Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow
Using a stability criterion due to Kröncke, we show, providing n ≠ 2 k , the Kähler–Einstein metric on the Grassmannian G r k ( C n ) of complex k -planes in an n -dimensional complex vector space is dynamically unstable as a fixed point of the Ricci flow. This generalises the recent results of Krön...
Uloženo v:
| Vydáno v: | The Journal of geometric analysis Ročník 31; číslo 6; s. 6195 - 6218 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1050-6926, 1559-002X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Using a stability criterion due to Kröncke, we show, providing
n
≠
2
k
, the Kähler–Einstein metric on the Grassmannian
G
r
k
(
C
n
)
of complex
k
-planes in an
n
-dimensional complex vector space is dynamically unstable as a fixed point of the Ricci flow. This generalises the recent results of Kröncke and Knopf–Sesum on the instability of the Fubini–Study metric on
CP
n
for
n
>
1
. The key to the proof is using the description of Grassmannians as certain coadjoint orbits of
SU
(
n
). We are also able to prove that Kröncke’s method will not work on any of the other compact, irreducible, Hermitian symmetric spaces. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-020-00524-w |