Tempered representations for classical p-adic groups

Uložené v:
Podrobná bibliografia
Vydané v:Manuscripta mathematica Ročník 145; číslo 3-4; s. 319 - 387
Hlavný autor: Jantzen, Chris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2014
Predmet:
ISSN:0025-2611, 1432-1785
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Author Jantzen, Chris
Author_xml – sequence: 1
  givenname: Chris
  surname: Jantzen
  fullname: Jantzen, Chris
  email: jantzenc@ecu.edu
  organization: Department of Mathematics, East Carolina University
BookMark eNp9j71uwyAUhVGVSk3SPkA3vwAtYH7MWEX9kyJ1SWdE4BIROWCBM_Tt68idOmQ6wz3f1flWaJFyAoQeKXmihKjnSghjGhPKMZFKY3GDlpS3DFPViQVaTmeBmaT0Dq1qPZKp2Kp2ifgOTgMU8E2BoUCFNNox5lSbkEvjeltrdLZvBmx9dM2h5PNQ79FtsH2Fh79co--3193mA2-_3j83L1vsOOMjpiD2QSsILbTKWhs8l95713WBUCWkZlaDsprstZC8I9JRIaTwznWhEwLaNVLzX1dyrQWCcXGeNxYbe0OJucibWd5MTuYib8RE0n_kUOLJlp-rDJuZOnXTAYo55nNJk-AV6BeXPm57
CitedBy_id crossref_primary_10_1515_crelle_2025_0012
crossref_primary_10_1007_s00222_021_01088_4
crossref_primary_10_1142_S0219498823502389
crossref_primary_10_1007_s00229_021_01285_8
crossref_primary_10_1112_S0010437X22007904
crossref_primary_10_1007_s10114_024_3236_5
crossref_primary_10_1016_j_crma_2016_11_009
crossref_primary_10_1007_s00229_020_01187_1
crossref_primary_10_1007_s00229_015_0727_9
crossref_primary_10_1007_s00229_021_01330_6
crossref_primary_10_1515_crelle_2022_0030
crossref_primary_10_1007_s00229_017_0955_2
Cites_doi 10.2307/1971524
10.2307/2374942
10.1090/S1088-4165-07-00316-0
10.1090/S0894-0347-02-00389-2
10.1007/BF02786631
10.1006/jabr.1995.1284
10.1007/BFb0087916
10.4153/CJM-2005-025-4
10.1007/s100970100033
10.1142/9789812562500_0004
10.24033/asens.1333
10.4153/CJM-1995-019-8
10.2140/pjm.1993.161.347
10.1215/S0012-7094-92-06601-4
10.24033/asens.1379
10.1007/s00229-010-0423-8
10.1353/ajm.1997.0039
10.2307/121049
10.2307/1971110
10.1007/BF02764004
10.1016/S0012-9593(97)89916-8
10.4153/CJM-2005-007-x
10.1090/S0002-9947-06-03894-3
10.1090/S1088-4165-03-00166-3
10.1090/S1088-4165-00-00081-9
10.1007/BF02699536
10.1093/imrn/rnp128
10.4153/CJM-2011-003-2
10.1017/S1474748003000082
10.1515/crll.1999.050
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
DBID AAYXX
CITATION
DOI 10.1007/s00229-014-0679-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-1785
EndPage 387
ExternalDocumentID 10_1007_s00229_014_0679_5
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c424t-1e5bf97ef3e37aaafd46dddc88f0175692a9e7a90b9564806c15565dcc8f855e3
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343881600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-2611
IngestDate Sat Nov 29 06:38:17 EST 2025
Tue Nov 18 22:30:22 EST 2025
Fri Feb 21 02:34:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords 22E50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-1e5bf97ef3e37aaafd46dddc88f0175692a9e7a90b9564806c15565dcc8f855e3
PageCount 69
ParticipantIDs crossref_citationtrail_10_1007_s00229_014_0679_5
crossref_primary_10_1007_s00229_014_0679_5
springer_journals_10_1007_s00229_014_0679_5
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Manuscripta mathematica
PublicationTitleAbbrev manuscripta math
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References MœglinC.Sur la classification des séries discrètes des groupes classiques; paramètres de Langlands et exhaustivitéJ. Eur. Math. Soc.2002414320010.1007/s1009701000331002.22009
MuićG.Composition series of generalized principal series; the case of strongly positive discrete seriesIsr. J. Math.200414015720210.1007/BF027866311055.22015
Tadić, M.: On classification of some classes of irreducible representations of classical groups. Representations of real and p-adic groups In: Tan, E.-C., Zhu, C.-B. (eds.) Lecture Notes Series. Institute of Mathematical Science, National University of Singapore, vol. 2. Singapore University Press, Singapore, pp. 95–162 (2004)
GoldbergD.Reducibility for non-connected p-adic groups with G0 of prime indexCan. J. Math.19954734436310.4153/CJM-1995-019-80835.22015
GoldbergD.HerbR.Some results on the admissible representations of non-connected reductive p-adic groupsAnn. Sci. École Norm. Sup.1997309714614223140874.22016
ShahidiF.A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groupsAnn. Math.1990132273330107059910.2307/19715240780.22005
HerbR.Elliptic representations for Sp(2n) and SO(n)Pac. J. Math.1993161347358124220310.2140/pjm.1993.161.347
SchneiderP.StuhlerU.Representation theory and sheaves on the Bruhat–Tits buildingPubl. Math. IHES19978597191147186710.1007/BF026995360892.22012
MœglinC.Normalisation des opérateurs d’entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques p-adiquesAnn. Math.200015181784710.2307/1210490956.22012
Tadić, M.: On tempered and square integrable representations of classical p-adic groups. Preprint
WaldspurgerJ.-L.La formule de Plancherel pour les groupes p-adiques d’après Harish-ChandraJ. Inst. Math. Jussieu20032235333198969310.1017/S14747480030000821029.22016
Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. Preprint. Available online at http://www.math.ubc.ca/people/faculty/cass/research.html as “The p-adic notes”
JantzenC.On supports of induced representations for symplectic and odd-orthogonal groupsAm. J. Math.199711912131262148181410.1353/ajm.1997.00390888.22013
BanD.JantzenC.Degenerate principal series for even orthogonal groupsRepresent. Theory20037440480201706510.1090/S1088-4165-03-00166-31054.22015
BernsteinI.ZelevinskyA.Induced representations of reductive p-adic groups IAnn. Sci. École Norm. Sup.1977104414725791720412.22015
JantzenC.Jacquet modules of p-adic general linear groupsRepresent. Theory2007114583230660610.1090/S1088-4165-07-00316-01139.22014
GoldbergD.R-Groups and elliptic representations for unitary groupsProc. Am. Math. Soc.1995123126712760856.22023
ShahidiF.Twisted endoscopy and reducibility of induced representations for p-adic groupsDuke Math. J.199266141115943010.1215/S0012-7094-92-06601-40785.22022
GoldbergD.Reducibility of induced representations for Sp(2n) and SO(n)Am. J. Math.19941161101115110.2307/23749420851.22021
TadićM.On reducibility of parabolic inductionIsr. J. Math.1998107299110.1007/BF027640040914.22019
TadićM.On invariants of discrete series representations of classical p-adic groupsMauscripta Math.201113541743510.1007/s00229-010-0423-81222.22016
ZhangY.L-Packets and reducibilitiesJ. reine angew. Math.19995108310216960920918.22010
JantzenC.Square-integrable representations for symplectic and odd-orthogonal groups IIRepresent. Theory20004127180178946410.1090/S1088-4165-00-00081-91045.22018
JantzenC.Discrete series for p-adic SO(2n) and restrictions of representations of O(2n)Can. J. Math.201163327380280905910.4153/CJM-2011-003-21219.22016
SilbergerA.Special representations of reductive p-adic groups are not integrableAnn. Math.198011157158757713810.2307/19711100437.22015
Jacquet, H.: Generic representations. Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976). Lecture Notes in Mathematics, vol. 587, pp. 91–101. Springer, Berlin (1977)
TadićM.Structure arising from induction and Jacquet modules of representations of classical p-adic groupsJ. Algebra1995177133135635810.1006/jabr.1995.12840874.22014
JantzenC.Duality and supports of induced representations for orthogonal groupsCan. J. Math.200557159179211385310.4153/CJM-2005-007-x1065.22013
MœglinC.TadićM.Construction of discrete series for classical p-adic groupsJ. Am. Math. Soc.20021571578610.1090/S0894-0347-02-00389-20992.22015
BanD.Parabolic induction and Jacquet modules of representations of O(2n,F)Glas. Mat.1999345414718517396160954.22013
MuićG.On the non-unitary unramified dual for classical p-adic groupsTrans. Am. Math. Soc.20063584653468710.1090/S0002-9947-06-03894-31102.22014
Aubert, A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 347(1995), 2179–2189 and Erratum: Trans. Amer. Math. Soc. 348, 4687–4690 (1996)
ZelevinskyA.Induced representations of reductive p-adic groups II, On irreducible representations of GL(n)Ann. Sci. École Norm. Sup.1980131652105840840441.22014
JantzenC.Degenerate principal series for symplectic and odd-orthogonal groupsMem. Am. Math. Soc.199659011001346929
MœglinC.WaldspurgerJ.-L.Sur l’involution de ZelevinskiJ. reine angew. Math.19863721361778635220594.22008
MuićG.Reducibility of generalized principal seriesCan. J. Math.20055761664710.4153/CJM-2005-025-41068.22017
HanzerM.The generalized injectivity conjecture for classical p-adic groupsInt. Math. Res. Not.201021952372581039
679_CR1
R. Herb (679_CR11) 1993; 161
C. Jantzen (679_CR17) 2007; 11
679_CR32
M. Hanzer (679_CR10) 2010; 2
679_CR12
C. Jantzen (679_CR16) 2005; 57
679_CR34
679_CR5
G. Muić (679_CR24) 2005; 57
C. Mœglin (679_CR19) 2000; 151
A. Silberger (679_CR29) 1980; 111
G. Muić (679_CR23) 2004; 140
C. Jantzen (679_CR15) 2000; 4
M. Tadić (679_CR31) 1998; 107
M. Tadić (679_CR33) 2011; 135
C. Jantzen (679_CR13) 1996; 590
F. Shahidi (679_CR27) 1990; 132
D. Goldberg (679_CR7) 1995; 47
C. Jantzen (679_CR18) 2011; 63
D. Ban (679_CR3) 2003; 7
I. Bernstein (679_CR4) 1977; 10
G. Muić (679_CR25) 2006; 358
P. Schneider (679_CR26) 1997; 85
M. Tadić (679_CR30) 1995; 177
C. Jantzen (679_CR14) 1997; 119
D. Ban (679_CR2) 1999; 34
C. Mœglin (679_CR20) 2002; 4
C. Mœglin (679_CR21) 2002; 15
A. Zelevinsky (679_CR36) 1980; 13
F. Shahidi (679_CR28) 1992; 66
D. Goldberg (679_CR6) 1994; 116
D. Goldberg (679_CR9) 1997; 30
C. Mœglin (679_CR22) 1986; 372
Y. Zhang (679_CR37) 1999; 510
D. Goldberg (679_CR8) 1995; 123
J.-L. Waldspurger (679_CR35) 2003; 2
References_xml – reference: JantzenC.Duality and supports of induced representations for orthogonal groupsCan. J. Math.200557159179211385310.4153/CJM-2005-007-x1065.22013
– reference: GoldbergD.HerbR.Some results on the admissible representations of non-connected reductive p-adic groupsAnn. Sci. École Norm. Sup.1997309714614223140874.22016
– reference: Tadić, M.: On tempered and square integrable representations of classical p-adic groups. Preprint
– reference: JantzenC.On supports of induced representations for symplectic and odd-orthogonal groupsAm. J. Math.199711912131262148181410.1353/ajm.1997.00390888.22013
– reference: ShahidiF.Twisted endoscopy and reducibility of induced representations for p-adic groupsDuke Math. J.199266141115943010.1215/S0012-7094-92-06601-40785.22022
– reference: Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. Preprint. Available online at http://www.math.ubc.ca/people/faculty/cass/research.html as “The p-adic notes”
– reference: TadićM.Structure arising from induction and Jacquet modules of representations of classical p-adic groupsJ. Algebra1995177133135635810.1006/jabr.1995.12840874.22014
– reference: GoldbergD.Reducibility of induced representations for Sp(2n) and SO(n)Am. J. Math.19941161101115110.2307/23749420851.22021
– reference: MœglinC.Sur la classification des séries discrètes des groupes classiques; paramètres de Langlands et exhaustivitéJ. Eur. Math. Soc.2002414320010.1007/s1009701000331002.22009
– reference: Jacquet, H.: Generic representations. Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976). Lecture Notes in Mathematics, vol. 587, pp. 91–101. Springer, Berlin (1977)
– reference: SilbergerA.Special representations of reductive p-adic groups are not integrableAnn. Math.198011157158757713810.2307/19711100437.22015
– reference: MœglinC.WaldspurgerJ.-L.Sur l’involution de ZelevinskiJ. reine angew. Math.19863721361778635220594.22008
– reference: GoldbergD.R-Groups and elliptic representations for unitary groupsProc. Am. Math. Soc.1995123126712760856.22023
– reference: JantzenC.Jacquet modules of p-adic general linear groupsRepresent. Theory2007114583230660610.1090/S1088-4165-07-00316-01139.22014
– reference: BanD.Parabolic induction and Jacquet modules of representations of O(2n,F)Glas. Mat.1999345414718517396160954.22013
– reference: MœglinC.Normalisation des opérateurs d’entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques p-adiquesAnn. Math.200015181784710.2307/1210490956.22012
– reference: MuićG.On the non-unitary unramified dual for classical p-adic groupsTrans. Am. Math. Soc.20063584653468710.1090/S0002-9947-06-03894-31102.22014
– reference: SchneiderP.StuhlerU.Representation theory and sheaves on the Bruhat–Tits buildingPubl. Math. IHES19978597191147186710.1007/BF026995360892.22012
– reference: Tadić, M.: On classification of some classes of irreducible representations of classical groups. Representations of real and p-adic groups In: Tan, E.-C., Zhu, C.-B. (eds.) Lecture Notes Series. Institute of Mathematical Science, National University of Singapore, vol. 2. Singapore University Press, Singapore, pp. 95–162 (2004)
– reference: Aubert, A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 347(1995), 2179–2189 and Erratum: Trans. Amer. Math. Soc. 348, 4687–4690 (1996)
– reference: TadićM.On reducibility of parabolic inductionIsr. J. Math.1998107299110.1007/BF027640040914.22019
– reference: ZhangY.L-Packets and reducibilitiesJ. reine angew. Math.19995108310216960920918.22010
– reference: ShahidiF.A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groupsAnn. Math.1990132273330107059910.2307/19715240780.22005
– reference: BernsteinI.ZelevinskyA.Induced representations of reductive p-adic groups IAnn. Sci. École Norm. Sup.1977104414725791720412.22015
– reference: GoldbergD.Reducibility for non-connected p-adic groups with G0 of prime indexCan. J. Math.19954734436310.4153/CJM-1995-019-80835.22015
– reference: HanzerM.The generalized injectivity conjecture for classical p-adic groupsInt. Math. Res. Not.201021952372581039
– reference: BanD.JantzenC.Degenerate principal series for even orthogonal groupsRepresent. Theory20037440480201706510.1090/S1088-4165-03-00166-31054.22015
– reference: MuićG.Reducibility of generalized principal seriesCan. J. Math.20055761664710.4153/CJM-2005-025-41068.22017
– reference: JantzenC.Discrete series for p-adic SO(2n) and restrictions of representations of O(2n)Can. J. Math.201163327380280905910.4153/CJM-2011-003-21219.22016
– reference: ZelevinskyA.Induced representations of reductive p-adic groups II, On irreducible representations of GL(n)Ann. Sci. École Norm. Sup.1980131652105840840441.22014
– reference: JantzenC.Square-integrable representations for symplectic and odd-orthogonal groups IIRepresent. Theory20004127180178946410.1090/S1088-4165-00-00081-91045.22018
– reference: HerbR.Elliptic representations for Sp(2n) and SO(n)Pac. J. Math.1993161347358124220310.2140/pjm.1993.161.347
– reference: WaldspurgerJ.-L.La formule de Plancherel pour les groupes p-adiques d’après Harish-ChandraJ. Inst. Math. Jussieu20032235333198969310.1017/S14747480030000821029.22016
– reference: TadićM.On invariants of discrete series representations of classical p-adic groupsMauscripta Math.201113541743510.1007/s00229-010-0423-81222.22016
– reference: JantzenC.Degenerate principal series for symplectic and odd-orthogonal groupsMem. Am. Math. Soc.199659011001346929
– reference: MœglinC.TadićM.Construction of discrete series for classical p-adic groupsJ. Am. Math. Soc.20021571578610.1090/S0894-0347-02-00389-20992.22015
– reference: MuićG.Composition series of generalized principal series; the case of strongly positive discrete seriesIsr. J. Math.200414015720210.1007/BF027866311055.22015
– volume: 132
  start-page: 273
  year: 1990
  ident: 679_CR27
  publication-title: Ann. Math.
  doi: 10.2307/1971524
– volume: 116
  start-page: 1101
  year: 1994
  ident: 679_CR6
  publication-title: Am. J. Math.
  doi: 10.2307/2374942
– volume: 123
  start-page: 1267
  year: 1995
  ident: 679_CR8
  publication-title: Proc. Am. Math. Soc.
– ident: 679_CR1
– volume: 11
  start-page: 45
  year: 2007
  ident: 679_CR17
  publication-title: Represent. Theory
  doi: 10.1090/S1088-4165-07-00316-0
– volume: 15
  start-page: 715
  year: 2002
  ident: 679_CR21
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-02-00389-2
– ident: 679_CR34
– volume: 590
  start-page: 1
  year: 1996
  ident: 679_CR13
  publication-title: Mem. Am. Math. Soc.
– ident: 679_CR5
– volume: 140
  start-page: 157
  year: 2004
  ident: 679_CR23
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02786631
– volume: 177
  start-page: 1
  year: 1995
  ident: 679_CR30
  publication-title: J. Algebra
  doi: 10.1006/jabr.1995.1284
– ident: 679_CR12
  doi: 10.1007/BFb0087916
– volume: 34
  start-page: 147
  issue: 54
  year: 1999
  ident: 679_CR2
  publication-title: Glas. Mat.
– volume: 57
  start-page: 616
  year: 2005
  ident: 679_CR24
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2005-025-4
– volume: 4
  start-page: 143
  year: 2002
  ident: 679_CR20
  publication-title: J. Eur. Math. Soc.
  doi: 10.1007/s100970100033
– ident: 679_CR32
  doi: 10.1142/9789812562500_0004
– volume: 10
  start-page: 441
  year: 1977
  ident: 679_CR4
  publication-title: Ann. Sci. École Norm. Sup.
  doi: 10.24033/asens.1333
– volume: 47
  start-page: 344
  year: 1995
  ident: 679_CR7
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1995-019-8
– volume: 161
  start-page: 347
  year: 1993
  ident: 679_CR11
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1993.161.347
– volume: 66
  start-page: 1
  year: 1992
  ident: 679_CR28
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-92-06601-4
– volume: 13
  start-page: 165
  year: 1980
  ident: 679_CR36
  publication-title: Ann. Sci. École Norm. Sup.
  doi: 10.24033/asens.1379
– volume: 135
  start-page: 417
  year: 2011
  ident: 679_CR33
  publication-title: Mauscripta Math.
  doi: 10.1007/s00229-010-0423-8
– volume: 119
  start-page: 1213
  year: 1997
  ident: 679_CR14
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1997.0039
– volume: 151
  start-page: 817
  year: 2000
  ident: 679_CR19
  publication-title: Ann. Math.
  doi: 10.2307/121049
– volume: 372
  start-page: 136
  year: 1986
  ident: 679_CR22
  publication-title: J. reine angew. Math.
– volume: 111
  start-page: 571
  year: 1980
  ident: 679_CR29
  publication-title: Ann. Math.
  doi: 10.2307/1971110
– volume: 107
  start-page: 29
  year: 1998
  ident: 679_CR31
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02764004
– volume: 30
  start-page: 97
  year: 1997
  ident: 679_CR9
  publication-title: Ann. Sci. École Norm. Sup.
  doi: 10.1016/S0012-9593(97)89916-8
– volume: 57
  start-page: 159
  year: 2005
  ident: 679_CR16
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2005-007-x
– volume: 358
  start-page: 4653
  year: 2006
  ident: 679_CR25
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-06-03894-3
– volume: 7
  start-page: 440
  year: 2003
  ident: 679_CR3
  publication-title: Represent. Theory
  doi: 10.1090/S1088-4165-03-00166-3
– volume: 4
  start-page: 127
  year: 2000
  ident: 679_CR15
  publication-title: Represent. Theory
  doi: 10.1090/S1088-4165-00-00081-9
– volume: 85
  start-page: 97
  year: 1997
  ident: 679_CR26
  publication-title: Publ. Math. IHES
  doi: 10.1007/BF02699536
– volume: 2
  start-page: 195
  year: 2010
  ident: 679_CR10
  publication-title: Int. Math. Res. Not.
  doi: 10.1093/imrn/rnp128
– volume: 63
  start-page: 327
  year: 2011
  ident: 679_CR18
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2011-003-2
– volume: 2
  start-page: 235
  year: 2003
  ident: 679_CR35
  publication-title: J. Inst. Math. Jussieu
  doi: 10.1017/S1474748003000082
– volume: 510
  start-page: 83
  year: 1999
  ident: 679_CR37
  publication-title: J. reine angew. Math.
  doi: 10.1515/crll.1999.050
SSID ssj0014373
Score 2.0946097
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms Algebraic Geometry
Calculus of Variations and Optimal Control; Optimization
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
Title Tempered representations for classical p-adic groups
URI https://link.springer.com/article/10.1007/s00229-014-0679-5
Volume 145
WOSCitedRecordID wos000343881600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1432-1785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014373
  issn: 0025-2611
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7G-2IMnJbCPJJscRRQPWkRr6W3JEwqylm7195ukm4WCCnqfhGWS7HyTyfcNwIWxLLVKCkRJQX2ZUSKZlxQJ69ADk0TQcN8xeigHAzYe86eWx93E1-6xJBn-1B3ZzYcb_7YHI3_5gcgqrLlox3y_hueXUVc68Fo9sU-rSw-yWMr8borlYLRcCQ0B5m77X5-2A1stnkyuFxtgF1ZMvQebj50Ya7MPeGgcNp4ZnQQFy8g2qpvEAdZEefjsVyqZIqEnKgk8j-YAXu9uhzf3qG2WgBTO8RxlhkjLS2MLU5RCCKsx1Vorxqw7dITyXHBTCp5KlxFhllLlkAQlWilmGSGmOIRe_V6bI0gIkVnuEkOVcYWNIsLmRWELKTKdYsttH9LotUq1SuK-ocVb1WkgB4dUziGVd0hF-nDZDZkuZDR-M76Kbq7aE9X8bH38J-sT2Mj9OgU24Sn05rMPcwbr6nM-aWbnYSd9AZcYwdw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1ife_CkBPaRZLNHEUvFtojW0tuSJxRkLd3q7zdJdxcKKuh9EpZJsvNNJt83AFfasNBIwRElCXVlRoFEnFLEjUUPTBBO_X3HqJcOBmw8zp4qHndZv3avS5L-T92Q3Vy4cW97MHKXH4iswhq2AcsJ5j-_jJrSgdPqqfu02vQgqkuZ302xHIyWK6E-wHR2_vVpu7Bd4cngdrEB9mBFF_uw1W_EWMsDwENtsfFMq8ArWNZso6IMLGANpIPPbqWCKeJqIgPP8ygP4bVzP7zroqpZApI4xnMUaSJMlmqT6CTlnBuFqVJKMmbsoSM0i3mmU56FwmZEmIVUWiRBiZKSGUaITo6gVbwX-hgCQkQU28RQRpnEWhJu4iQxieCRCrHJTBvC2mu5rJTEXUOLt7zRQPYOya1DcueQnLThuhkyXcho_GZ8U7s5r05U-bP1yZ-sL2GjO-z38t7D4PEUNmO3Zp5ZeAat-exDn8O6_JxPytmF31VfuDDEwA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ifOXhSluaxu9kcRS2KtRSspbewTyiUWJro73c3TQIFFcT7JCyzu8w3O_N9A3ClDfONFBxRElFXZhRIhDFF3Fj0wAThtHzvGPXifp-Nx8mgmnOa193udUlywWlwKk1Z0Zkp02mIby70uD4fjNxDCCKrsIZdH71L119HTRnB6fbUM1ttqhDUZc3vfrEcmJaromWw6e78e5m7sF3hTO92cTD2YEVn-7D10oi05geAh9pi5rlWXqlsWbOQstyzQNaTDla7HfRmiKuJ9Er-R34Ib92H4d0jqoYoIIlDXKBAE2GSWJtIRzHn3ChMlVKSMWMvI6FJyBMd88QXNlPCzKfSIgxKlJTMMEJ0dASt7D3Tx-ARIoLQJowySCTWknATRpGJBA-Uj01i2uDXHkxlpTDuBl1M00YbuXRIah2SOoekpA3XzSezhbzGb8Y3tcvT6qblP1uf_Mn6EjYG992099R_PoXN0G1ZSTg8g1Yx_9DnsC4_i0k-vygP2BdTWM2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tempered+representations+for+classical+p-adic+groups&rft.jtitle=Manuscripta+mathematica&rft.au=Jantzen%2C+Chris&rft.date=2014-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-2611&rft.eissn=1432-1785&rft.volume=145&rft.issue=3-4&rft.spage=319&rft.epage=387&rft_id=info:doi/10.1007%2Fs00229-014-0679-5&rft.externalDocID=10_1007_s00229_014_0679_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-2611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-2611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-2611&client=summon