Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels
•A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is defined.•The pressure drop and thermal resistance can be both reduced in DOA.•The best hybrid design with geometrical parameters of (λ = 1, β...
Gespeichert in:
| Veröffentlicht in: | Applied thermal engineering Jg. 159; S. 113896 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
01.08.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 1359-4311, 1873-5606 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is defined.•The pressure drop and thermal resistance can be both reduced in DOA.•The best hybrid design with geometrical parameters of (λ = 1, β = 1) is obtained.
The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are numerically studied. Through the relationship between the total thermal resistance ratio (Rt/Rt0) and pressure drop ratio (ΔP/ΔP0), we define a region named Design Optimization Area (DOA), where the pressure drop ΔP and the total thermal resistance Rt can be both reduced due to the secondary channels. The numerical results show that the best heat sink can reduce ΔP by 1.91%, and simultaneously decrease Rt by 19.15% compared to the original MMC heat sink at Re = 295. In addition, the effects of secondary channel on ΔP are dependent on both the geometrical parameters and Reynolds numbers. On the one hand, it can reduce the pressure loss at small Reynolds numbers for most heat sinks. However, it can also increase the pressure loss at high Reynolds numbers for most heat sinks. As Re increases, the ratio (Rt/Rt0) becomes smaller and (ΔP/ΔP0) becomes larger, indicating a better thermal performance and a worse hydraulic performance. The secondary flow field analyses visually show the hydraulic and thermal performance enhancements due to thermal boundary layer re-development and flow mixing. |
|---|---|
| AbstractList | •A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is defined.•The pressure drop and thermal resistance can be both reduced in DOA.•The best hybrid design with geometrical parameters of (λ = 1, β = 1) is obtained.
The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are numerically studied. Through the relationship between the total thermal resistance ratio (Rt/Rt0) and pressure drop ratio (ΔP/ΔP0), we define a region named Design Optimization Area (DOA), where the pressure drop ΔP and the total thermal resistance Rt can be both reduced due to the secondary channels. The numerical results show that the best heat sink can reduce ΔP by 1.91%, and simultaneously decrease Rt by 19.15% compared to the original MMC heat sink at Re = 295. In addition, the effects of secondary channel on ΔP are dependent on both the geometrical parameters and Reynolds numbers. On the one hand, it can reduce the pressure loss at small Reynolds numbers for most heat sinks. However, it can also increase the pressure loss at high Reynolds numbers for most heat sinks. As Re increases, the ratio (Rt/Rt0) becomes smaller and (ΔP/ΔP0) becomes larger, indicating a better thermal performance and a worse hydraulic performance. The secondary flow field analyses visually show the hydraulic and thermal performance enhancements due to thermal boundary layer re-development and flow mixing. The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are numerically studied. Through the relationship between the total thermal resistance ratio (Rt/Rt0) and pressure drop ratio (ΔP/ΔP0), we define a region named Design Optimization Area (DOA), where the pressure drop ΔP and the total thermal resistance Rt can be both reduced due to the secondary channels. The numerical results show that the best heat sink can reduce ΔP by 1.91%, and simultaneously decrease Rt by 19.15% compared to the original MMC heat sink at Re = 295. In addition, the effects of secondary channel on ΔP are dependent on both the geometrical parameters and Reynolds numbers. On the one hand, it can reduce the pressure loss at small Reynolds numbers for most heat sinks. However, it can also increase the pressure loss at high Reynolds numbers for most heat sinks. As Re increases, the ratio (Rt/Rt0) becomes smaller and (ΔP/ΔP0) becomes larger, indicating a better thermal performance and a worse hydraulic performance. The secondary flow field analyses visually show the hydraulic and thermal performance enhancements due to thermal boundary layer re-development and flow mixing. |
