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction. Second, when the DRA-CS method is employed with logistic regression, it outperforms existing methods based on different variable selection techniques. This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods.
Abstract In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure. Despite continuing efforts, the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data. We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction. To contribute to the field of financial innovation, this study proposes a Dimension Reduction Assisted Credit Scoring (DRA-CS) method via distance covariance-based sufficient dimension reduction (DCOV-SDR) in Majorization-Minimization (MM) algorithm. First, in the presence of a large number of variables, the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction. Second, when the DRA-CS method is employed with logistic regression, it outperforms existing methods based on different variable selection techniques. This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods.
ArticleNumber 29
Author Wang, Pei
Miljkovic, Tatjana
Author_xml – sequence: 1
  givenname: Tatjana
  orcidid: 0000-0001-5436-9733
  surname: Miljkovic
  fullname: Miljkovic, Tatjana
– sequence: 2
  givenname: Pei
  surname: Wang
  fullname: Wang, Pei
BookMark eNp9UU1rWzEQFCWBuEn-QE6CnF-rj_chHYNJW4Mhl_TUg1hJK0fGfkolmdJ_X9luoeSQw7LLMjM77HwkF3OakZA7zj5xrsbPpWdq6DsmWrFR6Y5_IAvBte76SbKL_-YrclvKljEmGrEX44L8eKA-7nEuMc00oz-4epyglFgqeuraLlZaXMpx3tA91pfkaUiZ2rihHirQX7G-UAcVNw3jYEcDQj1kLDfkMsCu4O3ffk2-f3l8Xn7r1k9fV8uHded60ddOqgmtVDJojUF5PU4jjE5asBM4hqG3qIXoGapJusl75ycfNGdWguMauLwmq7OuT7A1rznuIf82CaI5LVLeGMg1uh2a0E6y9g3N2-mBKS2tsEzYQQWtBuma1v1Z6zWnnwcs1WzTIc_NvpF84A00at1Q6oxyOZWSMRgXKxw_VzPEneHMHJMx52RMS8ackjFHs-IN9Z_hd0h_AFFskr4
CitedBy_id crossref_primary_10_3390_jrfm18080442
crossref_primary_10_1016_j_aej_2025_05_043
crossref_primary_10_1016_j_dajour_2025_100626
Cites_doi 10.1109/TSP.2016.2601299
10.1093/sysbio/syv019
10.1080/10618600.2015.1026601
10.1080/10920277.2021.1911668
10.1109/LSP.2014.2337276
10.1016/j.ejor.2004.03.031
10.1002/9780470171431
10.1002/9780470979174
10.1016/j.eswa.2011.11.011
10.1137/1.9780898719468
10.1080/01621459.1991.10475035
10.1016/j.csda.2020.107089
10.1214/009053607000000505
10.1016/j.techsoc.2020.101413
10.1198/016214506000000735
10.1198/016214503000000927
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.jbankfin.2010.06.001
10.1080/14786440109462720
10.1080/03610918.2023.2234677
10.1021/ie990110i
10.1214/aos/1176348109
10.1016/j.ejor.2021.03.006
10.1016/j.ejor.2021.06.053
10.1016/j.jfds.2022.07.002
10.1057/palgrave.jors.2601976
10.1016/j.csda.2008.03.003
10.1111/jofi.12044
10.1186/s40854-021-00305-6
10.1111/j.1467-985X.1997.00078.x
10.1002/9780470316931
10.1080/00401706.2017.1321583
10.1007/s11634-022-00524-4
10.1016/j.jmva.2013.07.003
10.1016/j.csda.2021.107285
10.1111/j.1467-9868.2005.00503.x
10.1080/00036846.2014.962222
10.1080/08839519508945477
10.1186/s40854-021-00295-5
10.3390/math9070746
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Dec 2025
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s40854-024-00689-1
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
Business Premium Collection (Proquest)
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2199-4730
EndPage 30
ExternalDocumentID oai_doaj_org_article_fc4201999142450893b2b02b58f9853c
10_1186_s40854_024_00689_1
GroupedDBID 0R~
7WY
8FL
AAFWJ
AAKKN
AAYXX
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
AFFHD
AFGXO
AFKRA
AFPKN
AHBYD
AHQJS
AHYZX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BEZIV
BPHCQ
C24
C6C
CCPQU
CITATION
DWQXO
EBS
EBU
FRNLG
GROUPED_DOAJ
IAO
IBB
ITC
K60
K6~
M0C
M~E
OK1
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
3V.
