Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels

•A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is defined.•The pressure drop and thermal resistance can be both reduced in DOA.•The best hybrid design with geometrical parameters of (λ = 1, β...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering Jg. 159; S. 113896
Hauptverfasser: Yang, Min, Cao, Bing-Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.08.2019
Elsevier BV
Schlagworte:
ISSN:1359-4311, 1873-5606
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is defined.•The pressure drop and thermal resistance can be both reduced in DOA.•The best hybrid design with geometrical parameters of (λ = 1, β = 1) is obtained. The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are numerically studied. Through the relationship between the total thermal resistance ratio (Rt/Rt0) and pressure drop ratio (ΔP/ΔP0), we define a region named Design Optimization Area (DOA), where the pressure drop ΔP and the total thermal resistance Rt can be both reduced due to the secondary channels. The numerical results show that the best heat sink can reduce ΔP by 1.91%, and simultaneously decrease Rt by 19.15% compared to the original MMC heat sink at Re = 295. In addition, the effects of secondary channel on ΔP are dependent on both the geometrical parameters and Reynolds numbers. On the one hand, it can reduce the pressure loss at small Reynolds numbers for most heat sinks. However, it can also increase the pressure loss at high Reynolds numbers for most heat sinks. As Re increases, the ratio (Rt/Rt0) becomes smaller and (ΔP/ΔP0) becomes larger, indicating a better thermal performance and a worse hydraulic performance. The secondary flow field analyses visually show the hydraulic and thermal performance enhancements due to thermal boundary layer re-development and flow mixing.
AbstractList •A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is defined.•The pressure drop and thermal resistance can be both reduced in DOA.•The best hybrid design with geometrical parameters of (λ = 1, β = 1) is obtained. The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are numerically studied. Through the relationship between the total thermal resistance ratio (Rt/Rt0) and pressure drop ratio (ΔP/ΔP0), we define a region named Design Optimization Area (DOA), where the pressure drop ΔP and the total thermal resistance Rt can be both reduced due to the secondary channels. The numerical results show that the best heat sink can reduce ΔP by 1.91%, and simultaneously decrease Rt by 19.15% compared to the original MMC heat sink at Re = 295. In addition, the effects of secondary channel on ΔP are dependent on both the geometrical parameters and Reynolds numbers. On the one hand, it can reduce the pressure loss at small Reynolds numbers for most heat sinks. However, it can also increase the pressure loss at high Reynolds numbers for most heat sinks. As Re increases, the ratio (Rt/Rt0) becomes smaller and (ΔP/ΔP0) becomes larger, indicating a better thermal performance and a worse hydraulic performance. The secondary flow field analyses visually show the hydraulic and thermal performance enhancements due to thermal boundary layer re-development and flow mixing.
The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are numerically studied. Through the relationship between the total thermal resistance ratio (Rt/Rt0) and pressure drop ratio (ΔP/ΔP0), we define a region named Design Optimization Area (DOA), where the pressure drop ΔP and the total thermal resistance Rt can be both reduced due to the secondary channels. The numerical results show that the best heat sink can reduce ΔP by 1.91%, and simultaneously decrease Rt by 19.15% compared to the original MMC heat sink at Re = 295. In addition, the effects of secondary channel on ΔP are dependent on both the geometrical parameters and Reynolds numbers. On the one hand, it can reduce the pressure loss at small Reynolds numbers for most heat sinks. However, it can also increase the pressure loss at high Reynolds numbers for most heat sinks. As Re increases, the ratio (Rt/Rt0) becomes smaller and (ΔP/ΔP0) becomes larger, indicating a better thermal performance and a worse hydraulic performance. The secondary flow field analyses visually show the hydraulic and thermal performance enhancements due to thermal boundary layer re-development and flow mixing.
ArticleNumber 113896
Author Cao, Bing-Yang
Yang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Yang
  fullname: Yang, Min
– sequence: 2
  givenname: Bing-Yang
  surname: Cao
  fullname: Cao, Bing-Yang
  email: caoby@tsinghua.edu.cn
BookMark eNqNkE9vFCEYh4mpiW3tdyDR66z8G2Ym8aKNVZNGL-2ZUHjZYcPACoxmz_3iZd1e9NQTEN7f8-b3XKCzmCIg9J6SDSVUftht9H4f6gx50QHidsMInTaU8nGSr9A5HQfe9ZLIs3bn_dQJTukbdFHKjhDKxkGco8cf6wLZGx1wqas94BSxC-kP1tHiGXTFNetYHGScHNZ4Pjxkb_HiTU5m1jFCwCal4OMWFzPDAngtx8eio3cpWKxzA2zbR6x_oQVMilbnA37Ol7fotdOhwNXzeYnub77cXX_rbn9-_X796bYzgonaMdBUTKMAA9A7SnSvR86EpY4-CG77vheOMyIn40hrzqTTAwchB2eokFzwS_TuxN3n9GuFUtUurTm2lYoxOQyEj2Pfpj6fplrDUjI4ZXzV1afYTPigKFFH-Wqn_pWvjvLVSX6DfPwPss9-aaVfGr85xZsd-O0hq2I8RAPWZzBV2eRfBnoCztSvQg
CitedBy_id crossref_primary_10_2298_TSCI201111196F
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118518
crossref_primary_10_1177_09544089221142436
crossref_primary_10_1016_j_applthermaleng_2022_118550
crossref_primary_10_1016_j_applthermaleng_2025_126014
crossref_primary_10_1080_01457632_2023_2301156
crossref_primary_10_1016_j_icheatmasstransfer_2025_109050
crossref_primary_10_1016_j_applthermaleng_2024_124675
crossref_primary_10_1007_s40430_023_04097_x
crossref_primary_10_1016_j_applthermaleng_2025_126297
crossref_primary_10_1007_s10973_021_10589_6
crossref_primary_10_1016_j_applthermaleng_2021_117748
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125019
crossref_primary_10_3390_mi13091420
crossref_primary_10_1016_j_applthermaleng_2021_117510
crossref_primary_10_1016_j_icheatmasstransfer_2024_107678
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124046
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123495
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126049
crossref_primary_10_1016_j_energy_2024_132948
crossref_primary_10_1016_j_ijthermalsci_2021_106902
crossref_primary_10_1016_j_applthermaleng_2025_126309
crossref_primary_10_1177_09544089221127132
crossref_primary_10_1016_j_applthermaleng_2020_115639
crossref_primary_10_1016_j_applthermaleng_2023_121099
crossref_primary_10_1016_j_applthermaleng_2023_121294
crossref_primary_10_1016_j_applthermaleng_2022_118456
crossref_primary_10_1016_j_applthermaleng_2022_119268
crossref_primary_10_1016_j_applthermaleng_2023_121820
crossref_primary_10_1016_j_icheatmasstransfer_2025_108979
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120230
crossref_primary_10_1016_j_applthermaleng_2023_121588
crossref_primary_10_3390_en18030631
crossref_primary_10_1016_j_applthermaleng_2024_124415
crossref_primary_10_1016_j_ijthermalsci_2021_106956
crossref_primary_10_1016_j_applthermaleng_2021_117361
crossref_primary_10_1016_j_rser_2021_110785
crossref_primary_10_3390_en15249474
crossref_primary_10_1016_j_applthermaleng_2024_122672
crossref_primary_10_1016_j_applthermaleng_2020_114974
crossref_primary_10_1108_HFF_08_2021_0523
crossref_primary_10_1016_j_applthermaleng_2023_120134
crossref_primary_10_1016_j_icheatmasstransfer_2025_109117
crossref_primary_10_3390_en18010149
crossref_primary_10_1016_j_applthermaleng_2024_124692
crossref_primary_10_1016_j_icheatmasstransfer_2024_107495
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123356
crossref_primary_10_1063_1_5133105
crossref_primary_10_1016_j_applthermaleng_2022_118129
crossref_primary_10_1016_j_applthermaleng_2021_117490
