Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow

Using a stability criterion due to Kröncke, we show, providing n ≠ 2 k , the Kähler–Einstein metric on the Grassmannian G r k ( C n ) of complex k -planes in an n -dimensional complex vector space is dynamically unstable as a fixed point of the Ricci flow. This generalises the recent results of Krön...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of geometric analysis Ročník 31; číslo 6; s. 6195 - 6218
Hlavní autoři: Hall, Stuart James, Murphy, Thomas, Waldron, James
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2021
Springer Nature B.V
Témata:
ISSN:1050-6926, 1559-002X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using a stability criterion due to Kröncke, we show, providing n ≠ 2 k , the Kähler–Einstein metric on the Grassmannian G r k ( C n ) of complex k -planes in an n -dimensional complex vector space is dynamically unstable as a fixed point of the Ricci flow. This generalises the recent results of Kröncke and Knopf–Sesum on the instability of the Fubini–Study metric on CP n for n > 1 . The key to the proof is using the description of Grassmannians as certain coadjoint orbits of SU ( n ). We are also able to prove that Kröncke’s method will not work on any of the other compact, irreducible, Hermitian symmetric spaces.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-020-00524-w