| ArticleNumber | 113896 |
| Author | Cao, Bing-Yang Yang, Min |
| Author_xml | – sequence: 1 givenname: Min surname: Yang fullname: Yang, Min – sequence: 2 givenname: Bing-Yang surname: Cao fullname: Cao, Bing-Yang email: caoby@tsinghua.edu.cn |
| BookMark | eNqNkE9vFCEYh4mpiW3tdyDR66z8G2Ym8aKNVZNGL-2ZUHjZYcPACoxmz_3iZd1e9NQTEN7f8-b3XKCzmCIg9J6SDSVUftht9H4f6gx50QHidsMInTaU8nGSr9A5HQfe9ZLIs3bn_dQJTukbdFHKjhDKxkGco8cf6wLZGx1wqas94BSxC-kP1tHiGXTFNetYHGScHNZ4Pjxkb_HiTU5m1jFCwCal4OMWFzPDAngtx8eio3cpWKxzA2zbR6x_oQVMilbnA37Ol7fotdOhwNXzeYnub77cXX_rbn9-_X796bYzgonaMdBUTKMAA9A7SnSvR86EpY4-CG77vheOMyIn40hrzqTTAwchB2eokFzwS_TuxN3n9GuFUtUurTm2lYoxOQyEj2Pfpj6fplrDUjI4ZXzV1afYTPigKFFH-Wqn_pWvjvLVSX6DfPwPss9-aaVfGr85xZsd-O0hq2I8RAPWZzBV2eRfBnoCztSvQg |
| CitedBy_id | crossref_primary_10_2298_TSCI201111196F crossref_primary_10_1016_j_ijheatmasstransfer_2019_118518 crossref_primary_10_1177_09544089221142436 crossref_primary_10_1016_j_applthermaleng_2022_118550 crossref_primary_10_1016_j_applthermaleng_2025_126014 crossref_primary_10_1080_01457632_2023_2301156 crossref_primary_10_1016_j_icheatmasstransfer_2025_109050 crossref_primary_10_1016_j_applthermaleng_2024_124675 crossref_primary_10_1007_s40430_023_04097_x crossref_primary_10_1016_j_applthermaleng_2025_126297 crossref_primary_10_1007_s10973_021_10589_6 crossref_primary_10_1016_j_applthermaleng_2021_117748 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125019 crossref_primary_10_3390_mi13091420 crossref_primary_10_1016_j_applthermaleng_2021_117510 crossref_primary_10_1016_j_icheatmasstransfer_2024_107678 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124046 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123495 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126049 crossref_primary_10_1016_j_energy_2024_132948 crossref_primary_10_1016_j_ijthermalsci_2021_106902 crossref_primary_10_1016_j_applthermaleng_2025_126309 crossref_primary_10_1177_09544089221127132 crossref_primary_10_1016_j_applthermaleng_2020_115639 crossref_primary_10_1016_j_applthermaleng_2023_121099 crossref_primary_10_1016_j_applthermaleng_2023_121294 crossref_primary_10_1016_j_applthermaleng_2022_118456 crossref_primary_10_1016_j_applthermaleng_2022_119268 crossref_primary_10_1016_j_applthermaleng_2023_121820 crossref_primary_10_1016_j_icheatmasstransfer_2025_108979 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120230 crossref_primary_10_1016_j_applthermaleng_2023_121588 crossref_primary_10_3390_en18030631 crossref_primary_10_1016_j_applthermaleng_2024_124415 crossref_primary_10_1016_j_ijthermalsci_2021_106956 crossref_primary_10_1016_j_applthermaleng_2021_117361 crossref_primary_10_1016_j_rser_2021_110785 crossref_primary_10_3390_en15249474 crossref_primary_10_1016_j_applthermaleng_2024_122672 crossref_primary_10_1016_j_applthermaleng_2020_114974 crossref_primary_10_1108_HFF_08_2021_0523 crossref_primary_10_1016_j_applthermaleng_2023_120134 crossref_primary_10_1016_j_icheatmasstransfer_2025_109117 crossref_primary_10_3390_en18010149 crossref_primary_10_1016_j_applthermaleng_2024_124692 crossref_primary_10_1016_j_icheatmasstransfer_2024_107495 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123356 crossref_primary_10_1063_1_5133105 crossref_primary_10_1016_j_applthermaleng_2022_118129 crossref_primary_10_1016_j_applthermaleng_2021_117490 