7XB
8FK
AZQEC
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c424t-387eb383f99ef8d9676a6c3bab7ac0ef4be92240e873c7ddcd7df910b3ac19a13
IEDL.DBID M0C
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001390580700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4730
IngestDate Fri Oct 03 12:52:46 EDT 2025
Sat Oct 11 13:40:41 EDT 2025
Thu Oct 30 07:34:11 EDT 2025
Tue Nov 18 22:18:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-387eb383f99ef8d9676a6c3bab7ac0ef4be92240e873c7ddcd7df910b3ac19a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5436-9733
OpenAccessLink https://www.proquest.com/docview/3151985699?pq-origsite=%requestingapplication%
PQID 3151985699
PQPubID 2044336
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_fc4201999142450893b2b02b58f9853c
proquest_journals_3151985699
crossref_citationtrail_10_1186_s40854_024_00689_1
crossref_primary_10_1186_s40854_024_00689_1
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Financial innovation (Heidelberg)
PublicationYear 2025
Publisher Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature B.V
– name: SpringerOpen
References E Dumitrescu (689_CR6) 2022; 297
KC Li (689_CR16) 1991; 86
AE Khandani (689_CR13) 2010; 34
689_CR24
R Matignon (689_CR19) 2007
Q Wang (689_CR39) 2008; 52
W Sheng (689_CR27) 2013; 122
Q Wang (689_CR38) 2023; 17
MO Ulfarsson (689_CR34) 2014; 22
Y Sun (689_CR29) 2016; 65
689_CR22
689_CR44
PK Roy (689_CR25) 2021; 7
689_CR7
BR Gunnarsson (689_CR11) 2021; 295
S Sadatrasoul (689_CR26) 2015; 12
N Duan (689_CR5) 1991; 19
S Viaene (689_CR37) 2005; 166
P Giannouli (689_CR9) 2021; 7
P Wang (689_CR41) 2021; 163
R Wu (689_CR43) 2021; 155
H Zou (689_CR46) 2006; 101
R Tibshirani (689_CR31) 1996; 58
RD Cook (689_CR3) 1991; 86
L Guiso (689_CR10) 2013; 68
RD King (689_CR14) 1995; 9
A Markov (689_CR18) 2022; 8
J Wang (689_CR40) 2012; 39
EO Ogundimu (689_CR21) 2022; 24
GJ Székely (689_CR30) 2007; 35
S Valle (689_CR36) 1999; 38
H Woo (689_CR42) 2022; 8
DJ Hand (689_CR12) 1997; 160
X Deng (689_CR4) 2023
Y Liu (689_CR17) 2005; 56
H Zou (689_CR47) 2005; 67
RD Cook (689_CR2) 1998
S Tufféry (689_CR33) 2011
SK Trivedi (689_CR32) 2020; 63
K Pearson (689_CR23) 1901; 2
W Sheng (689_CR28) 2016; 25
X Chen (689_CR1) 2018; 60
Z Ye (689_CR45) 2003; 98
J Laborda (689_CR15) 2021; 9
R Emekter (689_CR8) 2015; 47
JC Uyeda (689_CR35) 2015; 64
T Miljkovic (689_CR20) 2021; 25
References_xml – volume: 65
  start-page: 794
  issue: 3
  year: 2016
  ident: 689_CR29
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2601299
– volume: 64
  start-page: 677
  issue: 4
  year: 2015
  ident: 689_CR35
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv019
– volume: 25
  start-page: 91
  issue: 1
  year: 2016
  ident: 689_CR28
  publication-title: J Comput Gr Stat
  doi: 10.1080/10618600.2015.1026601
– volume: 25
  start-page: 562
  issue: 4
  year: 2021
  ident: 689_CR20
  publication-title: North Am Act J
  doi: 10.1080/10920277.2021.1911668
– volume: 22
  start-page: 239
  issue: 2
  year: 2014
  ident: 689_CR34
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2337276
– volume: 166
  start-page: 212
  issue: 1
  year: 2005
  ident: 689_CR37
  publication-title: Euro J Oper Res
  doi: 10.1016/j.ejor.2004.03.031
– volume-title: Data mining using SAS enterprise miner
  year: 2007
  ident: 689_CR19
  doi: 10.1002/9780470171431
– volume-title: Data mining and statistics for decision making
  year: 2011
  ident: 689_CR33
  doi: 10.1002/9780470979174
– volume: 39
  start-page: 6123
  issue: 6
  year: 2012
  ident: 689_CR40
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2011.11.011
– ident: 689_CR22
  doi: 10.1137/1.9780898719468
– volume: 86
  start-page: 316
  issue: 414
  year: 1991
  ident: 689_CR16
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1991.10475035
– volume: 155
  start-page: 107089
  year: 2021
  ident: 689_CR43
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2020.107089
– volume: 35
  start-page: 2769
  issue: 6
  year: 2007
  ident: 689_CR30
  publication-title: Ann Stat
  doi: 10.1214/009053607000000505
– volume: 63
  start-page: 101413
  year: 2020
  ident: 689_CR32
  publication-title: Technol Soc
  doi: 10.1016/j.techsoc.2020.101413
– volume: 101
  start-page: 1418
  year: 2006
  ident: 689_CR46
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 98
  start-page: 968
  issue: 464
  year: 2003
  ident: 689_CR45
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214503000000927
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 689_CR31
  publication-title: J R Stat Soc Ser B: Stat Method
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 34
  start-page: 2767
  issue: 11
  year: 2010
  ident: 689_CR13
  publication-title: J Bank Finance
  doi: 10.1016/j.jbankfin.2010.06.001
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 689_CR23
  publication-title: London, Edinburgh, and Dublin Phil Magaz J Sci
  doi: 10.1080/14786440109462720
– volume: 12
  start-page: 138
  issue: 2
  year: 2015
  ident: 689_CR26
  publication-title: Int Arab J Info Technol (IAJIT)
– year: 2023
  ident: 689_CR4
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2023.2234677
– volume: 38
  start-page: 4389
  issue: 11
  year: 1999
  ident: 689_CR36
  publication-title: Industr Eng Chem Res
  doi: 10.1021/ie990110i
– volume: 19
  start-page: 505
  year: 1991
  ident: 689_CR5
  publication-title: Ann Stat
  doi: 10.1214/aos/1176348109
– ident: 689_CR44
– volume: 295
  start-page: 292
  issue: 1
  year: 2021
  ident: 689_CR11
  publication-title: Euro J Oper Res
  doi: 10.1016/j.ejor.2021.03.006
– volume: 297
  start-page: 1178
  issue: 3
  year: 2022
  ident: 689_CR6
  publication-title: Euro J Oper Res
  doi: 10.1016/j.ejor.2021.06.053
– volume: 8
  start-page: 180
  year: 2022
  ident: 689_CR18
  publication-title: J Finance Data Sci
  doi: 10.1016/j.jfds.2022.07.002
– volume: 24
  start-page: 147
  year: 2022
  ident: 689_CR21
  publication-title: Stat Model
– volume: 7
  start-page: 545
  issue: 4
  year: 2021
  ident: 689_CR9
  publication-title: Commun Stat: Case Stud Data Anal Appl
– volume: 56
  start-page: 1099
  issue: 9
  year: 2005
  ident: 689_CR17
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2601976
– volume: 52
  start-page: 4512
  issue: 9
  year: 2008
  ident: 689_CR39
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.03.003
– volume: 68
  start-page: 1473
  issue: 4
  year: 2013
  ident: 689_CR10
  publication-title: J Finance
  doi: 10.1111/jofi.12044
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  ident: 689_CR42
  publication-title: Financ Innov
  doi: 10.1186/s40854-021-00305-6
– volume: 160
  start-page: 523
  issue: 3
  year: 1997
  ident: 689_CR12
  publication-title: J R Stat Soc: Ser A (Stat Soc)
  doi: 10.1111/j.1467-985X.1997.00078.x
– volume-title: Regression graphics: ideas for studying regressions through graphics
  year: 1998
  ident: 689_CR2
  doi: 10.1002/9780470316931
– volume: 60
  start-page: 161
  issue: 2
  year: 2018
  ident: 689_CR1
  publication-title: Technometrics
  doi: 10.1080/00401706.2017.1321583
– volume: 17
  start-page: 777
  issue: 3
  year: 2023
  ident: 689_CR38
  publication-title: Adv Data Anal Class
  doi: 10.1007/s11634-022-00524-4
– volume: 122
  start-page: 148
  year: 2013
  ident: 689_CR27
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2013.07.003
– volume: 163
  start-page: 107285
  year: 2021
  ident: 689_CR41
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2021.107285
– ident: 689_CR7
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 689_CR47
  publication-title: J R Stat Soc Ser B: Stat Method
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 47
  start-page: 54
  issue: 1
  year: 2015
  ident: 689_CR8
  publication-title: Appl Econ
  doi: 10.1080/00036846.2014.962222
– volume: 9
  start-page: 289
  issue: 3
  year: 1995
  ident: 689_CR14
  publication-title: Appl Artif Intell Int J
  doi: 10.1080/08839519508945477
– ident: 689_CR24
– volume: 7
  start-page: 1
  year: 2021
  ident: 689_CR25
  publication-title: Financ Innov
  doi: 10.1186/s40854-021-00295-5
– volume: 86
  start-page: 328
  issue: 414
  year: 1991
  ident: 689_CR3
  publication-title: J Am Stat Assoc
– volume: 9
  start-page: 746
  issue: 7
  year: 2021
  ident: 689_CR15
  publication-title: Mathematics
  doi: 10.3390/math9070746
SSID ssj0002118426
Score 2.3306913
Snippet In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The evidence...
Abstract In the past decade, financial institutions have invested significant efforts in the development of accurate analytical credit scoring models. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 29
SubjectTerms Accuracy
Big Data
Credit scoring
Dimension reduction
Financial institutions
Logistic regression
Majorization-minimization algorithm
Methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iIl7ET1y_yMGbBNNttskcV1E8iQcFwUPIpyzIKtvV3-9M2hVF0IvXNqXlZZr3pp28YezEjYwBN4wiVtIJpVwUIKUXLmuSy6OgnCzNJvTNjXl4gNsvrb6oJqyzB-6AO8tBIUeRjKF_dBLp1Q-9HPqRyYBUE2j1lRq-JFO0BmNaY5B7FrtkTHPWkpWXEkhJgrZFgKi-MVEx7P-xHheSudpg67065OPuqTbZUppusdVFcfo2exzzSHb89ImLz8h1lXDlKIBptiIn-8_JnLehlNXxrj00R13K_eSJUzUopw-vnMqgnjp3EJ5T8fZsd9j91eXdxbXo2yMIhETNyRUXM2FTZ4CUTYRGN64JtXdeuyBTVj4BEXYyug46xhB1zKgOfO1CBa6qd9ny9GWa9hhvpI91NiPUd0FFDc5hWgcmeZUgQjIDVi2gsqH3DqcWFs-25BCmsR28FuG1BV5bDdjp5zWvnXPGr6PPaQY-R5LrdTmAsWD7WLB_xcKAHS7mz_avYmtr1DR4tgHY_497HLC1IbUALhUth2x5PntLR2wlvM8n7ey4ROEHEzTdyA
  priority: 102
  providerName: Directory of Open Access Journals
Title A dimension reduction assisted credit scoring method for big data with categorical features
URI https://www.proquest.com/docview/3151985699
https://doaj.org/article/fc4201999142450893b2b02b58f9853c
Volume 11
WOSCitedRecordID wos001390580700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: 7WY
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: M0C
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: BENPR
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: PIMPY
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: RSV
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RFiEufCMWysoHbsiqEzuxfUJt1QoOXa0QiFYcLH-uVqp2y2bb34_HSRYhpF64Oo6U5NmeN5OZNwAfbKOUtnWgoWKWCmED1Yw5apNEutx4YVlpNiFnM3V5qedDwK0b0irHM7Ec1GHtMUZ-xLNp0qpptf5084ti1yj8uzq00NiDA2Q2mNJ3wU53MZbs3KhsgcZaGdUedSjoJWg2TBSLIzSt_rJHRbb_n1O5mJrzp__7kM_gyUAyyXG_Kp7Dg7h6AY_GHPeX8POYBFT1x0gZ2aB4K8JDMo9G0ANBFdHllnS-ZOeRvss0yfSWuOWCYFIpwfgtwWyqRS8yQlIsEqHdK_h-fvbt9DMduixQL2qxRXHd7FArnrSOSQXdyta2njvrpPUsJuGiRrsfleRehuCDDCmTDMetr7St-GvYX61X8Q2QlrnAk2oyTfQiSG1t9g61ik5EHXRUE6jGb238IEGOnTCuTXFFVGt6fEzGxxR8TDWBj7t7bnoBjntnnyCEu5konl0G1puFGfaiSfnFGcovYJVfJqiau9qx2jUqZfC4n8DhiK4ZdnRn_kD79v7L7-BxjT2CS8rLIexvN7fxPTz0d9tlt5nCnvxxNYWDk7PZ_Ou0RACmZdHmsfmXi_nVb5aV8uA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBUE3PIs6UMALWCGrTuwk9qJCpVC1ahmxKFIlFsbP0UhopkymRfwU31hfJxmEkLrrgm3iRHJ8fB_OvecAvDaVlMqUnvqCGSqE8VQxZqmJDYbLlROGZbGJZjyWZ2fq8xr8HnphsKxysInZUPu5wzPyHZ5ck5JVrdS78x8UVaPw7-ogodHB4jj8-plStnb36ENa3zdlefDxdP-Q9qoC1IlSLJFMNiWQkkelQpRe1U1tasetsY1xLERhg0I_F2TDXeO9842PyalablyhTMHTe2_BbSHS9sBSQba_OtNJyZRMHm_ozZH1TosEYoImR0ixGUPR4i__l2UC_vEC2bUdPPjfPspDuN8H0WSvQ_0jWAuzx3B3qOF_Al_3iEfVAjwJJAskp0X4kZQnIKg9QZbU6ZK0Llcfkk5Fm6TwndjphGDRLMHzaYLVYpOORIXEkClQ2034ciNTewrrs_ksbAGpmfU8yiqFwU74RhmTsl8lgxVBeRXkCIphbbXrKdZR6eO7zqmWrHWHB53woDMedDGCt6tnzjuCkWtHv0fIrEYiOXi-MF9MdG9rdEwTZ0gvgV2MKQBX3JaWlbaSMYGFuxFsD2jSvcVq9R8oPbv-9iu4d3j66USfHI2Pn8NGiXrIubxnG9aXi4vwAu64y-W0XbzMm4PAt5sG3hX15E07
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dimension+reduction+assisted+credit+scoring+method+for+big+data+with+categorical+features&rft.jtitle=Financial+innovation+%28Heidelberg%29&rft.au=Miljkovic%2C+Tatjana&rft.au=Wang%2C+Pei&rft.date=2025-12-01&rft.issn=2199-4730&rft.eissn=2199-4730&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs40854-024-00689-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40854_024_00689_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4730&client=summon