Solving polyhedral d.c. optimization problems via concave minimization

The problem of minimizing the difference of two convex functions is called polyhedral d.c. optimization problem if at least one of the two component functions is polyhedral. We characterize the existence of global optimal solutions of polyhedral d.c. optimization problems. This result is used to sho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 78; číslo 1; s. 37 - 47
Hlavní autoři: vom Dahl, Simeon, Löhne, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer US 01.09.2020
Springer
Springer Nature B.V
Témata:
ISSN:1573-2916, 0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of minimizing the difference of two convex functions is called polyhedral d.c. optimization problem if at least one of the two component functions is polyhedral. We characterize the existence of global optimal solutions of polyhedral d.c. optimization problems. This result is used to show that, whenever the existence of an optimal solution can be certified, polyhedral d.c. optimization problems can be solved by certain concave minimization algorithms. No further assumptions are necessary in case of the first component being polyhedral and just some mild assumptions to the first component are required for the case where the second component is polyhedral. In case of both component functions being polyhedral, we obtain a primal and dual existence test and a primal and dual solution procedure. Numerical examples are discussed.
AbstractList The problem of minimizing the difference of two convex functions is called polyhedral d.c. optimization problem if at least one of the two component functions is polyhedral. We characterize the existence of global optimal solutions of polyhedral d.c. optimization problems. This result is used to show that, whenever the existence of an optimal solution can be certified, polyhedral d.c. optimization problems can be solved by certain concave minimization algorithms. No further assumptions are necessary in case of the first component being polyhedral and just some mild assumptions to the first component are required for the case where the second component is polyhedral. In case of both component functions being polyhedral, we obtain a primal and dual existence test and a primal and dual solution procedure. Numerical examples are discussed.
Audience Academic
Author Löhne, Andreas
vom Dahl, Simeon
Author_xml – sequence: 1
  fullname: vom Dahl, Simeon
– sequence: 2
  fullname: Löhne, Andreas
BookMark eNp9kEtLAzEUhYNUsFb_gCAMuJ4xj3lklqVYFQou1HVI86gpM8mYTAvtrzftiIqLksUN4Xy555xLMLLOKgBuEMwQhNV9QJDWNIUYphDWiKT7MzBGRUVSXKNy9Od-AS5DWMOoogUeg_mra7bGrpLONbsPJT1vEpmJLHFdb1qz571xNum8WzaqDcnW8EQ4K_hWJa2xP4orcK55E9T195yA9_nD2-wpXbw8Ps-mi1TkOO9TRAtdYAkRL2lFl1WlCg2l4BLnhEitIeF5pQtVSgRJtMiJhFoui7qIoTAWZALuhn-jo8-NCj1bu423cSXDJaQlrnKCoyobVCveKGasdr3nIh6pWhPtK23i-7RClNR5iWkE8AAI70LwSrPOm5b7HUOQHQpmQ8EsFsyOBbN9hOg_SJj-2EbcZprTKBnQEPfYlfK_MU5StwOlYgYT2GGE3nmGKS1RTr4AqAOb_A
CitedBy_id crossref_primary_10_1007_s10898_025_01535_z
crossref_primary_10_1007_s10957_025_02769_3
crossref_primary_10_1007_s11228_020_00566_w
Cites_doi 10.1080/02331930500342534
10.1016/0022-247X(78)90243-3
10.1007/s10898-014-0159-1
10.1017/S0004972700010844
10.1007/s10898-017-0519-8
10.1002/nav.3800320119
10.1080/02331934.2018.1518447
10.1137/1028106
10.1007/978-1-4757-2809-5
10.1023/A:1021765131316
10.1515/9781400873173
10.1007/BFb0121159
10.1007/978-1-4615-2025-2_4
10.1007/978-1-4615-2025-2_3
10.1016/j.ejor.2016.02.039
10.1007/s10898-018-0627-0
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-020-00913-z
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Mathematics
Computer Science
EISSN 1573-2916
EndPage 47
ExternalDocumentID A718394628
10_1007_s10898_020_00913_z
288614
GrantInformation_xml – fundername: Friedrich-Schiller-Universität Jena (1010)
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OT2
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~EX
-52
-57
-5G
-BR
-EM
3V.
AAAVM
AAYOK
AAYZH
ABTAH
ADINQ
AESKC
C6C
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
AAYXX
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c424t-185f52d01a6878b77e5f0dcad2433dff03a47f5e6d103009a3d0fdb59509122c3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557380600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-2916
0925-5001
IngestDate Wed Nov 05 01:05:39 EST 2025
Sat Nov 29 10:09:42 EST 2025
Sat Nov 29 01:59:35 EST 2025
Tue Nov 18 22:01:13 EST 2025
Fri Feb 21 02:42:28 EST 2025
Fri Dec 05 12:05:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Global optimization
D.c. programming
52B55
90C29
Linear vector optimization
90C26
Multi-objective linear programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-185f52d01a6878b77e5f0dcad2433dff03a47f5e6d103009a3d0fdb59509122c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0872-4735
OpenAccessLink https://link.springer.com/10.1007/s10898-020-00913-z
PQID 2608627432
PQPubID 29930
PageCount 11
ParticipantIDs proquest_journals_2608627432
gale_infotracacademiconefile_A718394628
crossref_primary_10_1007_s10898_020_00913_z
crossref_citationtrail_10_1007_s10898_020_00913_z
springer_journals_10_1007_s10898_020_00913_z
econis_econstor_288614
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Ferrer, Bagirov, Beliakov (CR7) 2014; 61
Tuy, Cornet, Nguyen, Vial (CR16) 1987
Benson, Horst, Pardalos (CR2) 1995
CR6
Löhne, Weißing (CR10) 2017; 260
Rockafellar (CR13) 1970
Toland (CR15) 1978; 66
Pardalos, Rosen (CR12) 1986; 28
CR11
Tuy (CR18) 1998
Ciripoi, Löhne, Weißing (CR5) 2018; 68
Horst, Thoai (CR8) 1999; 103
Tuy, Horst, Pardalos (CR17) 1995
Löhne, Wagner (CR9) 2017; 69
Ciripoi, Löhne, Weißing (CR4) 2018; 72
Chinchuluun, Pardalos, Enkhbat (CR3) 2005; 54
Singer (CR14) 1979; 20
Benson (CR1) 1985; 32
A Löhne (913_CR9) 2017; 69
A Chinchuluun (913_CR3) 2005; 54
R Horst (913_CR8) 1999; 103
I Singer (913_CR14) 1979; 20
R T Rockafellar (913_CR13) 1970
913_CR11
H Tuy (913_CR18) 1998
H Tuy (913_CR16) 1987
A Ferrer (913_CR7) 2014; 61
D Ciripoi (913_CR5) 2018; 68
A Löhne (913_CR10) 2017; 260
HP Benson (913_CR2) 1995
913_CR6
HP Benson (913_CR1) 1985; 32
JF Toland (913_CR15) 1978; 66
H Tuy (913_CR17) 1995
PM Pardalos (913_CR12) 1986; 28
D Ciripoi (913_CR4) 2018; 72
References_xml – volume: 54
  start-page: 627
  issue: 6
  year: 2005
  end-page: 639
  ident: CR3
  article-title: Global minimization algorithms for concave quadratic programming problems
  publication-title: Optimization
  doi: 10.1080/02331930500342534
– volume: 66
  start-page: 399
  issue: 2
  year: 1978
  end-page: 415
  ident: CR15
  article-title: Duality in nonconvex optimization
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90243-3
– volume: 61
  start-page: 71
  issue: 1
  year: 2014
  end-page: 89
  ident: CR7
  article-title: Solving dc programs using the cutting angle method
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0159-1
– volume: 20
  start-page: 193
  issue: 2
  year: 1979
  end-page: 198
  ident: CR14
  article-title: A Fenchel–Rockafellar type duality theorem for maximization
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700010844
– volume: 69
  start-page: 369
  issue: 2
  year: 2017
  end-page: 385
  ident: CR9
  article-title: Solving DC programs with a polyhedral component utilizing a multiple objective linear programming solver
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0519-8
– volume: 32
  start-page: 165
  issue: 1
  year: 1985
  end-page: 177
  ident: CR1
  article-title: A finite algorithm for concave minimization over a polyhedron
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800320119
– volume: 68
  start-page: 2039
  issue: 10
  year: 2018
  end-page: 2054
  ident: CR5
  article-title: Calculus of convex polyhedra and polyhedral convex functions by utilizing a multiple objective linear programming solver
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1518447
– volume: 28
  start-page: 367
  issue: 3
  year: 1986
  end-page: 379
  ident: CR12
  article-title: Methods for global concave minimization: a bibliographic survey
  publication-title: SIAM Rev.
  doi: 10.1137/1028106
– year: 1998
  ident: CR18
  publication-title: Convex Analysis and Global Optimization
  doi: 10.1007/978-1-4757-2809-5
– ident: CR11
– volume: 103
  start-page: 1
  issue: 1
  year: 1999
  end-page: 43
  ident: CR8
  article-title: DC programming: overview
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021765131316
– year: 1970
  ident: CR13
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– start-page: 150
  year: 1987
  end-page: 182
  ident: CR16
  article-title: Global minimization of a difference of two convex functions
  publication-title: Nonlinear Analysis and Optimization
  doi: 10.1007/BFb0121159
– start-page: 149
  year: 1995
  end-page: 216
  ident: CR17
  article-title: D.c. optimization: theory, methods and algorithms
  publication-title: Handbook of Global Optimization
  doi: 10.1007/978-1-4615-2025-2_4
– ident: CR6
– start-page: 43
  year: 1995
  end-page: 148
  ident: CR2
  article-title: Concave minimization: theory, applications and algorithms
  publication-title: Handbook of Global Optimization
  doi: 10.1007/978-1-4615-2025-2_3
– volume: 260
  start-page: 807
  issue: 3
  year: 2017
  end-page: 813
  ident: CR10
  article-title: The vector linear program solver bensolve—notes on theoretical background
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.02.039
– volume: 72
  start-page: 347
  issue: 2
  year: 2018
  end-page: 372
  ident: CR4
  article-title: A vector linear programming approach for certain global optimization problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0627-0
– volume-title: Convex Analysis and Global Optimization
  year: 1998
  ident: 913_CR18
  doi: 10.1007/978-1-4757-2809-5
– volume: 68
  start-page: 2039
  issue: 10
  year: 2018
  ident: 913_CR5
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1518447
– volume: 69
  start-page: 369
  issue: 2
  year: 2017
  ident: 913_CR9
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0519-8
– volume: 72
  start-page: 347
  issue: 2
  year: 2018
  ident: 913_CR4
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0627-0
– ident: 913_CR6
– start-page: 149
  volume-title: Handbook of Global Optimization
  year: 1995
  ident: 913_CR17
  doi: 10.1007/978-1-4615-2025-2_4
– start-page: 150
  volume-title: Nonlinear Analysis and Optimization
  year: 1987
  ident: 913_CR16
  doi: 10.1007/BFb0121159
– volume: 54
  start-page: 627
  issue: 6
  year: 2005
  ident: 913_CR3
  publication-title: Optimization
  doi: 10.1080/02331930500342534
– volume: 260
  start-page: 807
  issue: 3
  year: 2017
  ident: 913_CR10
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.02.039
– volume: 28
  start-page: 367
  issue: 3
  year: 1986
  ident: 913_CR12
  publication-title: SIAM Rev.
  doi: 10.1137/1028106
– ident: 913_CR11
– start-page: 43
  volume-title: Handbook of Global Optimization
  year: 1995
  ident: 913_CR2
  doi: 10.1007/978-1-4615-2025-2_3
– volume: 66
  start-page: 399
  issue: 2
  year: 1978
  ident: 913_CR15
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90243-3
– volume-title: Convex Analysis
  year: 1970
  ident: 913_CR13
  doi: 10.1515/9781400873173
– volume: 20
  start-page: 193
  issue: 2
  year: 1979
  ident: 913_CR14
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700010844
– volume: 32
  start-page: 165
  issue: 1
  year: 1985
  ident: 913_CR1
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800320119
– volume: 61
  start-page: 71
  issue: 1
  year: 2014
  ident: 913_CR7
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0159-1
– volume: 103
  start-page: 1
  issue: 1
  year: 1999
  ident: 913_CR8
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021765131316
SSID ssj0009852
Score 2.292144
Snippet The problem of minimizing the difference of two convex functions is called polyhedral d.c. optimization problem if at least one of the two component functions...
SourceID proquest
gale
crossref
springer
econis
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Algorithms
Computer Science
D.c. programming
Global optimization
Linear vector optimization
Mathematics
Mathematics and Statistics
Multi-objective linear programming
Operations Research/Decision Theory
Optimization
Real Functions
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH32J9kYOgolnbtDXtSURcPKgIKngLMQ9cWLerXRfcX2-mm7qK6MVToU3bhJnMTJKZ7wPYMakyzhFrqqViNFG5pHhcRyWXJpWGG6sq1pJLfn2dPTzkN37DrfRplbVNrAy1LhTukR-5uDtDnpiYnfReKLJG4emqp9CYhCkX2USY0nXFbsagu1nFuBPmLKWps8e-aMaXzmVYXMawrjqPYjr85pimcTXaLn_a6R8HppUfas3_dwQLMOcjUHI6UplFmDDdJZj9gku4BIt-xpdkz8NS7y9D67bo4O4D6RWd9yej3V2im6pJCmd1nn05J_EENSUZtCVxo1NyYAjil9QtVuC-dX53dkE9CwNVCUv61Dl0mzIdRvI449kj5ya1oVZSsySOtbVhLBNuU3OskbEszGWsQ6sf0xxDEcZUvAqNbtE1a0C4tSxW1jAWqYRr6VanmGAnVeS-5gKdAKJaBEJ5iHJkyuiIMbgyik04sYlKbGIYwMHnO70RQMefrVdHkhV4wfxTwbLMhSgB7KKkBU5r90slfXWC6zgCZIlTjqEkFvIGsFmLV_j5XoqxbAM4rBVk_Pj3Dq3__bUNmGGVjmJS2yY0-q9vZgum1aDfLl-3K23_AD1yA7I
  priority: 102
  providerName: ProQuest
Title Solving polyhedral d.c. optimization problems via concave minimization
URI https://www.econstor.eu/handle/10419/288614
https://link.springer.com/article/10.1007/s10898-020-00913-z
https://www.proquest.com/docview/2608627432
Volume 78
WOSCitedRecordID wos000557380600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjwd42FhhIjAqPyABAk-JE8_J45hWIcFKtfIxeLE8f2iVSjstXSX213OXOuvQAAleLkriOI599p1j3-8H8MxL69EQO-6MFbywleG0XMeNMl4ar3ywDWvJe9Xvlycn1SAGhdXtbvd2SbIZqW8Eu5UUDiYoErrKcn61Amto7koibDgefl5C7ZYNz05aCckljsIxVOb3efxijtZpDjqqb4_Ot5ZJG-vT2_y_ct-Hjehtsv2FemzBHT_pwGbL5MBix-7AvRuwhHh2dI3lWndgK6aq2YuIUf3yAfSG0zH9imDn0_GPM-_wKnO7dpdNcQj6HmM7WWSrqdl8ZBh-tDVzzwjMpE3xED71Dj8evOWRkoHbQhQzjtY9SOHSzOyVqjxVysuQOmucKPLchZDmplBB-j1H9GVpZXKXBncqK_JLhLD5NqxOphP_CJgKQeQ2eCEyWyhncKpKu-2MzTA39HoSyNqW0TbilRNtxlgvkZapZjXWrG5qVl8l8Or6mfMFWsdfU28vGlzTgTajalGW6K8k8JwUQFMfx1daE0MVsOCElqX3FfmVFNWbwE6rIzp2_lrjFLEkSqNcJPC61Ynl7T8X6PG_JX8Cd0WjVrTjbQdWZxeX_ims2_lsVF90YUV9-dqFtTeH_cExnr1THOVRekBSfGjkgKQaohzIb92mG_0E47YNkQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4gkIgPKgixiLoPGjWw2E5btn0whKgXCOeFREx4W5b9ES85ryc9zsAf5d_oTm_raYi88eBTk_7YbttvZ2a7M98H8MLm2npHbLhRGnmmS8VpuY4roWyurLBON6olXdHrFScn5dEc_GxrYSitsrWJjaE2laZ_5G993F2QTkyKu6PvnFSjaHW1ldCYwuLQXv7wU7b63cEH_31fInY-Hr_f50FVgOsMszH3DsrlaOJE7RSiOBPC5i42WhnM0tQ4F6cqEy63O4YUuOJSpSZ25iwvybUi6tS3ewcWMmIWo1RBPJqR_BaNwk9cYs5zb_9DkU4o1SuomA2pjrtMUn71lyNcpNlvv77uF64t0DZ-r_Pgf3tjD-F-iLDZ3nRILMOcHa7AvT94F1dgOVi0mr0OtNtvHkHnczWgvytsVA0uv1rj9zKzrbdZ5a3qt1CuyoIAT80mfcX829RqYhnxs7RnrMKXW3m6NZgfVkP7GJhwDlPtLGKiM2GUn31TAqHSiW_NB3IRJO0nlzpQsJMSyEDOyKMJJtLDRDYwkVcRbP6-ZjQlILnx7LUpkiRtKL9WYlH4ECyCV4QsSWbL31KrUH3hO04EYHJPUKhMhcoRbLRwksGe1XKGpQi2WkDODv-7Q-s3t_Yc7u4ff-rK7kHv8AksYTM-KIFvA-bH5xf2KSzqybhfnz9rRhqD09sG6i8GhF-D
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VUiE4AC1UBAr4AAIEbhMnrpMDQhVlRdVqtRIgVb0Y1x9ipWWzNMui9qfx65jJOiyoorceOEVKHMexn2fG9sw8gCdeWo-K2HFnrOCFrQyn4zpulPHSeOWDbVlLDlS_Xx4eVoMl-NnFwpBbZScTW0Htakt75Ftod5fEE5OLrRDdIga7vTeTb5wYpOiktaPTmENk35_-wOVb83pvF8f6qRC9dx_fvueRYYDbQhRTjsoqSOHSzGyXqjxWysuQOmucKPLchZDmplBB-m1HbFxpZXKXBncsK1KzQtgc670CVxWuMcmdcCCPFgl_y5btJ62E5BJ1QQzYiWF7JQW2CYrprrKcn_2lFFdoJTxszuuIc4e1rQ7s3fqfe-823IyWN9uZT5VVWPLjNbjxRz7GNViNkq5hz2M67hd3oPehHtGuC5vUo9Mv3uFd5jbtJqtR2n6NYawsEvM0bDY0DHvWmplnlLelK3EXPl3K363D8rge-3vAVAgit8ELkdlCOYOrcnIsNDbD2tDASyDrhl_bmJqdGEJGepFUmiCjETK6hYw-S-Dl73cm88QkF5Zen6NK04X8brUoSzTNEnhGKNMkzvCT1sSoDGw4JQbTO4pMaApgTmCjg5aOcq7RC1wl8KoD5-Lxvxt0_-LaHsM1xKc-2OvvP4Drop0q5Ne3AcvTk-_-IazY2XTYnDxqJx2Dz5eN019cr2hv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+polyhedral+d.c.+optimization+problems+via+concave+minimization&rft.jtitle=Journal+of+global+optimization&rft.au=vom%C2%A0Dahl%2C+Simeon&rft.au=L%C3%B6hne%2C+Andreas&rft.date=2020-09-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=78&rft.issue=1&rft.spage=37&rft.epage=47&rft_id=info:doi/10.1007%2Fs10898-020-00913-z&rft.externalDocID=10_1007_s10898_020_00913_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2916&client=summon