crossref_primary_10_1016_j_xcrp_2025_102520 crossref_primary_10_3390_en17010127 crossref_primary_10_1007_s12273_023_1012_6 crossref_primary_10_1007_s11708_024_0935_7 crossref_primary_10_1016_j_ijthermalsci_2024_109304 crossref_primary_10_1016_j_tsep_2023_102235 crossref_primary_10_1016_j_tsep_2022_101203 crossref_primary_10_1080_01457632_2021_1919972 crossref_primary_10_1016_j_applthermaleng_2024_123073 crossref_primary_10_1088_1361_648X_adeef2 crossref_primary_10_1016_j_icheatmasstransfer_2024_108032 |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2017.06.103 10.1016/j.applthermaleng.2018.03.069 10.1016/j.ijheatmasstransfer.2010.02.022 10.1109/95.588554 10.1016/j.ijheatmasstransfer.2009.03.069 10.1016/j.ijheatmasstransfer.2014.06.072 10.1016/j.ijheatmasstransfer.2017.05.106 10.1016/j.ijheatmasstransfer.2013.09.067 10.1021/acs.nanolett.7b01620 10.1016/j.ijheatmasstransfer.2014.10.022 10.1115/1.4005126 10.1039/C5RA24991K 10.1016/j.ijheatmasstransfer.2015.01.040 10.1016/j.icheatmasstransfer.2010.09.012 10.1109/ECTC.2009.5074053 10.1016/S0017-9310(02)00443-X 10.1016/j.ijthermalsci.2008.12.019 10.1016/j.ijheatmasstransfer.2017.10.015 10.1016/j.applthermaleng.2016.10.047 10.1016/j.applthermaleng.2016.12.089 10.1016/j.ijheatmasstransfer.2008.02.017 10.1016/j.applthermaleng.2017.03.122 10.1016/j.ijheatmasstransfer.2016.02.076 10.1016/j.ijheatmasstransfer.2007.01.019 10.1063/1.1896985 10.1115/1.4033497 10.1016/S0017-9310(01)00337-4 10.1109/EDL.1981.25367 10.1016/j.cplett.2016.09.016 10.1016/j.ijheatmasstransfer.2015.07.034 10.1016/j.applthermaleng.2008.02.002 10.1016/j.applthermaleng.2013.04.026 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1016/j.applthermaleng.2019.113896 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5606 |
| ExternalDocumentID | 10_1016_j_applthermaleng_2019_113896 S1359431118376154 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c424t-2ea14984ecee5f10a5a8324d1f1b43d5554f32069cf087326fa73e467fc146343 |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475999100060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sun Nov 30 05:08:39 EST 2025 Sat Nov 29 06:59:55 EST 2025 Tue Nov 18 22:18:57 EST 2025 Fri Feb 23 02:33:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid design Secondary channels Microchannel heat sink Manifold arrangement Hydraulic and thermal performance enhancements Design Optimization Area (DOA) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c424t-2ea14984ecee5f10a5a8324d1f1b43d5554f32069cf087326fa73e467fc146343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2267703885 |
| PQPubID | 2045278 |
| ParticipantIDs | proquest_journals_2267703885 crossref_citationtrail_10_1016_j_applthermaleng_2019_113896 crossref_primary_10_1016_j_applthermaleng_2019_113896 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_113896 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 20190801 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Chein, Chen (b0080) 2009; 48 Drummond, Back, Sinanis, Janes, Peroulis, Weibel, Garimella (b0165) 2018; 117 Li, Peterson (b0015) 2007; 50 Leng, Wang, Wang, Yan (b0125) 2015; 84 Yang, Li, Yang, Li (b0110) 2017; 120 Li, Zhang, Bin Li, Li, Li, Qian, Joo (b0160) 2017; 115 Yang, Jin, Wang, Ding, Wang (b0115) 2017; 113 E. Kermani, S. Dessiatoun, A. Shooshtari, M.M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, Electron. Components Technol. Conf. 2009. ECTC 2009. 59th. (2009) pp. 453–459. Xie, Shen, Wang (b0190) 2015; 90 Chai, Xia, Wang (b0195) 2016; 97 Qu, Mudawar (b0040) 2002; 45 Copelandl, Behniaz, Nakayamal (b0135) 1997 Kandlikar, Schmitt, Carrano, Taylor (b0045) 2005; 17 Yang, Cao, Wang, Yun, Chen (b0055) 2016; 662 Mohammed, Gunnasegaran, Shuaib (b0095) 2011; 38 Sarangi, Bodla, Garimella, Murthy (b0150) 2014; 69 Zhu, Antao, Chu, Chen, Hendricks, Zhang, Wang (b0050) 2016; 138 Yang, Sen Peng (b0100) 2008; 51 Manikanda Kumaran, Kumaraguruparan, Sornakumar (b0085) 2013; 58 Ghani, Sidik, Mamat, Najafi, Ken, Asako, Japar (b0185) 2017; 114 Tuckerman, Pease (b0070) 1981 Zhang, Pinjala, Poi-Siong (b0035) 2003 Ryu, Choi, Kim (b0140) 2003; 46 Kandlikar (b0075) 2012; 134 Sui, Teo, Lee, Chew, Shu (b0090) 2010; 53 Raja Kuppusamy, Saidur, Ghazali, Mohammed (b0180) 2014; 78 Arie, Shooshtari, Dessiatoun, Al-Hajri, Ohadi (b0155) 2015; 81 Guo (b0010) 2018; 1 Lee, Lee, Chou (b0175) 2009 Li, Alibakhshi, Zhao, Duan (b0065) 2017; 17 Liu, Chen, Chian (b0020) 2006 Cao, Yang, Hu (b0060) 2016; 6 Zhou, Zhou, Qiu, Yu, Chu (b0120) 2018; 137 G.M.H. and J.E. Eninger, Micro-channel heat exchanger optimization, Semicond. Therm. Meas. Manag. Symp. 1991. SEMI-THERM VII. Proceedings., Seventh Annu. IEEE. IEEE. (1991) pp. 59–63. Steinke, Kandlikar (b0170) 2004 Xie, Liu, He, Tao (b0030) 2009; 29 Yang, Tan, Ding, Liu (b0025) 2017; 117 Ndao, Peles, Jensen (b0105) 2009; 52 Chu, Yurovchak, Chao, Creamer (b0005) 2013 Raja Kuppusamy (10.1016/j.applthermaleng.2019.113896_b0180) 2014; 78 Ndao (10.1016/j.applthermaleng.2019.113896_b0105) 2009; 52 Sarangi (10.1016/j.applthermaleng.2019.113896_b0150) 2014; 69 Cao (10.1016/j.applthermaleng.2019.113896_b0060) 2016; 6 Chein (10.1016/j.applthermaleng.2019.113896_b0080) 2009; 48 Leng (10.1016/j.applthermaleng.2019.113896_b0125) 2015; 84 Manikanda Kumaran (10.1016/j.applthermaleng.2019.113896_b0085) 2013; 58 Zhu (10.1016/j.applthermaleng.2019.113896_b0050) 2016; 138 Zhou (10.1016/j.applthermaleng.2019.113896_b0120) 2018; 137 Yang (10.1016/j.applthermaleng.2019.113896_b0100) 2008; 51 Mohammed (10.1016/j.applthermaleng.2019.113896_b0095) 2011; 38 Arie (10.1016/j.applthermaleng.2019.113896_b0155) 2015; 81 Chai (10.1016/j.applthermaleng.2019.113896_b0195) 2016; 97 Kandlikar (10.1016/j.applthermaleng.2019.113896_b0045) 2005; 17 Lee (10.1016/j.applthermaleng.2019.113896_b0175) 2009 Guo (10.1016/j.applthermaleng.2019.113896_b0010) 2018; 1 Kandlikar (10.1016/j.applthermaleng.2019.113896_b0075) 2012; 134 Ghani (10.1016/j.applthermaleng.2019.113896_b0185) 2017; 114 10.1016/j.applthermaleng.2019.113896_b0145 Xie (10.1016/j.applthermaleng.2019.113896_b0190) 2015; 90 Drummond (10.1016/j.applthermaleng.2019.113896_b0165) 2018; 117 Qu (10.1016/j.applthermaleng.2019.113896_b0040) 2002; 45 10.1016/j.applthermaleng.2019.113896_b0130 Yang (10.1016/j.applthermaleng.2019.113896_b0055) 2016; 662 Tuckerman (10.1016/j.applthermaleng.2019.113896_b0070) 1981 Steinke (10.1016/j.applthermaleng.2019.113896_b0170) 2004 Li (10.1016/j.applthermaleng.2019.113896_b0015) 2007; 50 Ryu (10.1016/j.applthermaleng.2019.113896_b0140) 2003; 46 Liu (10.1016/j.applthermaleng.2019.113896_b0020) 2006 Xie (10.1016/j.applthermaleng.2019.113896_b0030) 2009; 29 Copelandl (10.1016/j.applthermaleng.2019.113896_b0135) 1997 Yang (10.1016/j.applthermaleng.2019.113896_b0025) 2017; 117 Yang (10.1016/j.applthermaleng.2019.113896_b0115) 2017; 113 Li (10.1016/j.applthermaleng.2019.113896_b0160) 2017; 115 Zhang (10.1016/j.applthermaleng.2019.113896_b0035) 2003 Yang (10.1016/j.applthermaleng.2019.113896_b0110) 2017; 120 Sui (10.1016/j.applthermaleng.2019.113896_b0090) 2010; 53 Chu (10.1016/j.applthermaleng.2019.113896_b0005) 2013 Li (10.1016/j.applthermaleng.2019.113896_b0065) 2017; 17 |
| References_xml | – volume: 38 start-page: 63 year: 2011 end-page: 68 ident: b0095 article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink publication-title: Int. Commun. Heat Mass Transf. – volume: 6 start-page: 7553 year: 2016 end-page: 7559 ident: b0060 article-title: Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling publication-title: RSC. Adv. – volume: 114 start-page: 640 year: 2017 end-page: 655 ident: b0185 article-title: Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels publication-title: Int. J. Heat Mass Transf. – reference: E. Kermani, S. Dessiatoun, A. Shooshtari, M.M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, Electron. Components Technol. Conf. 2009. ECTC 2009. 59th. (2009) pp. 453–459. – volume: 1 start-page: 4 year: 2018 end-page: 15 ident: b0010 article-title: Energy-mass duality of heat and its applications publication-title: ES Energy Environ. – volume: 51 start-page: 4788 year: 2008 end-page: 4796 ident: b0100 article-title: Numerical study of pin-fin heat sink with un-uniform fin height design publication-title: Int. J. Heat Mass Transf. – year: 1997 ident: b0135 article-title: Manifold Microchannel eat Sinks: Ikothermial Analysis publication-title: IEEE Transac. Comp., Packag., Manuf. Technol.: Part A – volume: 137 start-page: 616 year: 2018 end-page: 631 ident: b0120 article-title: Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger publication-title: Appl. Therm. Eng. – start-page: 6 year: 2013 end-page: 9 ident: b0005 article-title: Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process publication-title: Tech. Dig. – IEEE Compd. Semicond. Integr. Circuit Symp. CSIC. – volume: 134 start-page: 034001 year: 2012 ident: b0075 article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review publication-title: J. Heat Transf. – volume: 45 start-page: 2549 year: 2002 end-page: 2565 ident: b0040 article-title: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 69 start-page: 92 year: 2014 end-page: 105 ident: b0150 article-title: Manifold microchannel heat sink design using optimization under uncertainty publication-title: Int. J. Heat Mass Transf. – start-page: 6 year: 2006 end-page: 10 ident: b0020 article-title: Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler publication-title: Proc. of 7th International Conference on Electronics Packaging Technology – volume: 662 start-page: 137 year: 2016 end-page: 140 ident: b0055 article-title: Experimental study on capillary filling in nanochannels publication-title: Chem. Phys. Lett. – volume: 17 year: 2005 ident: b0045 article-title: Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels publication-title: Phys. Fluids. – volume: 53 start-page: 2760 year: 2010 end-page: 2772 ident: b0090 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. – volume: 120 start-page: 289 year: 2017 end-page: 297 ident: b0110 article-title: Uniform design for the parameters optimization of pin-fins channel heat sink publication-title: Appl. Therm. Eng. – volume: 117 start-page: 319 year: 2018 end-page: 330 ident: b0165 article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics publication-title: Int. J. Heat Mass Transf. – start-page: 126 year: 1981 end-page: 129 ident: b0070 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electr. Dev. Lett. EDL-2 – volume: 115 start-page: 1213 year: 2017 end-page: 1225 ident: b0160 article-title: Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink publication-title: Appl. Therm. Eng. – volume: 113 start-page: 366 year: 2017 end-page: 372 ident: b0115 article-title: Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins publication-title: Int. J. Heat Mass Transf. – reference: G.M.H. and J.E. Eninger, Micro-channel heat exchanger optimization, Semicond. Therm. Meas. Manag. Symp. 1991. SEMI-THERM VII. Proceedings., Seventh Annu. IEEE. IEEE. (1991) pp. 59–63. – volume: 78 start-page: 216 year: 2014 end-page: 223 ident: b0180 article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow publication-title: Int. J. Heat Mass Transf. – volume: 81 start-page: 478 year: 2015 end-page: 489 ident: b0155 article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger publication-title: Int. J. Heat Mass Transf. – volume: 97 start-page: 1081 year: 2016 end-page: 1090 ident: b0195 article-title: Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 2: Pressure drop publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 2895 year: 2007 end-page: 2904 ident: b0015 article-title: 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow publication-title: Int. J. Heat Mass Transf. – start-page: 620 year: 2003 end-page: 625 ident: b0035 article-title: Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling publication-title: Electron. Packag. Technol. 2003 5th Conf. (EPTC 2003). – volume: 17 start-page: 4813 year: 2017 end-page: 4819 ident: b0065 article-title: Exploring ultimate water capillary evaporation in nanoscale conduits publication-title: Nano. Lett. – volume: 58 start-page: 205 year: 2013 end-page: 216 ident: b0085 article-title: Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels publication-title: Appl. Therm. Eng. – volume: 138 start-page: 091501 year: 2016 ident: b0050 article-title: Surface structure enhanced microchannel flow boiling publication-title: J. Heat Transf. – start-page: 253 year: 2009 end-page: 260 ident: b0175 article-title: Enhanced microchannel heat sinks using oblique fins publication-title: ASME 2009 InterPack Conf. – volume: 46 start-page: 1553 year: 2003 end-page: 1562 ident: b0140 article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 90 start-page: 948 year: 2015 end-page: 958 ident: b0190 article-title: Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations publication-title: Int. J. Heat Mass Transf. – volume: 48 start-page: 1627 year: 2009 end-page: 1638 ident: b0080 article-title: Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance publication-title: Int. J. Therm. Sci. – volume: 84 start-page: 359 year: 2015 end-page: 369 ident: b0125 article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink publication-title: Int. J. Heat Mass Transf. – start-page: 141 year: 2004 end-page: 148 ident: b0170 article-title: Single-phase heat transfer enhancement techniques in microchannel and minichannel flows, ASME publication-title: Conf. Microchann. Minichann. – volume: 52 start-page: 4317 year: 2009 end-page: 4326 ident: b0105 article-title: Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies publication-title: Int. J. Heat Mass Transf. – volume: 117 start-page: 289 year: 2017 end-page: 296 ident: b0025 article-title: Flow and thermal modeling and optimization of micro/mini-channel heat sink publication-title: Appl. Therm. Eng. – volume: 29 start-page: 64 year: 2009 end-page: 74 ident: b0030 article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink publication-title: Appl. Therm. Eng. – volume: 114 start-page: 640 year: 2017 ident: 10.1016/j.applthermaleng.2019.113896_b0185 article-title: Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.103 – volume: 137 start-page: 616 year: 2018 ident: 10.1016/j.applthermaleng.2019.113896_b0120 article-title: Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.03.069 – volume: 53 start-page: 2760 year: 2010 ident: 10.1016/j.applthermaleng.2019.113896_b0090 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.02.022 – year: 1997 ident: 10.1016/j.applthermaleng.2019.113896_b0135 article-title: Manifold Microchannel eat Sinks: Ikothermial Analysis publication-title: IEEE Transac. Comp., Packag., Manuf. Technol.: Part A doi: 10.1109/95.588554 – volume: 52 start-page: 4317 year: 2009 ident: 10.1016/j.applthermaleng.2019.113896_b0105 article-title: Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.03.069 – volume: 78 start-page: 216 year: 2014 ident: 10.1016/j.applthermaleng.2019.113896_b0180 article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.06.072 – volume: 113 start-page: 366 year: 2017 ident: 10.1016/j.applthermaleng.2019.113896_b0115 article-title: Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.106 – volume: 69 start-page: 92 year: 2014 ident: 10.1016/j.applthermaleng.2019.113896_b0150 article-title: Manifold microchannel heat sink design using optimization under uncertainty publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.09.067 – volume: 17 start-page: 4813 issue: 8 year: 2017 ident: 10.1016/j.applthermaleng.2019.113896_b0065 article-title: Exploring ultimate water capillary evaporation in nanoscale conduits publication-title: Nano. Lett. doi: 10.1021/acs.nanolett.7b01620 – volume: 81 start-page: 478 year: 2015 ident: 10.1016/j.applthermaleng.2019.113896_b0155 article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.10.022 – volume: 134 start-page: 034001 year: 2012 ident: 10.1016/j.applthermaleng.2019.113896_b0075 article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review publication-title: J. Heat Transf. doi: 10.1115/1.4005126 – volume: 6 start-page: 7553 issue: 9 year: 2016 ident: 10.1016/j.applthermaleng.2019.113896_b0060 article-title: Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling publication-title: RSC. Adv. doi: 10.1039/C5RA24991K – volume: 84 start-page: 359 year: 2015 ident: 10.1016/j.applthermaleng.2019.113896_b0125 article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.01.040 – volume: 38 start-page: 63 year: 2011 ident: 10.1016/j.applthermaleng.2019.113896_b0095 article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2010.09.012 – ident: 10.1016/j.applthermaleng.2019.113896_b0145 doi: 10.1109/ECTC.2009.5074053 – volume: 46 start-page: 1553 year: 2003 ident: 10.1016/j.applthermaleng.2019.113896_b0140 article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00443-X – volume: 48 start-page: 1627 year: 2009 ident: 10.1016/j.applthermaleng.2019.113896_b0080 article-title: Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2008.12.019 – volume: 117 start-page: 319 year: 2018 ident: 10.1016/j.applthermaleng.2019.113896_b0165 article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.015 – ident: 10.1016/j.applthermaleng.2019.113896_b0130 – start-page: 6 year: 2006 ident: 10.1016/j.applthermaleng.2019.113896_b0020 article-title: Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler – volume: 115 start-page: 1213 year: 2017 ident: 10.1016/j.applthermaleng.2019.113896_b0160 article-title: Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.047 – volume: 1 start-page: 4 year: 2018 ident: 10.1016/j.applthermaleng.2019.113896_b0010 article-title: Energy-mass duality of heat and its applications publication-title: ES Energy Environ. – volume: 117 start-page: 289 year: 2017 ident: 10.1016/j.applthermaleng.2019.113896_b0025 article-title: Flow and thermal modeling and optimization of micro/mini-channel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.089 – volume: 51 start-page: 4788 year: 2008 ident: 10.1016/j.applthermaleng.2019.113896_b0100 article-title: Numerical study of pin-fin heat sink with un-uniform fin height design publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.02.017 – volume: 120 start-page: 289 year: 2017 ident: 10.1016/j.applthermaleng.2019.113896_b0110 article-title: Uniform design for the parameters optimization of pin-fins channel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.122 – start-page: 253 year: 2009 ident: 10.1016/j.applthermaleng.2019.113896_b0175 article-title: Enhanced microchannel heat sinks using oblique fins – volume: 97 start-page: 1081 year: 2016 ident: 10.1016/j.applthermaleng.2019.113896_b0195 article-title: Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 2: Pressure drop publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.02.076 – start-page: 6 year: 2013 ident: 10.1016/j.applthermaleng.2019.113896_b0005 article-title: Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process publication-title: Tech. Dig. – IEEE Compd. Semicond. Integr. Circuit Symp. CSIC. – volume: 50 start-page: 2895 year: 2007 ident: 10.1016/j.applthermaleng.2019.113896_b0015 article-title: 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.01.019 – volume: 17 year: 2005 ident: 10.1016/j.applthermaleng.2019.113896_b0045 article-title: Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels publication-title: Phys. Fluids. doi: 10.1063/1.1896985 – volume: 138 start-page: 091501 year: 2016 ident: 10.1016/j.applthermaleng.2019.113896_b0050 article-title: Surface structure enhanced microchannel flow boiling publication-title: J. Heat Transf. doi: 10.1115/1.4033497 – volume: 45 start-page: 2549 year: 2002 ident: 10.1016/j.applthermaleng.2019.113896_b0040 article-title: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00337-4 – start-page: 620 year: 2003 ident: 10.1016/j.applthermaleng.2019.113896_b0035 article-title: Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling – start-page: 126 year: 1981 ident: 10.1016/j.applthermaleng.2019.113896_b0070 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electr. Dev. Lett. EDL-2 doi: 10.1109/EDL.1981.25367 – volume: 662 start-page: 137 year: 2016 ident: 10.1016/j.applthermaleng.2019.113896_b0055 article-title: Experimental study on capillary filling in nanochannels publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.09.016 – volume: 90 start-page: 948 year: 2015 ident: 10.1016/j.applthermaleng.2019.113896_b0190 article-title: Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.07.034 – start-page: 141 year: 2004 ident: 10.1016/j.applthermaleng.2019.113896_b0170 article-title: Single-phase heat transfer enhancement techniques in microchannel and minichannel flows, ASME publication-title: Conf. Microchann. Minichann. – volume: 29 start-page: 64 year: 2009 ident: 10.1016/j.applthermaleng.2019.113896_b0030 article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.02.002 – volume: 58 start-page: 205 year: 2013 ident: 10.1016/j.applthermaleng.2019.113896_b0085 article-title: Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.04.026 |
| SSID | ssj0012874 |
| Score | 2.5228226 |
| Snippet | •A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is... The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113896 |
| SubjectTerms | Cooling Design optimization Design Optimization Area (DOA) Heat sinks Heat transfer Hybrid design Hydraulic and thermal performance enhancements Manifold arrangement Manifolds Microchannel heat sink Microchannels Pressure drop Pressure loss Reynolds number Secondary channels Secondary flow Temperature Thermal boundary layer Thermal resistance |
| Title | Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2019.113896 https://www.proquest.com/docview/2267703885 |
| Volume | 159 |
| WOSCitedRecordID | wos000475999100060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA96J6IP4tfh6Sl5uLel0o9k0-CDnMeJCi6CJ-xbSNsE79htj3ZXzmf_cWeStNs7OVgRX8rS3TRh59eZ30xmJoQcgoWpJDK3aVaxiIFJiIoMXjwzzWVsUpFbXbjDJsRsls_n8kuoLunccQKirvPLS3nxX0UN90DYWDr7F-IeHgo34DMIHa4gdrhuJfjZ2m_CLHzrWNwNsIvGJ_6i5sVTIYCrmtaXRn7_iTVbkyUm5mEVcG2wYUjjqtTB8zVLM1m7eAI2yrDNoprotsWKhCE7vUOfusLsuzC-GzPenuYi0VzCosymAeKgcULM-vPZgNRj7UK47-BXEX49Dk5gPVQ-Dk4MVTObFCVUshmXERCX5IoW9o3B_9DoPrhw_hr388NKYaGYkyfxPJpcXmuk7UzzV5wCZwCFJYCzsdtkNxVcgtrbPfp4Mv80bDRhu3_nk4cl3SWHmxTAm-e8icVcs-eOpJw-JA-Cd0GPPCoekVumfkzuj3pOPiG_BnxQhw_a1BTxQUGUFPFBe3zQxlJNPT7oGB804IN6fFCHD9rjg47w4R464IP2-HhKvr0_OT3-EIWTOKKSpWwVpUaDJ50zA5SK2yTWXIMlYFVik4JlFQdOarM0nsrSxrkAj8BqkRmwwbYES5yxbI_s1E1tnhEqGYttUXGtOVY12wIbCmEVHdOV0Em6T970_6wqQ5t6PC1lofp8xHN1VS4K5aK8XPYJH0Zf-HYtW4572wtRBerpKaUCHG75hINe9ipog06BbyME9lviz_95ghfk3uYNOyA7q3ZtXpI75Y_VWde-Crj-DRsIwk0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+flow+and+heat+transfer+of+a+hybrid+microchannel+cooling+scheme+using+manifold+arrangement+and+secondary+channels&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Min&rft.au=Cao%2C+Bing-Yang&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=159&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.113896&rft.externalDocID=S1359431118376154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |