Tempered representations for classical p-adic groups
Saved in:
| Published in: | Manuscripta mathematica Vol. 145; no. 3-4; pp. 319 - 387 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2014
|
| Subjects: | |
| ISSN: | 0025-2611, 1432-1785 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Author | Jantzen, Chris |
|---|---|
| Author_xml | – sequence: 1 givenname: Chris surname: Jantzen fullname: Jantzen, Chris email: jantzenc@ecu.edu organization: Department of Mathematics, East Carolina University |
| BookMark | eNp9j71uwyAUhVGVSk3SPkA3vwAtYH7MWEX9kyJ1SWdE4BIROWCBM_Tt68idOmQ6wz3f1flWaJFyAoQeKXmihKjnSghjGhPKMZFKY3GDlpS3DFPViQVaTmeBmaT0Dq1qPZKp2Kp2ifgOTgMU8E2BoUCFNNox5lSbkEvjeltrdLZvBmx9dM2h5PNQ79FtsH2Fh79co--3193mA2-_3j83L1vsOOMjpiD2QSsILbTKWhs8l95713WBUCWkZlaDsprstZC8I9JRIaTwznWhEwLaNVLzX1dyrQWCcXGeNxYbe0OJucibWd5MTuYib8RE0n_kUOLJlp-rDJuZOnXTAYo55nNJk-AV6BeXPm57 |
| CitedBy_id | crossref_primary_10_1515_crelle_2025_0012 crossref_primary_10_1007_s00222_021_01088_4 crossref_primary_10_1142_S0219498823502389 crossref_primary_10_1007_s00229_021_01285_8 crossref_primary_10_1112_S0010437X22007904 crossref_primary_10_1007_s10114_024_3236_5 crossref_primary_10_1016_j_crma_2016_11_009 crossref_primary_10_1007_s00229_020_01187_1 crossref_primary_10_1007_s00229_015_0727_9 crossref_primary_10_1007_s00229_021_01330_6 crossref_primary_10_1515_crelle_2022_0030 crossref_primary_10_1007_s00229_017_0955_2 |
| Cites_doi | 10.2307/1971524 10.2307/2374942 10.1090/S1088-4165-07-00316-0 10.1090/S0894-0347-02-00389-2 10.1007/BF02786631 10.1006/jabr.1995.1284 10.1007/BFb0087916 10.4153/CJM-2005-025-4 10.1007/s100970100033 10.1142/9789812562500_0004 10.24033/asens.1333 10.4153/CJM-1995-019-8 10.2140/pjm.1993.161.347 10.1215/S0012-7094-92-06601-4 10.24033/asens.1379 10.1007/s00229-010-0423-8 10.1353/ajm.1997.0039 10.2307/121049 10.2307/1971110 10.1007/BF02764004 10.1016/S0012-9593(97)89916-8 10.4153/CJM-2005-007-x 10.1090/S0002-9947-06-03894-3 10.1090/S1088-4165-03-00166-3 10.1090/S1088-4165-00-00081-9 10.1007/BF02699536 10.1093/imrn/rnp128 10.4153/CJM-2011-003-2 10.1017/S1474748003000082 10.1515/crll.1999.050 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2014 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00229-014-0679-5 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1432-1785 |
| EndPage | 387 |
| ExternalDocumentID | 10_1007_s00229_014_0679_5 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR YQT Z45 Z7U ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c424t-1e5bf97ef3e37aaafd46dddc88f0175692a9e7a90b9564806c15565dcc8f855e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343881600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-2611 |
| IngestDate | Sat Nov 29 06:38:17 EST 2025 Tue Nov 18 22:30:22 EST 2025 Fri Feb 21 02:34:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | 22E50 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-1e5bf97ef3e37aaafd46dddc88f0175692a9e7a90b9564806c15565dcc8f855e3 |
| PageCount | 69 |
| ParticipantIDs | crossref_citationtrail_10_1007_s00229_014_0679_5 crossref_primary_10_1007_s00229_014_0679_5 springer_journals_10_1007_s00229_014_0679_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Manuscripta mathematica |
| PublicationTitleAbbrev | manuscripta math |
| PublicationYear | 2014 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | MœglinC.Sur la classification des séries discrètes des groupes classiques; paramètres de Langlands et exhaustivitéJ. Eur. Math. Soc.2002414320010.1007/s1009701000331002.22009 MuićG.Composition series of generalized principal series; the case of strongly positive discrete seriesIsr. J. Math.200414015720210.1007/BF027866311055.22015 Tadić, M.: On classification of some classes of irreducible representations of classical groups. Representations of real and p-adic groups In: Tan, E.-C., Zhu, C.-B. (eds.) Lecture Notes Series. Institute of Mathematical Science, National University of Singapore, vol. 2. Singapore University Press, Singapore, pp. 95–162 (2004) GoldbergD.Reducibility for non-connected p-adic groups with G0 of prime indexCan. J. Math.19954734436310.4153/CJM-1995-019-80835.22015 GoldbergD.HerbR.Some results on the admissible representations of non-connected reductive p-adic groupsAnn. Sci. École Norm. Sup.1997309714614223140874.22016 ShahidiF.A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groupsAnn. Math.1990132273330107059910.2307/19715240780.22005 HerbR.Elliptic representations for Sp(2n) and SO(n)Pac. J. Math.1993161347358124220310.2140/pjm.1993.161.347 SchneiderP.StuhlerU.Representation theory and sheaves on the Bruhat–Tits buildingPubl. Math. IHES19978597191147186710.1007/BF026995360892.22012 MœglinC.Normalisation des opérateurs d’entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques p-adiquesAnn. Math.200015181784710.2307/1210490956.22012 Tadić, M.: On tempered and square integrable representations of classical p-adic groups. Preprint WaldspurgerJ.-L.La formule de Plancherel pour les groupes p-adiques d’après Harish-ChandraJ. Inst. Math. Jussieu20032235333198969310.1017/S14747480030000821029.22016 Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. Preprint. Available online at http://www.math.ubc.ca/people/faculty/cass/research.html as “The p-adic notes” JantzenC.On supports of induced representations for symplectic and odd-orthogonal groupsAm. J. Math.199711912131262148181410.1353/ajm.1997.00390888.22013 BanD.JantzenC.Degenerate principal series for even orthogonal groupsRepresent. Theory20037440480201706510.1090/S1088-4165-03-00166-31054.22015 BernsteinI.ZelevinskyA.Induced representations of reductive p-adic groups IAnn. Sci. École Norm. Sup.1977104414725791720412.22015 JantzenC.Jacquet modules of p-adic general linear groupsRepresent. Theory2007114583230660610.1090/S1088-4165-07-00316-01139.22014 GoldbergD.R-Groups and elliptic representations for unitary groupsProc. Am. Math. Soc.1995123126712760856.22023 ShahidiF.Twisted endoscopy and reducibility of induced representations for p-adic groupsDuke Math. J.199266141115943010.1215/S0012-7094-92-06601-40785.22022 GoldbergD.Reducibility of induced representations for Sp(2n) and SO(n)Am. J. Math.19941161101115110.2307/23749420851.22021 TadićM.On reducibility of parabolic inductionIsr. J. Math.1998107299110.1007/BF027640040914.22019 TadićM.On invariants of discrete series representations of classical p-adic groupsMauscripta Math.201113541743510.1007/s00229-010-0423-81222.22016 ZhangY.L-Packets and reducibilitiesJ. reine angew. Math.19995108310216960920918.22010 JantzenC.Square-integrable representations for symplectic and odd-orthogonal groups IIRepresent. Theory20004127180178946410.1090/S1088-4165-00-00081-91045.22018 JantzenC.Discrete series for p-adic SO(2n) and restrictions of representations of O(2n)Can. J. Math.201163327380280905910.4153/CJM-2011-003-21219.22016 SilbergerA.Special representations of reductive p-adic groups are not integrableAnn. Math.198011157158757713810.2307/19711100437.22015 Jacquet, H.: Generic representations. Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976). Lecture Notes in Mathematics, vol. 587, pp. 91–101. Springer, Berlin (1977) TadićM.Structure arising from induction and Jacquet modules of representations of classical p-adic groupsJ. Algebra1995177133135635810.1006/jabr.1995.12840874.22014 JantzenC.Duality and supports of induced representations for orthogonal groupsCan. J. Math.200557159179211385310.4153/CJM-2005-007-x1065.22013 MœglinC.TadićM.Construction of discrete series for classical p-adic groupsJ. Am. Math. Soc.20021571578610.1090/S0894-0347-02-00389-20992.22015 BanD.Parabolic induction and Jacquet modules of representations of O(2n,F)Glas. Mat.1999345414718517396160954.22013 MuićG.On the non-unitary unramified dual for classical p-adic groupsTrans. Am. Math. Soc.20063584653468710.1090/S0002-9947-06-03894-31102.22014 Aubert, A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 347(1995), 2179–2189 and Erratum: Trans. Amer. Math. Soc. 348, 4687–4690 (1996) ZelevinskyA.Induced representations of reductive p-adic groups II, On irreducible representations of GL(n)Ann. Sci. École Norm. Sup.1980131652105840840441.22014 JantzenC.Degenerate principal series for symplectic and odd-orthogonal groupsMem. Am. Math. Soc.199659011001346929 MœglinC.WaldspurgerJ.-L.Sur l’involution de ZelevinskiJ. reine angew. Math.19863721361778635220594.22008 MuićG.Reducibility of generalized principal seriesCan. J. Math.20055761664710.4153/CJM-2005-025-41068.22017 HanzerM.The generalized injectivity conjecture for classical p-adic groupsInt. Math. Res. Not.201021952372581039 679_CR1 R. Herb (679_CR11) 1993; 161 C. Jantzen (679_CR17) 2007; 11 679_CR32 M. Hanzer (679_CR10) 2010; 2 679_CR12 C. Jantzen (679_CR16) 2005; 57 679_CR34 679_CR5 G. Muić (679_CR24) 2005; 57 C. Mœglin (679_CR19) 2000; 151 A. Silberger (679_CR29) 1980; 111 G. Muić (679_CR23) 2004; 140 C. Jantzen (679_CR15) 2000; 4 M. Tadić (679_CR31) 1998; 107 M. Tadić (679_CR33) 2011; 135 C. Jantzen (679_CR13) 1996; 590 F. Shahidi (679_CR27) 1990; 132 D. Goldberg (679_CR7) 1995; 47 C. Jantzen (679_CR18) 2011; 63 D. Ban (679_CR3) 2003; 7 I. Bernstein (679_CR4) 1977; 10 G. Muić (679_CR25) 2006; 358 P. Schneider (679_CR26) 1997; 85 M. Tadić (679_CR30) 1995; 177 C. Jantzen (679_CR14) 1997; 119 D. Ban (679_CR2) 1999; 34 C. Mœglin (679_CR20) 2002; 4 C. Mœglin (679_CR21) 2002; 15 A. Zelevinsky (679_CR36) 1980; 13 F. Shahidi (679_CR28) 1992; 66 D. Goldberg (679_CR6) 1994; 116 D. Goldberg (679_CR9) 1997; 30 C. Mœglin (679_CR22) 1986; 372 Y. Zhang (679_CR37) 1999; 510 D. Goldberg (679_CR8) 1995; 123 J.-L. Waldspurger (679_CR35) 2003; 2 |
| References_xml | – reference: JantzenC.Duality and supports of induced representations for orthogonal groupsCan. J. Math.200557159179211385310.4153/CJM-2005-007-x1065.22013 – reference: GoldbergD.HerbR.Some results on the admissible representations of non-connected reductive p-adic groupsAnn. Sci. École Norm. Sup.1997309714614223140874.22016 – reference: Tadić, M.: On tempered and square integrable representations of classical p-adic groups. Preprint – reference: JantzenC.On supports of induced representations for symplectic and odd-orthogonal groupsAm. J. Math.199711912131262148181410.1353/ajm.1997.00390888.22013 – reference: ShahidiF.Twisted endoscopy and reducibility of induced representations for p-adic groupsDuke Math. J.199266141115943010.1215/S0012-7094-92-06601-40785.22022 – reference: Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. Preprint. Available online at http://www.math.ubc.ca/people/faculty/cass/research.html as “The p-adic notes” – reference: TadićM.Structure arising from induction and Jacquet modules of representations of classical p-adic groupsJ. Algebra1995177133135635810.1006/jabr.1995.12840874.22014 – reference: GoldbergD.Reducibility of induced representations for Sp(2n) and SO(n)Am. J. Math.19941161101115110.2307/23749420851.22021 – reference: MœglinC.Sur la classification des séries discrètes des groupes classiques; paramètres de Langlands et exhaustivitéJ. Eur. Math. Soc.2002414320010.1007/s1009701000331002.22009 – reference: Jacquet, H.: Generic representations. Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976). Lecture Notes in Mathematics, vol. 587, pp. 91–101. Springer, Berlin (1977) – reference: SilbergerA.Special representations of reductive p-adic groups are not integrableAnn. Math.198011157158757713810.2307/19711100437.22015 – reference: MœglinC.WaldspurgerJ.-L.Sur l’involution de ZelevinskiJ. reine angew. Math.19863721361778635220594.22008 – reference: GoldbergD.R-Groups and elliptic representations for unitary groupsProc. Am. Math. Soc.1995123126712760856.22023 – reference: JantzenC.Jacquet modules of p-adic general linear groupsRepresent. Theory2007114583230660610.1090/S1088-4165-07-00316-01139.22014 – reference: BanD.Parabolic induction and Jacquet modules of representations of O(2n,F)Glas. Mat.1999345414718517396160954.22013 – reference: MœglinC.Normalisation des opérateurs d’entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques p-adiquesAnn. Math.200015181784710.2307/1210490956.22012 – reference: MuićG.On the non-unitary unramified dual for classical p-adic groupsTrans. Am. Math. Soc.20063584653468710.1090/S0002-9947-06-03894-31102.22014 – reference: SchneiderP.StuhlerU.Representation theory and sheaves on the Bruhat–Tits buildingPubl. Math. IHES19978597191147186710.1007/BF026995360892.22012 – reference: Tadić, M.: On classification of some classes of irreducible representations of classical groups. Representations of real and p-adic groups In: Tan, E.-C., Zhu, C.-B. (eds.) Lecture Notes Series. Institute of Mathematical Science, National University of Singapore, vol. 2. Singapore University Press, Singapore, pp. 95–162 (2004) – reference: Aubert, A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 347(1995), 2179–2189 and Erratum: Trans. Amer. Math. Soc. 348, 4687–4690 (1996) – reference: TadićM.On reducibility of parabolic inductionIsr. J. Math.1998107299110.1007/BF027640040914.22019 – reference: ZhangY.L-Packets and reducibilitiesJ. reine angew. Math.19995108310216960920918.22010 – reference: ShahidiF.A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groupsAnn. Math.1990132273330107059910.2307/19715240780.22005 – reference: BernsteinI.ZelevinskyA.Induced representations of reductive p-adic groups IAnn. Sci. École Norm. Sup.1977104414725791720412.22015 – reference: GoldbergD.Reducibility for non-connected p-adic groups with G0 of prime indexCan. J. Math.19954734436310.4153/CJM-1995-019-80835.22015 – reference: HanzerM.The generalized injectivity conjecture for classical p-adic groupsInt. Math. Res. Not.201021952372581039 – reference: BanD.JantzenC.Degenerate principal series for even orthogonal groupsRepresent. Theory20037440480201706510.1090/S1088-4165-03-00166-31054.22015 – reference: MuićG.Reducibility of generalized principal seriesCan. J. Math.20055761664710.4153/CJM-2005-025-41068.22017 – reference: JantzenC.Discrete series for p-adic SO(2n) and restrictions of representations of O(2n)Can. J. Math.201163327380280905910.4153/CJM-2011-003-21219.22016 – reference: ZelevinskyA.Induced representations of reductive p-adic groups II, On irreducible representations of GL(n)Ann. Sci. École Norm. Sup.1980131652105840840441.22014 – reference: JantzenC.Square-integrable representations for symplectic and odd-orthogonal groups IIRepresent. Theory20004127180178946410.1090/S1088-4165-00-00081-91045.22018 – reference: HerbR.Elliptic representations for Sp(2n) and SO(n)Pac. J. Math.1993161347358124220310.2140/pjm.1993.161.347 – reference: WaldspurgerJ.-L.La formule de Plancherel pour les groupes p-adiques d’après Harish-ChandraJ. Inst. Math. Jussieu20032235333198969310.1017/S14747480030000821029.22016 – reference: TadićM.On invariants of discrete series representations of classical p-adic groupsMauscripta Math.201113541743510.1007/s00229-010-0423-81222.22016 – reference: JantzenC.Degenerate principal series for symplectic and odd-orthogonal groupsMem. Am. Math. Soc.199659011001346929 – reference: MœglinC.TadićM.Construction of discrete series for classical p-adic groupsJ. Am. Math. Soc.20021571578610.1090/S0894-0347-02-00389-20992.22015 – reference: MuićG.Composition series of generalized principal series; the case of strongly positive discrete seriesIsr. J. Math.200414015720210.1007/BF027866311055.22015 – volume: 132 start-page: 273 year: 1990 ident: 679_CR27 publication-title: Ann. Math. doi: 10.2307/1971524 – volume: 116 start-page: 1101 year: 1994 ident: 679_CR6 publication-title: Am. J. Math. doi: 10.2307/2374942 – volume: 123 start-page: 1267 year: 1995 ident: 679_CR8 publication-title: Proc. Am. Math. Soc. – ident: 679_CR1 – volume: 11 start-page: 45 year: 2007 ident: 679_CR17 publication-title: Represent. Theory doi: 10.1090/S1088-4165-07-00316-0 – volume: 15 start-page: 715 year: 2002 ident: 679_CR21 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-02-00389-2 – ident: 679_CR34 – volume: 590 start-page: 1 year: 1996 ident: 679_CR13 publication-title: Mem. Am. Math. Soc. – ident: 679_CR5 – volume: 140 start-page: 157 year: 2004 ident: 679_CR23 publication-title: Isr. J. Math. doi: 10.1007/BF02786631 – volume: 177 start-page: 1 year: 1995 ident: 679_CR30 publication-title: J. Algebra doi: 10.1006/jabr.1995.1284 – ident: 679_CR12 doi: 10.1007/BFb0087916 – volume: 34 start-page: 147 issue: 54 year: 1999 ident: 679_CR2 publication-title: Glas. Mat. – volume: 57 start-page: 616 year: 2005 ident: 679_CR24 publication-title: Can. J. Math. doi: 10.4153/CJM-2005-025-4 – volume: 4 start-page: 143 year: 2002 ident: 679_CR20 publication-title: J. Eur. Math. Soc. doi: 10.1007/s100970100033 – ident: 679_CR32 doi: 10.1142/9789812562500_0004 – volume: 10 start-page: 441 year: 1977 ident: 679_CR4 publication-title: Ann. Sci. École Norm. Sup. doi: 10.24033/asens.1333 – volume: 47 start-page: 344 year: 1995 ident: 679_CR7 publication-title: Can. J. Math. doi: 10.4153/CJM-1995-019-8 – volume: 161 start-page: 347 year: 1993 ident: 679_CR11 publication-title: Pac. J. Math. doi: 10.2140/pjm.1993.161.347 – volume: 66 start-page: 1 year: 1992 ident: 679_CR28 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-92-06601-4 – volume: 13 start-page: 165 year: 1980 ident: 679_CR36 publication-title: Ann. Sci. École Norm. Sup. doi: 10.24033/asens.1379 – volume: 135 start-page: 417 year: 2011 ident: 679_CR33 publication-title: Mauscripta Math. doi: 10.1007/s00229-010-0423-8 – volume: 119 start-page: 1213 year: 1997 ident: 679_CR14 publication-title: Am. J. Math. doi: 10.1353/ajm.1997.0039 – volume: 151 start-page: 817 year: 2000 ident: 679_CR19 publication-title: Ann. Math. doi: 10.2307/121049 – volume: 372 start-page: 136 year: 1986 ident: 679_CR22 publication-title: J. reine angew. Math. – volume: 111 start-page: 571 year: 1980 ident: 679_CR29 publication-title: Ann. Math. doi: 10.2307/1971110 – volume: 107 start-page: 29 year: 1998 ident: 679_CR31 publication-title: Isr. J. Math. doi: 10.1007/BF02764004 – volume: 30 start-page: 97 year: 1997 ident: 679_CR9 publication-title: Ann. Sci. École Norm. Sup. doi: 10.1016/S0012-9593(97)89916-8 – volume: 57 start-page: 159 year: 2005 ident: 679_CR16 publication-title: Can. J. Math. doi: 10.4153/CJM-2005-007-x – volume: 358 start-page: 4653 year: 2006 ident: 679_CR25 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-06-03894-3 – volume: 7 start-page: 440 year: 2003 ident: 679_CR3 publication-title: Represent. Theory doi: 10.1090/S1088-4165-03-00166-3 – volume: 4 start-page: 127 year: 2000 ident: 679_CR15 publication-title: Represent. Theory doi: 10.1090/S1088-4165-00-00081-9 – volume: 85 start-page: 97 year: 1997 ident: 679_CR26 publication-title: Publ. Math. IHES doi: 10.1007/BF02699536 – volume: 2 start-page: 195 year: 2010 ident: 679_CR10 publication-title: Int. Math. Res. Not. doi: 10.1093/imrn/rnp128 – volume: 63 start-page: 327 year: 2011 ident: 679_CR18 publication-title: Can. J. Math. doi: 10.4153/CJM-2011-003-2 – volume: 2 start-page: 235 year: 2003 ident: 679_CR35 publication-title: J. Inst. Math. Jussieu doi: 10.1017/S1474748003000082 – volume: 510 start-page: 83 year: 1999 ident: 679_CR37 publication-title: J. reine angew. Math. doi: 10.1515/crll.1999.050 |
| SSID | ssj0014373 |
| Score | 2.0947163 |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 319 |
| SubjectTerms | Algebraic Geometry Calculus of Variations and Optimal Control; Optimization Geometry Lie Groups Mathematics Mathematics and Statistics Number Theory Topological Groups |
| Title | Tempered representations for classical p-adic groups |
| URI | https://link.springer.com/article/10.1007/s00229-014-0679-5 |
| Volume | 145 |
| WOSCitedRecordID | wos000343881600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014373 issn: 0025-2611 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6ogdPSqCPSZscRVw86CK6yt5KXoUFqct29febZJvCggp6n5Yyk2S-6eT7BuACM9SYKSSUUk3QiJgIwxRRHLlAlFoKH-n7Yjhk4zF_bHncTbjtHlqS_qTuyG4u3bi7PUjczw9CV2HNZjvm5jU8Pb92rQOn1RPmtNryIAmtzO9esZyMljuhPsEMtv_1aTuw1eLJ6HqxAHZhxdR7sPnQibE2-4AjY7HxzOjIK1gGtlHdRBawRsrBZxepaEqEnqjI8zyaA3gZ3I5u7kg7LIEoTHFOEkNlxQtTZSYrhBCVxlxrrRir7KajOU8FN4XgsbQVEbI4VxZJ5FQrxSpGqckOoVe_1-YIolwmqUmqlCc2XFpKninNkNtCRKJUoupDHLxWqlZJ3A20eCs7DWTvkNI6pHQOKWkfLrtHpgsZjd-Mr4Kby3ZHNT9bH__J-gQ2UhcnzyY8hd589mHOYF19zifN7NyvpC-qEsJ2 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ifOXhSFppkNtk9iigV2yJapbewr0BBYmmqv9_dbRIoqKD3SQgzuzvfZPb7BuACY9QYKySUUk3QiA4RhimiOHKBKLUUPtK9dDBgoxF_rHjcZX3bvW5J-pO6Ibu5dOPu9iBxPz8IXYYVtAnLCeY_Pb82rQOn1VPPabXlQVi3Mr97xWIyWuyE-gRzt_WvT9uGzQpPBtfzBbADS6bYhY1-I8Za7gEOjcXGU6MDr2BZs42KMrCANVAOPrtIBRMi9FgFnudR7sPL3e3wpkuqYQlEYYQzEhoqc56aPDZxKoTINSZaa8VYbjcdTXgkuEkF70hbESHrJMoiiYRqpVjOKDXxAbSK98IcQpDIMDJhHvHQhktLyWOlGXJbiEiUSuRt6NRey1SlJO4GWrxljQayd0hmHZI5h2S0DZfNI5O5jMZvxle1m7NqR5U_Wx_9yfoc1rrDfi_r3Q8ejmE9cjHzzMITaM2mH-YUVtXnbFxOz_yq-gLSYsVa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ifOXhSluYxm-4eRS2KtRSs0lvYV6AgsTTR3-9umgQKKoj3SQjf7DIzmfm-AbjACDVGCgmlVBM0wifCMEUURy4QpZai9HS_Oxiw8ZgPqz2neT3tXrck55wGp9KUFZ2pTjsN8c2FHjfng8T9CCF0GVbQzdG7cv35tWkjON2eemerLRWCuq353SsWA9NiV7QMNr2tf3_mNmxWeaZ3PT8YO7Bksl3YeGpEWvM9wJGxOfPMaK9UtqxZSFnu2UTWUy6tdh70pkToifJK_ke-Dy-9u9HNPamWKBCFIRYkMFSmvGvSyERdIUSqMdZaK8ZSexlpzEPBTVdwX9pKCZkfK5thxFQrxVJGqYkOoJW9Z-YQvFgGoQnSkAfWjVpKHinNkNsCRaJUIm2DXyOYqEph3C26eEsabeQSkMQCkjhAEtqGy-aR6Vxe4zfjqxrypLpp-c_WR3-yPoe14W0v6T8MHo9hPXQuKwmHJ9AqZh_mFFbVZzHJZ2flAfsCdNDOPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tempered+representations+for+classical+p-adic+groups&rft.jtitle=Manuscripta+mathematica&rft.au=Jantzen%2C+Chris&rft.date=2014-11-01&rft.issn=0025-2611&rft.eissn=1432-1785&rft.volume=145&rft.issue=3-4&rft.spage=319&rft.epage=387&rft_id=info:doi/10.1007%2Fs00229-014-0679-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00229_014_0679_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-2611&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-2611&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-2611&client=summon |