crossref_primary_10_1016_j_xcrp_2025_102520
crossref_primary_10_3390_en17010127
crossref_primary_10_1007_s12273_023_1012_6
crossref_primary_10_1007_s11708_024_0935_7
crossref_primary_10_1016_j_ijthermalsci_2024_109304
crossref_primary_10_1016_j_tsep_2023_102235
crossref_primary_10_1016_j_tsep_2022_101203
crossref_primary_10_1080_01457632_2021_1919972
crossref_primary_10_1016_j_applthermaleng_2024_123073
crossref_primary_10_1088_1361_648X_adeef2
crossref_primary_10_1016_j_icheatmasstransfer_2024_108032
Cites_doi 10.1016/j.ijheatmasstransfer.2017.06.103
10.1016/j.applthermaleng.2018.03.069
10.1016/j.ijheatmasstransfer.2010.02.022
10.1109/95.588554
10.1016/j.ijheatmasstransfer.2009.03.069
10.1016/j.ijheatmasstransfer.2014.06.072
10.1016/j.ijheatmasstransfer.2017.05.106
10.1016/j.ijheatmasstransfer.2013.09.067
10.1021/acs.nanolett.7b01620
10.1016/j.ijheatmasstransfer.2014.10.022
10.1115/1.4005126
10.1039/C5RA24991K
10.1016/j.ijheatmasstransfer.2015.01.040
10.1016/j.icheatmasstransfer.2010.09.012
10.1109/ECTC.2009.5074053
10.1016/S0017-9310(02)00443-X
10.1016/j.ijthermalsci.2008.12.019
10.1016/j.ijheatmasstransfer.2017.10.015
10.1016/j.applthermaleng.2016.10.047
10.1016/j.applthermaleng.2016.12.089
10.1016/j.ijheatmasstransfer.2008.02.017
10.1016/j.applthermaleng.2017.03.122
10.1016/j.ijheatmasstransfer.2016.02.076
10.1016/j.ijheatmasstransfer.2007.01.019
10.1063/1.1896985
10.1115/1.4033497
10.1016/S0017-9310(01)00337-4
10.1109/EDL.1981.25367
10.1016/j.cplett.2016.09.016
10.1016/j.ijheatmasstransfer.2015.07.034
10.1016/j.applthermaleng.2008.02.002
10.1016/j.applthermaleng.2013.04.026
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2019.113896
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2019_113896
S1359431118376154
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c424t-2ea14984ecee5f10a5a8324d1f1b43d5554f32069cf087326fa73e467fc146343
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475999100060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sun Nov 30 05:08:39 EST 2025
Sat Nov 29 06:59:55 EST 2025
Tue Nov 18 22:18:57 EST 2025
Fri Feb 23 02:33:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid design
Secondary channels
Microchannel heat sink
Manifold arrangement
Hydraulic and thermal performance enhancements
Design Optimization Area (DOA)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-2ea14984ecee5f10a5a8324d1f1b43d5554f32069cf087326fa73e467fc146343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2267703885
PQPubID 2045278
ParticipantIDs proquest_journals_2267703885
crossref_citationtrail_10_1016_j_applthermaleng_2019_113896
crossref_primary_10_1016_j_applthermaleng_2019_113896
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_113896
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chein, Chen (b0080) 2009; 48
Drummond, Back, Sinanis, Janes, Peroulis, Weibel, Garimella (b0165) 2018; 117
Li, Peterson (b0015) 2007; 50
Leng, Wang, Wang, Yan (b0125) 2015; 84
Yang, Li, Yang, Li (b0110) 2017; 120
Li, Zhang, Bin Li, Li, Li, Qian, Joo (b0160) 2017; 115
Yang, Jin, Wang, Ding, Wang (b0115) 2017; 113
E. Kermani, S. Dessiatoun, A. Shooshtari, M.M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, Electron. Components Technol. Conf. 2009. ECTC 2009. 59th. (2009) pp. 453–459.
Xie, Shen, Wang (b0190) 2015; 90
Chai, Xia, Wang (b0195) 2016; 97
Qu, Mudawar (b0040) 2002; 45
Copelandl, Behniaz, Nakayamal (b0135) 1997
Kandlikar, Schmitt, Carrano, Taylor (b0045) 2005; 17
Yang, Cao, Wang, Yun, Chen (b0055) 2016; 662
Mohammed, Gunnasegaran, Shuaib (b0095) 2011; 38
Sarangi, Bodla, Garimella, Murthy (b0150) 2014; 69
Zhu, Antao, Chu, Chen, Hendricks, Zhang, Wang (b0050) 2016; 138
Yang, Sen Peng (b0100) 2008; 51
Manikanda Kumaran, Kumaraguruparan, Sornakumar (b0085) 2013; 58
Ghani, Sidik, Mamat, Najafi, Ken, Asako, Japar (b0185) 2017; 114
Tuckerman, Pease (b0070) 1981
Zhang, Pinjala, Poi-Siong (b0035) 2003
Ryu, Choi, Kim (b0140) 2003; 46
Kandlikar (b0075) 2012; 134
Sui, Teo, Lee, Chew, Shu (b0090) 2010; 53
Raja Kuppusamy, Saidur, Ghazali, Mohammed (b0180) 2014; 78
Arie, Shooshtari, Dessiatoun, Al-Hajri, Ohadi (b0155) 2015; 81
Guo (b0010) 2018; 1
Lee, Lee, Chou (b0175) 2009
Li, Alibakhshi, Zhao, Duan (b0065) 2017; 17
Liu, Chen, Chian (b0020) 2006
Cao, Yang, Hu (b0060) 2016; 6
Zhou, Zhou, Qiu, Yu, Chu (b0120) 2018; 137
G.M.H. and J.E. Eninger, Micro-channel heat exchanger optimization, Semicond. Therm. Meas. Manag. Symp. 1991. SEMI-THERM VII. Proceedings., Seventh Annu. IEEE. IEEE. (1991) pp. 59–63.
Steinke, Kandlikar (b0170) 2004
Xie, Liu, He, Tao (b0030) 2009; 29
Yang, Tan, Ding, Liu (b0025) 2017; 117
Ndao, Peles, Jensen (b0105) 2009; 52
Chu, Yurovchak, Chao, Creamer (b0005) 2013
Raja Kuppusamy (10.1016/j.applthermaleng.2019.113896_b0180) 2014; 78
Ndao (10.1016/j.applthermaleng.2019.113896_b0105) 2009; 52
Sarangi (10.1016/j.applthermaleng.2019.113896_b0150) 2014; 69
Cao (10.1016/j.applthermaleng.2019.113896_b0060) 2016; 6
Chein (10.1016/j.applthermaleng.2019.113896_b0080) 2009; 48
Leng (10.1016/j.applthermaleng.2019.113896_b0125) 2015; 84
Manikanda Kumaran (10.1016/j.applthermaleng.2019.113896_b0085) 2013; 58
Zhu (10.1016/j.applthermaleng.2019.113896_b0050) 2016; 138
Zhou (10.1016/j.applthermaleng.2019.113896_b0120) 2018; 137
Yang (10.1016/j.applthermaleng.2019.113896_b0100) 2008; 51
Mohammed (10.1016/j.applthermaleng.2019.113896_b0095) 2011; 38
Arie (10.1016/j.applthermaleng.2019.113896_b0155) 2015; 81
Chai (10.1016/j.applthermaleng.2019.113896_b0195) 2016; 97
Kandlikar (10.1016/j.applthermaleng.2019.113896_b0045) 2005; 17
Lee (10.1016/j.applthermaleng.2019.113896_b0175) 2009
Guo (10.1016/j.applthermaleng.2019.113896_b0010) 2018; 1
Kandlikar (10.1016/j.applthermaleng.2019.113896_b0075) 2012; 134
Ghani (10.1016/j.applthermaleng.2019.113896_b0185) 2017; 114
10.1016/j.applthermaleng.2019.113896_b0145
Xie (10.1016/j.applthermaleng.2019.113896_b0190) 2015; 90
Drummond (10.1016/j.applthermaleng.2019.113896_b0165) 2018; 117
Qu (10.1016/j.applthermaleng.2019.113896_b0040) 2002; 45
10.1016/j.applthermaleng.2019.113896_b0130
Yang (10.1016/j.applthermaleng.2019.113896_b0055) 2016; 662
Tuckerman (10.1016/j.applthermaleng.2019.113896_b0070) 1981
Steinke (10.1016/j.applthermaleng.2019.113896_b0170) 2004
Li (10.1016/j.applthermaleng.2019.113896_b0015) 2007; 50
Ryu (10.1016/j.applthermaleng.2019.113896_b0140) 2003; 46
Liu (10.1016/j.applthermaleng.2019.113896_b0020) 2006
Xie (10.1016/j.applthermaleng.2019.113896_b0030) 2009; 29
Copelandl (10.1016/j.applthermaleng.2019.113896_b0135) 1997
Yang (10.1016/j.applthermaleng.2019.113896_b0025) 2017; 117
Yang (10.1016/j.applthermaleng.2019.113896_b0115) 2017; 113
Li (10.1016/j.applthermaleng.2019.113896_b0160) 2017; 115
Zhang (10.1016/j.applthermaleng.2019.113896_b0035) 2003
Yang (10.1016/j.applthermaleng.2019.113896_b0110) 2017; 120
Sui (10.1016/j.applthermaleng.2019.113896_b0090) 2010; 53
Chu (10.1016/j.applthermaleng.2019.113896_b0005) 2013
Li (10.1016/j.applthermaleng.2019.113896_b0065) 2017; 17
References_xml – volume: 38
  start-page: 63
  year: 2011
  end-page: 68
  ident: b0095
  article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 6
  start-page: 7553
  year: 2016
  end-page: 7559
  ident: b0060
  article-title: Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling
  publication-title: RSC. Adv.
– volume: 114
  start-page: 640
  year: 2017
  end-page: 655
  ident: b0185
  article-title: Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels
  publication-title: Int. J. Heat Mass Transf.
– reference: E. Kermani, S. Dessiatoun, A. Shooshtari, M.M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, Electron. Components Technol. Conf. 2009. ECTC 2009. 59th. (2009) pp. 453–459.
– volume: 1
  start-page: 4
  year: 2018
  end-page: 15
  ident: b0010
  article-title: Energy-mass duality of heat and its applications
  publication-title: ES Energy Environ.
– volume: 51
  start-page: 4788
  year: 2008
  end-page: 4796
  ident: b0100
  article-title: Numerical study of pin-fin heat sink with un-uniform fin height design
  publication-title: Int. J. Heat Mass Transf.
– year: 1997
  ident: b0135
  article-title: Manifold Microchannel eat Sinks: Ikothermial Analysis
  publication-title: IEEE Transac. Comp., Packag., Manuf. Technol.: Part A
– volume: 137
  start-page: 616
  year: 2018
  end-page: 631
  ident: b0120
  article-title: Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger
  publication-title: Appl. Therm. Eng.
– start-page: 6
  year: 2013
  end-page: 9
  ident: b0005
  article-title: Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process
  publication-title: Tech. Dig. – IEEE Compd. Semicond. Integr. Circuit Symp. CSIC.
– volume: 134
  start-page: 034001
  year: 2012
  ident: b0075
  article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review
  publication-title: J. Heat Transf.
– volume: 45
  start-page: 2549
  year: 2002
  end-page: 2565
  ident: b0040
  article-title: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 69
  start-page: 92
  year: 2014
  end-page: 105
  ident: b0150
  article-title: Manifold microchannel heat sink design using optimization under uncertainty
  publication-title: Int. J. Heat Mass Transf.
– start-page: 6
  year: 2006
  end-page: 10
  ident: b0020
  article-title: Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler
  publication-title: Proc. of 7th International Conference on Electronics Packaging Technology
– volume: 662
  start-page: 137
  year: 2016
  end-page: 140
  ident: b0055
  article-title: Experimental study on capillary filling in nanochannels
  publication-title: Chem. Phys. Lett.
– volume: 17
  year: 2005
  ident: b0045
  article-title: Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels
  publication-title: Phys. Fluids.
– volume: 53
  start-page: 2760
  year: 2010
  end-page: 2772
  ident: b0090
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
– volume: 120
  start-page: 289
  year: 2017
  end-page: 297
  ident: b0110
  article-title: Uniform design for the parameters optimization of pin-fins channel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 117
  start-page: 319
  year: 2018
  end-page: 330
  ident: b0165
  article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics
  publication-title: Int. J. Heat Mass Transf.
– start-page: 126
  year: 1981
  end-page: 129
  ident: b0070
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electr. Dev. Lett. EDL-2
– volume: 115
  start-page: 1213
  year: 2017
  end-page: 1225
  ident: b0160
  article-title: Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 113
  start-page: 366
  year: 2017
  end-page: 372
  ident: b0115
  article-title: Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins
  publication-title: Int. J. Heat Mass Transf.
– reference: G.M.H. and J.E. Eninger, Micro-channel heat exchanger optimization, Semicond. Therm. Meas. Manag. Symp. 1991. SEMI-THERM VII. Proceedings., Seventh Annu. IEEE. IEEE. (1991) pp. 59–63.
– volume: 78
  start-page: 216
  year: 2014
  end-page: 223
  ident: b0180
  article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 81
  start-page: 478
  year: 2015
  end-page: 489
  ident: b0155
  article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
– volume: 97
  start-page: 1081
  year: 2016
  end-page: 1090
  ident: b0195
  article-title: Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 2: Pressure drop
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 2895
  year: 2007
  end-page: 2904
  ident: b0015
  article-title: 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow
  publication-title: Int. J. Heat Mass Transf.
– start-page: 620
  year: 2003
  end-page: 625
  ident: b0035
  article-title: Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling
  publication-title: Electron. Packag. Technol. 2003 5th Conf. (EPTC 2003).
– volume: 17
  start-page: 4813
  year: 2017
  end-page: 4819
  ident: b0065
  article-title: Exploring ultimate water capillary evaporation in nanoscale conduits
  publication-title: Nano. Lett.
– volume: 58
  start-page: 205
  year: 2013
  end-page: 216
  ident: b0085
  article-title: Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels
  publication-title: Appl. Therm. Eng.
– volume: 138
  start-page: 091501
  year: 2016
  ident: b0050
  article-title: Surface structure enhanced microchannel flow boiling
  publication-title: J. Heat Transf.
– start-page: 253
  year: 2009
  end-page: 260
  ident: b0175
  article-title: Enhanced microchannel heat sinks using oblique fins
  publication-title: ASME 2009 InterPack Conf.
– volume: 46
  start-page: 1553
  year: 2003
  end-page: 1562
  ident: b0140
  article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 90
  start-page: 948
  year: 2015
  end-page: 958
  ident: b0190
  article-title: Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 1627
  year: 2009
  end-page: 1638
  ident: b0080
  article-title: Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance
  publication-title: Int. J. Therm. Sci.
– volume: 84
  start-page: 359
  year: 2015
  end-page: 369
  ident: b0125
  article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
– start-page: 141
  year: 2004
  end-page: 148
  ident: b0170
  article-title: Single-phase heat transfer enhancement techniques in microchannel and minichannel flows, ASME
  publication-title: Conf. Microchann. Minichann.
– volume: 52
  start-page: 4317
  year: 2009
  end-page: 4326
  ident: b0105
  article-title: Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies
  publication-title: Int. J. Heat Mass Transf.
– volume: 117
  start-page: 289
  year: 2017
  end-page: 296
  ident: b0025
  article-title: Flow and thermal modeling and optimization of micro/mini-channel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 64
  year: 2009
  end-page: 74
  ident: b0030
  article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 114
  start-page: 640
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113896_b0185
  article-title: Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.103
– volume: 137
  start-page: 616
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.113896_b0120
  article-title: Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.03.069
– volume: 53
  start-page: 2760
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.113896_b0090
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.02.022
– year: 1997
  ident: 10.1016/j.applthermaleng.2019.113896_b0135
  article-title: Manifold Microchannel eat Sinks: Ikothermial Analysis
  publication-title: IEEE Transac. Comp., Packag., Manuf. Technol.: Part A
  doi: 10.1109/95.588554
– volume: 52
  start-page: 4317
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.113896_b0105
  article-title: Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.03.069
– volume: 78
  start-page: 216
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113896_b0180
  article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.06.072
– volume: 113
  start-page: 366
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113896_b0115
  article-title: Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.106
– volume: 69
  start-page: 92
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113896_b0150
  article-title: Manifold microchannel heat sink design using optimization under uncertainty
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.09.067
– volume: 17
  start-page: 4813
  issue: 8
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113896_b0065
  article-title: Exploring ultimate water capillary evaporation in nanoscale conduits
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.7b01620
– volume: 81
  start-page: 478
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113896_b0155
  article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.10.022
– volume: 134
  start-page: 034001
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.113896_b0075
  article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4005126
– volume: 6
  start-page: 7553
  issue: 9
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113896_b0060
  article-title: Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling
  publication-title: RSC. Adv.
  doi: 10.1039/C5RA24991K
– volume: 84
  start-page: 359
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113896_b0125
  article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.01.040
– volume: 38
  start-page: 63
  year: 2011
  ident: 10.1016/j.applthermaleng.2019.113896_b0095
  article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2010.09.012
– ident: 10.1016/j.applthermaleng.2019.113896_b0145
  doi: 10.1109/ECTC.2009.5074053
– volume: 46
  start-page: 1553
  year: 2003
  ident: 10.1016/j.applthermaleng.2019.113896_b0140
  article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00443-X
– volume: 48
  start-page: 1627
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.113896_b0080
  article-title: Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.12.019
– volume: 117
  start-page: 319
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.113896_b0165
  article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.015
– ident: 10.1016/j.applthermaleng.2019.113896_b0130
– start-page: 6
  year: 2006
  ident: 10.1016/j.applthermaleng.2019.113896_b0020
  article-title: Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler
– volume: 115
  start-page: 1213
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113896_b0160
  article-title: Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.047
– volume: 1
  start-page: 4
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.113896_b0010
  article-title: Energy-mass duality of heat and its applications
  publication-title: ES Energy Environ.
– volume: 117
  start-page: 289
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113896_b0025
  article-title: Flow and thermal modeling and optimization of micro/mini-channel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.089
– volume: 51
  start-page: 4788
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.113896_b0100
  article-title: Numerical study of pin-fin heat sink with un-uniform fin height design
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.02.017
– volume: 120
  start-page: 289
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113896_b0110
  article-title: Uniform design for the parameters optimization of pin-fins channel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.122
– start-page: 253
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.113896_b0175
  article-title: Enhanced microchannel heat sinks using oblique fins
– volume: 97
  start-page: 1081
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113896_b0195
  article-title: Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 2: Pressure drop
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.02.076
– start-page: 6
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113896_b0005
  article-title: Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process
  publication-title: Tech. Dig. – IEEE Compd. Semicond. Integr. Circuit Symp. CSIC.
– volume: 50
  start-page: 2895
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.113896_b0015
  article-title: 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.01.019
– volume: 17
  year: 2005
  ident: 10.1016/j.applthermaleng.2019.113896_b0045
  article-title: Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels
  publication-title: Phys. Fluids.
  doi: 10.1063/1.1896985
– volume: 138
  start-page: 091501
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113896_b0050
  article-title: Surface structure enhanced microchannel flow boiling
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4033497
– volume: 45
  start-page: 2549
  year: 2002
  ident: 10.1016/j.applthermaleng.2019.113896_b0040
  article-title: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00337-4
– start-page: 620
  year: 2003
  ident: 10.1016/j.applthermaleng.2019.113896_b0035
  article-title: Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling
– start-page: 126
  year: 1981
  ident: 10.1016/j.applthermaleng.2019.113896_b0070
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electr. Dev. Lett. EDL-2
  doi: 10.1109/EDL.1981.25367
– volume: 662
  start-page: 137
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113896_b0055
  article-title: Experimental study on capillary filling in nanochannels
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.09.016
– volume: 90
  start-page: 948
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113896_b0190
  article-title: Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.07.034
– start-page: 141
  year: 2004
  ident: 10.1016/j.applthermaleng.2019.113896_b0170
  article-title: Single-phase heat transfer enhancement techniques in microchannel and minichannel flows, ASME
  publication-title: Conf. Microchann. Minichann.
– volume: 29
  start-page: 64
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.113896_b0030
  article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.02.002
– volume: 58
  start-page: 205
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113896_b0085
  article-title: Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.04.026
SSID ssj0012874
Score 2.5228226
Snippet •A hybrid design using manifold arrangement and secondary channels for microchannel heat sink is proposed.•A Design Optimization Area (DOA) for the MMC-SOC is...
The flow and heat transfer characteristics of a novel hybrid microchannel heat sink with manifold arrangement and secondary oblique channels (MMC-SOC) are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113896
SubjectTerms Cooling
Design optimization
Design Optimization Area (DOA)
Heat sinks
Heat transfer
Hybrid design
Hydraulic and thermal performance enhancements
Manifold arrangement
Manifolds
Microchannel heat sink
Microchannels
Pressure drop
Pressure loss
Reynolds number
Secondary channels
Secondary flow
Temperature
Thermal boundary layer
Thermal resistance
Title Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels
URI https://dx.doi.org/10.1016/j.applthermaleng.2019.113896
https://www.proquest.com/docview/2267703885
Volume 159
WOSCitedRecordID wos000475999100060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA96J6IP4tfh6Sl5uLel0o9k0-CDnMeJCi6CJ-xbSNsE79htj3ZXzmf_cWeStNs7OVgRX8rS3TRh59eZ30xmJoQcgoWpJDK3aVaxiIFJiIoMXjwzzWVsUpFbXbjDJsRsls_n8kuoLunccQKirvPLS3nxX0UN90DYWDr7F-IeHgo34DMIHa4gdrhuJfjZ2m_CLHzrWNwNsIvGJ_6i5sVTIYCrmtaXRn7_iTVbkyUm5mEVcG2wYUjjqtTB8zVLM1m7eAI2yrDNoprotsWKhCE7vUOfusLsuzC-GzPenuYi0VzCosymAeKgcULM-vPZgNRj7UK47-BXEX49Dk5gPVQ-Dk4MVTObFCVUshmXERCX5IoW9o3B_9DoPrhw_hr388NKYaGYkyfxPJpcXmuk7UzzV5wCZwCFJYCzsdtkNxVcgtrbPfp4Mv80bDRhu3_nk4cl3SWHmxTAm-e8icVcs-eOpJw-JA-Cd0GPPCoekVumfkzuj3pOPiG_BnxQhw_a1BTxQUGUFPFBe3zQxlJNPT7oGB804IN6fFCHD9rjg47w4R464IP2-HhKvr0_OT3-EIWTOKKSpWwVpUaDJ50zA5SK2yTWXIMlYFVik4JlFQdOarM0nsrSxrkAj8BqkRmwwbYES5yxbI_s1E1tnhEqGYttUXGtOVY12wIbCmEVHdOV0Em6T970_6wqQ5t6PC1lofp8xHN1VS4K5aK8XPYJH0Zf-HYtW4572wtRBerpKaUCHG75hINe9ipog06BbyME9lviz_95ghfk3uYNOyA7q3ZtXpI75Y_VWde-Crj-DRsIwk0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+flow+and+heat+transfer+of+a+hybrid+microchannel+cooling+scheme+using+manifold+arrangement+and+secondary+channels&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Min&rft.au=Cao%2C+Bing-Yang&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=159&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.113896&rft.externalDocID=S1359431118376154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon