How are different neural networks related to consciousness?

Objective We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting‐state functional connectivity within different networks in patients with varying levels of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology Jg. 78; H. 4; S. 594 - 605
Hauptverfasser: Qin, Pengmin, Wu, Xuehai, Huang, Zirui, Duncan, Niall W., Tang, Weijun, Wolff, Annemarie, Hu, Jin, Gao, Liang, Jin, Yi, Wu, Xing, Zhang, Jianfeng, Lu, Lu, Wu, Chunping, Qu, Xiaoying, Mao, Ying, Weng, Xuchu, Zhang, Jun, Northoff, Georg
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Blackwell Publishing Ltd 01.10.2015
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0364-5134, 1531-8249, 1531-8249
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting‐state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS‐E) and those who remained in UWS (UWS‐R). The above analyses were repeated on these 2 subgroups. Results Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC‐LAI connectivity was more present in MCS than in UWS. Default‐mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS‐R compared with UWS‐E. Furthermore, PCC‐LLPC connectivity was more present in UWS‐E than in UWS‐R. Interpretation Our findings show that SN (SACC‐LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC‐LLPC) connectivity instead predicts recovery of consciousness. Ann Neurol 2015;78:594–605
AbstractList We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients.OBJECTIVEWe aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients.We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups.METHODSWe investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups.Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R.RESULTSFunctional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R.Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness.INTERPRETATIONOur findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness.
Objective We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting‐state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS‐E) and those who remained in UWS (UWS‐R). The above analyses were repeated on these 2 subgroups. Results Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC‐LAI connectivity was more present in MCS than in UWS. Default‐mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS‐R compared with UWS‐E. Furthermore, PCC‐LLPC connectivity was more present in UWS‐E than in UWS‐R. Interpretation Our findings show that SN (SACC‐LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC‐LLPC) connectivity instead predicts recovery of consciousness. Ann Neurol 2015;78:594–605
Objective We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n=56), minimally conscious state (MCS; n=29), and patients with brain lesions but full consciousness (BL; n=48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups. Results Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R. Interpretation Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness. Ann Neurol 2015;78:594-605
We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups. Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R. Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness.
Author Mao, Ying
Gao, Liang
Duncan, Niall W.
Hu, Jin
Jin, Yi
Wu, Chunping
Lu, Lu
Huang, Zirui
Zhang, Jianfeng
Northoff, Georg
Weng, Xuchu
Tang, Weijun
Wolff, Annemarie
Qu, Xiaoying
Wu, Xuehai
Wu, Xing
Qin, Pengmin
Zhang, Jun
Author_xml – sequence: 1
  givenname: Pengmin
  surname: Qin
  fullname: Qin, Pengmin
  organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
– sequence: 2
  givenname: Xuehai
  surname: Wu
  fullname: Wu, Xuehai
  organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 3
  givenname: Zirui
  surname: Huang
  fullname: Huang, Zirui
  organization: Institute of Mental Health Research, University of Ottawa, Ontario, Ottawa, Canada
– sequence: 4
  givenname: Niall W.
  surname: Duncan
  fullname: Duncan, Niall W.
  organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
– sequence: 5
  givenname: Weijun
  surname: Tang
  fullname: Tang, Weijun
  organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Annemarie
  surname: Wolff
  fullname: Wolff, Annemarie
  organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
– sequence: 7
  givenname: Jin
  surname: Hu
  fullname: Hu, Jin
  organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 8
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 9
  givenname: Yi
  surname: Jin
  fullname: Jin, Yi
  organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 10
  givenname: Xing
  surname: Wu
  fullname: Wu, Xing
  organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 11
  givenname: Jianfeng
  surname: Zhang
  fullname: Zhang, Jianfeng
  organization: Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
– sequence: 12
  givenname: Lu
  surname: Lu
  fullname: Lu, Lu
  organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 13
  givenname: Chunping
  surname: Wu
  fullname: Wu, Chunping
  organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 14
  givenname: Xiaoying
  surname: Qu
  fullname: Qu, Xiaoying
  organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 15
  givenname: Ying
  surname: Mao
  fullname: Mao, Ying
  organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China
– sequence: 16
  givenname: Xuchu
  surname: Weng
  fullname: Weng, Xuchu
  organization: Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
– sequence: 17
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 18
  givenname: Georg
  surname: Northoff
  fullname: Northoff, Georg
  email: maoying@fudan.edu.cn
  organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26290126$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPAgj-ARmIDi2n9HNtigULoSyphw2NpeWbuSG4ndmt7FPrvMU3CoqISq7v5ztG55xyhAx88IPSa4GOCMT2x3h5TzqV-hmZEMFIryvUBmmHW8FoQxg_RUUrXGGPdEPwCHdKGakxoM0MfLsKmshGq3g0DRPC58jBFO5aTNyHepCrCaDP0VQ5VF3zqXJiSh5Q-vkTPBzsmeLW7c_T97PTb8qK--np-uVxc1R0vOWplWScH1irVUgbAVVNSMCWJhdYKTqwkmuqeCaExU63smaaMi4GAlpgKxubo3db3Noa7CVI2a5c6GEfroWQxRFJKFMFa_QdKGs0JLaXM0dtH6HWYoi-PPFAUi0byQr3ZUVO7ht7cRre28d7sGyzAyRboYkgpwmA6l212wedo3WgINn82MmUj87BRUbx_pNib_ovduW_cCPdPg2axWuwV9VbhUoZffxU23phGMinMz9W5-fRFL-VnvjI_2G_mH6sv
CitedBy_id crossref_primary_10_1016_j_nicl_2018_07_025
crossref_primary_10_1016_j_brainresbull_2024_111023
crossref_primary_10_1038_s41598_017_00392_5
crossref_primary_10_1097_MD_0000000000030199
crossref_primary_10_3389_fneur_2020_00933
crossref_primary_10_1371_journal_pcbi_1011350
crossref_primary_10_1007_s11055_021_01173_4
crossref_primary_10_1016_j_neuroimage_2022_119802
crossref_primary_10_1586_17434440_2016_1136560
crossref_primary_10_1016_j_nicl_2023_103358
crossref_primary_10_31083_j_jin2202037
crossref_primary_10_1007_s12028_021_01260_x
crossref_primary_10_1016_j_nicl_2023_103361
crossref_primary_10_1186_s40708_022_00181_5
crossref_primary_10_1007_s12264_018_0263_1
crossref_primary_10_1016_j_lpm_2023_104180
crossref_primary_10_1140_epjs_s11734_024_01454_2
crossref_primary_10_1109_JBHI_2022_3218652
crossref_primary_10_1016_j_neuropsychologia_2016_01_022
crossref_primary_10_1016_j_nicl_2017_03_017
crossref_primary_10_1007_s11427_020_1831_8
crossref_primary_10_1016_j_nicl_2021_102797
crossref_primary_10_1038_s44222_024_00211_3
crossref_primary_10_3389_fneur_2018_00315
crossref_primary_10_1016_j_neuroimage_2025_121329
crossref_primary_10_3233_NRE_230103
crossref_primary_10_1002_brb3_70002
crossref_primary_10_1038_s41598_018_31436_z
crossref_primary_10_1016_j_nicl_2025_103864
crossref_primary_10_1007_s12264_022_00909_7
crossref_primary_10_1007_s11910_016_0642_9
crossref_primary_10_1016_j_nicl_2016_06_003
crossref_primary_10_1186_s40779_024_00585_w
crossref_primary_10_3389_fnbeh_2022_1001519
crossref_primary_10_3389_fnins_2024_1443478
crossref_primary_10_1007_s11682_018_9978_x
crossref_primary_10_3390_brainsci9050103
crossref_primary_10_1007_s00234_022_02911_2
crossref_primary_10_1007_s10484_016_9331_3
crossref_primary_10_1016_j_cortex_2018_05_004
crossref_primary_10_1016_j_nicl_2022_102951
crossref_primary_10_3389_fneur_2017_00350
crossref_primary_10_3389_fnins_2023_1113695
crossref_primary_10_1016_j_brainres_2022_148162
crossref_primary_10_1523_JNEUROSCI_0775_20_2020
crossref_primary_10_1007_s00062_022_01190_x
crossref_primary_10_1177_02692155221089455
crossref_primary_10_1016_j_neuroimage_2021_117850
crossref_primary_10_3389_fnins_2023_1166187
crossref_primary_10_3389_fnins_2021_554194
crossref_primary_10_1093_brain_awaa026
crossref_primary_10_3389_fneur_2018_01024
crossref_primary_10_1186_s12967_024_05729_z
crossref_primary_10_1007_s11055_017_0520_1
crossref_primary_10_1007_s12264_018_0250_6
crossref_primary_10_1016_j_neuroimage_2019_116316
crossref_primary_10_1097_MD_0000000000031808
crossref_primary_10_1016_j_pmr_2023_06_017
crossref_primary_10_1111_ene_13794
crossref_primary_10_1007_s00018_020_03512_z
crossref_primary_10_3390_diagnostics12081777
crossref_primary_10_4103_1673_5374_251299
crossref_primary_10_1093_arclin_acaf003
crossref_primary_10_1055_a_1892_1894
crossref_primary_10_3389_fneur_2018_00982
crossref_primary_10_1007_s12264_018_0243_5
crossref_primary_10_1007_s11682_020_00390_8
crossref_primary_10_3389_fneur_2023_1116115
crossref_primary_10_3389_fnins_2022_827400
crossref_primary_10_1007_s12264_020_00546_y
crossref_primary_10_1093_cercor_bhad075
crossref_primary_10_1038_s41582_020_00428_x
crossref_primary_10_1016_j_neuroimage_2021_118407
crossref_primary_10_1002_qute_201800081
crossref_primary_10_1016_j_jocn_2017_04_015
crossref_primary_10_1016_j_pmr_2023_09_002
crossref_primary_10_1016_j_xinn_2025_100846
crossref_primary_10_1007_s12264_018_0253_3
crossref_primary_10_1186_s12883_019_1293_7
crossref_primary_10_1097_WNP_0000000000000846
crossref_primary_10_1016_j_neuroimage_2023_120050
crossref_primary_10_3390_brainsci13010122
crossref_primary_10_7554_eLife_36173
crossref_primary_10_3390_brainsci13010005
crossref_primary_10_1002_acn3_51729
crossref_primary_10_3390_brainsci11081068
crossref_primary_10_1038_s42003_022_03576_6
crossref_primary_10_1016_j_neulet_2024_137986
crossref_primary_10_1016_j_brainres_2024_149133
crossref_primary_10_1007_s12264_020_00542_2
crossref_primary_10_3389_fpsyg_2024_1458339
crossref_primary_10_1089_neu_2023_0501
crossref_primary_10_3389_fneur_2021_684791
crossref_primary_10_3389_fneur_2025_1533853
crossref_primary_10_1088_1741_2552_ab79f5
crossref_primary_10_1016_j_compmedimag_2024_102325
crossref_primary_10_1016_j_nicl_2022_103171
crossref_primary_10_3389_fneur_2022_821286
crossref_primary_10_3389_fnagi_2023_1282962
Cites_doi 10.1073/pnas.0504136102
10.1038/nrneurol.2013.279
10.1523/JNEUROSCI.5587-06.2007
10.1016/j.neuroimage.2015.01.037
10.1212/WNL.0b013e31823fcd61
10.1371/journal.pone.0005743
10.1126/scitranslmed.3006294
10.1002/hbm.20989
10.1093/brain/awp313
10.3389/fnhum.2013.00504
10.1136/jnnp.2007.142349
10.1002/hbm.20113
10.1016/j.cortex.2013.11.005
10.1073/pnas.98.2.676
10.1006/cbmr.1996.0014
10.1016/j.nicl.2013.12.005
10.3389/fnhum.2013.00910
10.1523/JNEUROSCI.1004-10.2010
10.1016/j.concog.2008.03.013
10.1196/annals.1417.015
10.1007/s00429-010-0265-x
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2011.05.028
10.1073/pnas.0611404104
10.1016/j.apmr.2004.02.033
10.1089/brain.2012.0080
10.1073/pnas.0903941106
10.1126/science.1131295
10.1523/JNEUROSCI.4962-11.2012
10.1016/S0140-6736(14)60042-8
10.1523/JNEUROSCI.1103-13.2013
10.1002/hbm.20428
10.1016/j.neuroimage.2012.08.052
10.1097/ALN.0b013e3181f697f5
10.1523/JNEUROSCI.5813-12.2014
10.1002/hbm.22308
10.1093/brain/awm170
10.1016/j.neuroimage.2011.04.020
10.1016/j.neuroimage.2009.07.028
10.1212/WNL.0b013e3182a43b78
10.3389/fpsyg.2012.00295
10.1016/j.clinimag.2010.07.008
10.1038/nature05758
10.1002/hbm.20537
10.3389/fninf.2013.00016
10.1016/j.neuroimage.2011.07.044
10.1016/S0730-725X(02)00503-9
10.1016/j.tins.2009.11.002
10.1162/jocn.2010.21488
10.1002/hbm.20672
10.1038/jcbfm.2014.169
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
ContentType Journal Article
Copyright 2015 American Neurological Association
2015 American Neurological Association.
Copyright_xml – notice: 2015 American Neurological Association
– notice: 2015 American Neurological Association.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
DOI 10.1002/ana.24479
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 605
ExternalDocumentID 3817437431
26290126
10_1002_ana_24479
ANA24479
ark_67375_WNG_BM9C7D4N_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: Federal Government of China
– fundername: National Engineering of China
  funderid: 985III‐YFX0102
– fundername: Hope for Depression Research Foundation
– fundername: National Science Foundation of China
  funderid: 31471072
– fundername: Michael Smith Foundation
  funderid: EJLB‐CIHR
– fundername: Hangzhou Normal University
– fundername: National Science Foundation for Distinguished Young Scholars of China
  funderid: 81025013
– fundername: Shanghai Natural Science Foundation
  funderid: 10ZR1405400
– fundername: Shanghai Education Commission
  funderid: 10GG01
– fundername: Canadian Institutes of Health Research
  grantid: 201103MOP-244752-BSB-CECA-179644
– fundername: Canadian Institutes of Health Research
  grantid: 201103CCI-248496-CCI-CECA-179644
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHHS
ACCFJ
ACRZS
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
WRC
WUP
XJT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
ID FETCH-LOGICAL-c4249-8a3c7f3b88b23ee4869613871aeba541a71929d3559038b7d392345f1e9702533
IEDL.DBID DRFUL
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362668100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-5134
1531-8249
IngestDate Thu Sep 04 18:58:49 EDT 2025
Thu Oct 02 11:48:54 EDT 2025
Thu Dec 04 03:31:39 EST 2025
Thu Apr 03 07:00:11 EDT 2025
Sat Nov 29 03:41:23 EST 2025
Tue Nov 18 22:41:07 EST 2025
Wed Jan 22 16:24:02 EST 2025
Tue Nov 11 03:32:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4249-8a3c7f3b88b23ee4869613871aeba541a71929d3559038b7d392345f1e9702533
Notes istex:0C33C6771206178612B0C508D8978D42805FA4E3
Federal Government of China
National Science Foundation for Distinguished Young Scholars of China - No. 81025013
Canadian Institutes of Health Research
National Science Foundation of China - No. 31471072
ArticleID:ANA24479
Hope for Depression Research Foundation
Hangzhou Normal University
ark:/67375/WNG-BM9C7D4N-V
National Engineering of China - No. 985III-YFX0102
Shanghai Natural Science Foundation - No. 10ZR1405400
Michael Smith Foundation - No. EJLB-CIHR
Shanghai Education Commission - No. 10GG01
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26290126
PQID 1716205674
PQPubID 946345
PageCount 12
ParticipantIDs proquest_miscellaneous_1722181098
proquest_miscellaneous_1716941251
proquest_journals_1716205674
pubmed_primary_26290126
crossref_citationtrail_10_1002_ana_24479
crossref_primary_10_1002_ana_24479
wiley_primary_10_1002_ana_24479_ANA24479
istex_primary_ark_67375_WNG_BM9C7D4N_V
PublicationCentury 2000
PublicationDate 2015-10
October 2015
2015-10-00
2015-Oct
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011;23:570-578.
Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-35.
Horovitz SG, Fukunaga M, de Zwart JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008;29:671-682.
Huang Z, Dai R, Wu X, et al. The self and its resting state in consciousness: an investigation of the vegetative state. Hum Brain Mapp 2013;35:1997-2008.
Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS One 2009;4:e5743.
Yan CG, Craddock RC, He Y, Milham MP. Addressing head motion dependencies for small-world topologies in functional connectomics. Front Hum Neurosci 2013;7:910.
Qin P, Di H, Liu Y, et al. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010;31:1993-2002.
Coleman MR, Rodd JM, Davis MH, et al. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 2007;130:2494-2507.
Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009;30:2393-2400.
Crone JS, Holler Y, Bergmann J, et al. Self-related processing and deactivation of cortical midline regions in disorders of consciousness. Front Hum Neurosci 2013;7:504.
Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013;33:10503-10511.
Northoff G. Unlocking the brain. Volume II: Consciousness. Oxford, UK: Oxford University Press, 2014.
Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356.
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010;133(pt 1):161-171.
Rumsey DJ. Statistics for dummies. 2nd ed. Hoboken, NJ: Wiley, 2011.
Boly M, Balteau E, Schnakers C, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 2007;104:12187-12192.
Di Perri C, Heine L, Amico E, et al. Technology-based assessment in patients with disorders of consciousness. Ann Ist Super Sanita 2014;50:209-220.
Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012;59:431-438.
Medford N, Critchley HD. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 2010;214:535-549.
Qin P, Northoff G. How is our self related to midline regions and the default-mode network? Neuroimage 2011;57:1221-1233.
Voss HU, Heier LA, Schiff ND. Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clin Imaging 2011;35:253-258.
Mukamel EA, Pirondini E, Babadi B, et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci 2014;34:839-845.
Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014;10:99-114.
Di Perri C, Bastianello S, Bartsch AJ, et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013;81:1417-1424.
Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15-29.
Demertzi A, Gomez F, Crone JS, et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014;52:35-46.
Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012;32:4935-4943.
Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 2014;384:514-522.
Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 2008;1129:119-129.
Andronache A, Rosazza C, Sattin D, et al. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness. Front Neuroinform 2013;7:16.
Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 2013;64:240-256.
Cauda F, Micon BM, Sacco K, et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 2009;80:429-431.
Norton L, Hutchison RM, Young GB, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012;78:175-181.
Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980.
Shulman RG, Hyder F, Rothman DL. Baseline brain energy supports the state of consciousness. Proc Natl Acad Sci U S A 2009;106:11096-11101.
Mason MF, Norton MI, Van Horn JD, et al. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395.
Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab 2015;35:58-65.
Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004;85:2020-2029.
Saad ZS, Gotts SJ, Murphy K, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2012;2:25-32.
Boveroux P, Vanhaudenhuyse A, Bruno MA, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010;113:1038-1053.
Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678.
Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007;447:83-86.
Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162-173.
Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010;33:1-9.
Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 2013;5:198ra05.
Martuzzi R, Ramani R, Qiu M, et al. Functional connectivity and alterations in baseline brain state in humans. Neuroimage 2010;49:823-834.
Schilbach L, Eickhoff SB, Rotarska-Jagiela A, et al. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain. Conscious Cogn 2008;17:457-467.
Cordes D, Haughton V, Carew JD, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 2002;20:305-317.
Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682.
Crone JS, Schurz M, Holler Y, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 2015;110:101-109.
Crone JS, Soddu A, Holler Y, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 2013;4:240-248.
Sadaghiani S, Scheeringa R, Lehongre K, et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 2010;30:10243-10250.
Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142-2154.
Heine L, Soddu A, Gomez F, et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 2012;3:295.
Greicius MD, Kiviniemi V, Tervonen O, et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008;29:839-847.
Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011;57:198-205.
2015; 35
2007; 104
2006; 31
2013; 4
2009; 80
2013; 64
2011; 57
2012; 59
2013; 7
2005; 26
2013; 5
1996; 29
2005; 102
2008; 29
2007; 130
2010; 113
2011; 23
2014; 52
2008; 1129
2014; 50
2010; 30
1950; 3
2014; 10
2007; 27
2001; 98
2010; 33
2004; 85
2010; 31
2007; 447
2011
2008; 17
2011; 35
2012; 78
2012; 32
2009; 30
2010; 49
2012; 2
2012; 3
2007; 315
2013; 33
2002; 20
2013; 35
2010; 214
2015; 110
2010; 133
2013; 81
2014
2009; 4
2014; 384
2014; 34
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Rumsey DJ (e_1_2_8_42_1) 2011
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Perri C (e_1_2_8_13_1) 2014; 50
Northoff G (e_1_2_8_3_1) 2014
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010;133(pt 1):161-171.
– reference: Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009;30:2393-2400.
– reference: Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013;33:10503-10511.
– reference: Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012;32:4935-4943.
– reference: Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS One 2009;4:e5743.
– reference: Voss HU, Heier LA, Schiff ND. Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clin Imaging 2011;35:253-258.
– reference: Andronache A, Rosazza C, Sattin D, et al. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness. Front Neuroinform 2013;7:16.
– reference: Crone JS, Soddu A, Holler Y, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 2013;4:240-248.
– reference: Cordes D, Haughton V, Carew JD, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 2002;20:305-317.
– reference: Rumsey DJ. Statistics for dummies. 2nd ed. Hoboken, NJ: Wiley, 2011.
– reference: Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 2013;5:198ra05.
– reference: Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-35.
– reference: Yan CG, Craddock RC, He Y, Milham MP. Addressing head motion dependencies for small-world topologies in functional connectomics. Front Hum Neurosci 2013;7:910.
– reference: Di Perri C, Heine L, Amico E, et al. Technology-based assessment in patients with disorders of consciousness. Ann Ist Super Sanita 2014;50:209-220.
– reference: Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010;33:1-9.
– reference: Heine L, Soddu A, Gomez F, et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 2012;3:295.
– reference: Martuzzi R, Ramani R, Qiu M, et al. Functional connectivity and alterations in baseline brain state in humans. Neuroimage 2010;49:823-834.
– reference: Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678.
– reference: Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682.
– reference: Crone JS, Schurz M, Holler Y, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 2015;110:101-109.
– reference: Coleman MR, Rodd JM, Davis MH, et al. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 2007;130:2494-2507.
– reference: Di Perri C, Bastianello S, Bartsch AJ, et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013;81:1417-1424.
– reference: Medford N, Critchley HD. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 2010;214:535-549.
– reference: Shulman RG, Hyder F, Rothman DL. Baseline brain energy supports the state of consciousness. Proc Natl Acad Sci U S A 2009;106:11096-11101.
– reference: Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011;23:570-578.
– reference: Sadaghiani S, Scheeringa R, Lehongre K, et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 2010;30:10243-10250.
– reference: Boveroux P, Vanhaudenhuyse A, Bruno MA, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010;113:1038-1053.
– reference: Crone JS, Holler Y, Bergmann J, et al. Self-related processing and deactivation of cortical midline regions in disorders of consciousness. Front Hum Neurosci 2013;7:504.
– reference: Demertzi A, Gomez F, Crone JS, et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014;52:35-46.
– reference: Saad ZS, Gotts SJ, Murphy K, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2012;2:25-32.
– reference: Huang Z, Dai R, Wu X, et al. The self and its resting state in consciousness: an investigation of the vegetative state. Hum Brain Mapp 2013;35:1997-2008.
– reference: Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980.
– reference: Cauda F, Micon BM, Sacco K, et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 2009;80:429-431.
– reference: Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142-2154.
– reference: Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007;447:83-86.
– reference: Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004;85:2020-2029.
– reference: Qin P, Northoff G. How is our self related to midline regions and the default-mode network? Neuroimage 2011;57:1221-1233.
– reference: Mason MF, Norton MI, Van Horn JD, et al. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395.
– reference: Boly M, Balteau E, Schnakers C, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 2007;104:12187-12192.
– reference: Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 2008;1129:119-129.
– reference: Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 2013;64:240-256.
– reference: Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab 2015;35:58-65.
– reference: Qin P, Di H, Liu Y, et al. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010;31:1993-2002.
– reference: Northoff G. Unlocking the brain. Volume II: Consciousness. Oxford, UK: Oxford University Press, 2014.
– reference: Mukamel EA, Pirondini E, Babadi B, et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci 2014;34:839-845.
– reference: Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 2014;384:514-522.
– reference: Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162-173.
– reference: Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011;57:198-205.
– reference: Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012;59:431-438.
– reference: Schilbach L, Eickhoff SB, Rotarska-Jagiela A, et al. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain. Conscious Cogn 2008;17:457-467.
– reference: Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014;10:99-114.
– reference: Greicius MD, Kiviniemi V, Tervonen O, et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008;29:839-847.
– reference: Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356.
– reference: Norton L, Hutchison RM, Young GB, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012;78:175-181.
– reference: Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15-29.
– reference: Horovitz SG, Fukunaga M, de Zwart JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008;29:671-682.
– year: 2011
– volume: 110
  start-page: 101
  year: 2015
  end-page: 109
  article-title: Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network
  publication-title: Neuroimage
– volume: 80
  start-page: 429
  year: 2009
  end-page: 431
  article-title: Disrupted intrinsic functional connectivity in the vegetative state
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 57
  start-page: 198
  year: 2011
  end-page: 205
  article-title: Brain functional integration decreases during propofol‐induced loss of consciousness
  publication-title: Neuroimage
– volume: 315
  start-page: 393
  year: 2007
  end-page: 395
  article-title: Wandering minds: the default network and stimulus‐independent thought
  publication-title: Science
– volume: 29
  start-page: 671
  year: 2008
  end-page: 682
  article-title: Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG‐fMRI study
  publication-title: Hum Brain Mapp
– year: 2014
– volume: 35
  start-page: 253
  year: 2011
  end-page: 258
  article-title: Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty
  publication-title: Clin Imaging
– volume: 52
  start-page: 35
  year: 2014
  end-page: 46
  article-title: Multiple fMRI system‐level baseline connectivity is disrupted in patients with consciousness alterations
  publication-title: Cortex
– volume: 35
  start-page: 58
  year: 2015
  end-page: 65
  article-title: Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients
  publication-title: J Cereb Blood Flow Metab
– volume: 33
  start-page: 10503
  year: 2013
  end-page: 10511
  article-title: The autonomic brain: an activation likelihood estimation meta‐analysis for central processing of autonomic function
  publication-title: J Neurosci
– volume: 30
  start-page: 2393
  year: 2009
  end-page: 2400
  article-title: Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient
  publication-title: Hum Brain Mapp
– volume: 17
  start-page: 457
  year: 2008
  end-page: 467
  article-title: Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain
  publication-title: Conscious Cogn
– volume: 30
  start-page: 10243
  year: 2010
  end-page: 10250
  article-title: Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study
  publication-title: J Neurosci
– volume: 10
  start-page: 99
  year: 2014
  end-page: 114
  article-title: Disorders of consciousness after acquired brain injury: the state of the science
  publication-title: Nat Rev Neurol
– volume: 78
  start-page: 175
  year: 2012
  end-page: 181
  article-title: Disruptions of functional connectivity in the default mode network of comatose patients
  publication-title: Neurology
– volume: 81
  start-page: 1417
  year: 2013
  end-page: 1424
  article-title: Limbic hyperconnectivity in the vegetative state
  publication-title: Neurology
– volume: 104
  start-page: 12187
  year: 2007
  end-page: 12192
  article-title: Baseline brain activity fluctuations predict somatosensory perception in humans
  publication-title: Proc Natl Acad Sci U S A
– volume: 133
  start-page: 161
  issue: pt 1
  year: 2010
  end-page: 171
  article-title: Default network connectivity reflects the level of consciousness in non‐communicative brain‐damaged patients
  publication-title: Brain
– volume: 2
  start-page: 25
  year: 2012
  end-page: 32
  article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression
  publication-title: Brain Connect
– volume: 34
  start-page: 839
  year: 2014
  end-page: 845
  article-title: A transition in brain state during propofol‐induced unconsciousness
  publication-title: J Neurosci
– volume: 106
  start-page: 11096
  year: 2009
  end-page: 11101
  article-title: Baseline brain energy supports the state of consciousness
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data
  publication-title: Neuroimage
– volume: 33
  start-page: 1
  year: 2010
  end-page: 9
  article-title: Recovery of consciousness after brain injury: a mesocircuit hypothesis
  publication-title: Trends Neurosci
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 49
  start-page: 823
  year: 2010
  end-page: 834
  article-title: Functional connectivity and alterations in baseline brain state in humans
  publication-title: Neuroimage
– volume: 130
  start-page: 2494
  year: 2007
  end-page: 2507
  article-title: Do vegetative patients retain aspects of language comprehension? Evidence from fMRI
  publication-title: Brain
– volume: 447
  start-page: 83
  year: 2007
  end-page: 86
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
– volume: 7
  start-page: 16
  year: 2013
  article-title: Impact of functional MRI data preprocessing pipeline on default‐mode network detectability in patients with disorders of consciousness
  publication-title: Front Neuroinform
– volume: 29
  start-page: 839
  year: 2008
  end-page: 847
  article-title: Persistent default‐mode network connectivity during light sedation
  publication-title: Hum Brain Mapp
– volume: 1129
  start-page: 119
  year: 2008
  end-page: 129
  article-title: Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?
  publication-title: Ann N Y Acad Sci
– volume: 85
  start-page: 2020
  year: 2004
  end-page: 2029
  article-title: The JFK Coma Recovery Scale‐Revised: measurement characteristics and diagnostic utility
  publication-title: Arch Phys Med Rehabil
– volume: 32
  start-page: 4935
  year: 2012
  end-page: 4943
  article-title: Returning from oblivion: imaging the neural core of consciousness
  publication-title: J Neurosci
– volume: 35
  start-page: 1997
  year: 2013
  end-page: 2008
  article-title: The self and its resting state in consciousness: an investigation of the vegetative state
  publication-title: Hum Brain Mapp
– volume: 113
  start-page: 1038
  year: 2010
  end-page: 1053
  article-title: Breakdown of within‐ and between‐network resting state functional magnetic resonance imaging connectivity during propofol‐induced loss of consciousness
  publication-title: Anesthesiology
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– volume: 214
  start-page: 535
  year: 2010
  end-page: 549
  article-title: Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response
  publication-title: Brain Struct Funct
– volume: 4
  start-page: e5743
  year: 2009
  article-title: Spontaneous brain activity in the default mode network is sensitive to different resting‐state conditions with limited cognitive load
  publication-title: PloS One
– volume: 50
  start-page: 209
  year: 2014
  end-page: 220
  article-title: Technology‐based assessment in patients with disorders of consciousness
  publication-title: Ann Ist Super Sanita
– volume: 26
  start-page: 15
  year: 2005
  end-page: 29
  article-title: Spontaneous low‐frequency BOLD signal fluctuations: an fMRI investigation of the resting‐state default mode of brain function hypothesis
  publication-title: Hum Brain Mapp
– volume: 4
  start-page: 240
  year: 2013
  end-page: 248
  article-title: Altered network properties of the fronto‐parietal network and the thalamus in impaired consciousness
  publication-title: Neuroimage Clin
– volume: 5
  start-page: 198ra05
  year: 2013
  article-title: A theoretically based index of consciousness independent of sensory processing and behavior
  publication-title: Sci Transl Med
– volume: 20
  start-page: 305
  year: 2002
  end-page: 317
  article-title: Hierarchical clustering to measure connectivity in fMRI resting‐state data
  publication-title: Magn Reson Imaging
– volume: 384
  start-page: 514
  year: 2014
  end-page: 522
  article-title: Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study
  publication-title: Lancet
– volume: 31
  start-page: 1993
  year: 2010
  end-page: 2002
  article-title: Anterior cingulate activity and the self in disorders of consciousness
  publication-title: Hum Brain Mapp
– volume: 23
  start-page: 570
  year: 2011
  end-page: 578
  article-title: Two distinct neuronal networks mediate the awareness of environment and of self
  publication-title: J Cogn Neurosci
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 504
  year: 2013
  article-title: Self‐related processing and deactivation of cortical midline regions in disorders of consciousness
  publication-title: Front Hum Neurosci
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 7
  start-page: 910
  year: 2013
  article-title: Addressing head motion dependencies for small‐world topologies in functional connectomics
  publication-title: Front Hum Neurosci
– volume: 3
  start-page: 295
  year: 2012
  article-title: Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States
  publication-title: Front Psychol
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 57
  start-page: 1221
  year: 2011
  end-page: 1233
  article-title: How is our self related to midline regions and the default‐mode network?
  publication-title: Neuroimage
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_8_9_1
  doi: 10.1038/nrneurol.2013.279
– ident: e_1_2_8_33_1
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume-title: Unlocking the brain. Volume II: Consciousness
  year: 2014
  ident: e_1_2_8_3_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2015.01.037
– ident: e_1_2_8_17_1
  doi: 10.1212/WNL.0b013e31823fcd61
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pone.0005743
– ident: e_1_2_8_10_1
  doi: 10.1126/scitranslmed.3006294
– ident: e_1_2_8_38_1
  doi: 10.1002/hbm.20989
– ident: e_1_2_8_15_1
  doi: 10.1093/brain/awp313
– volume-title: Statistics for dummies
  year: 2011
  ident: e_1_2_8_42_1
– ident: e_1_2_8_46_1
  doi: 10.3389/fnhum.2013.00504
– ident: e_1_2_8_16_1
  doi: 10.1136/jnnp.2007.142349
– ident: e_1_2_8_37_1
  doi: 10.1002/hbm.20113
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cortex.2013.11.005
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_8_25_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_8_41_1
  doi: 10.1016/j.nicl.2013.12.005
– ident: e_1_2_8_32_1
  doi: 10.3389/fnhum.2013.00910
– ident: e_1_2_8_7_1
  doi: 10.1523/JNEUROSCI.1004-10.2010
– ident: e_1_2_8_54_1
  doi: 10.1016/j.concog.2008.03.013
– ident: e_1_2_8_56_1
  doi: 10.1196/annals.1417.015
– ident: e_1_2_8_47_1
  doi: 10.1007/s00429-010-0265-x
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_52_1
  doi: 10.1016/j.neuroimage.2011.05.028
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.0611404104
– ident: e_1_2_8_23_1
  doi: 10.1016/j.apmr.2004.02.033
– ident: e_1_2_8_26_1
  doi: 10.1089/brain.2012.0080
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.0903941106
– ident: e_1_2_8_53_1
  doi: 10.1126/science.1131295
– ident: e_1_2_8_50_1
  doi: 10.1523/JNEUROSCI.4962-11.2012
– ident: e_1_2_8_12_1
  doi: 10.1016/S0140-6736(14)60042-8
– ident: e_1_2_8_51_1
  doi: 10.1523/JNEUROSCI.1103-13.2013
– ident: e_1_2_8_55_1
  doi: 10.1002/hbm.20428
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: e_1_2_8_5_1
  doi: 10.1097/ALN.0b013e3181f697f5
– ident: e_1_2_8_49_1
  doi: 10.1523/JNEUROSCI.5813-12.2014
– ident: e_1_2_8_31_1
  doi: 10.1002/hbm.22308
– ident: e_1_2_8_39_1
  doi: 10.1093/brain/awm170
– ident: e_1_2_8_45_1
  doi: 10.1016/j.neuroimage.2011.04.020
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neuroimage.2009.07.028
– ident: e_1_2_8_11_1
  doi: 10.1212/WNL.0b013e3182a43b78
– ident: e_1_2_8_8_1
  doi: 10.3389/fpsyg.2012.00295
– ident: e_1_2_8_24_1
  doi: 10.1016/j.clinimag.2010.07.008
– volume: 50
  start-page: 209
  year: 2014
  ident: e_1_2_8_13_1
  article-title: Technology‐based assessment in patients with disorders of consciousness
  publication-title: Ann Ist Super Sanita
– ident: e_1_2_8_21_1
  doi: 10.1038/nature05758
– ident: e_1_2_8_19_1
  doi: 10.1002/hbm.20537
– ident: e_1_2_8_40_1
  doi: 10.3389/fninf.2013.00016
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_8_43_1
  doi: 10.1016/S0730-725X(02)00503-9
– ident: e_1_2_8_48_1
  doi: 10.1016/j.tins.2009.11.002
– ident: e_1_2_8_4_1
  doi: 10.1162/jocn.2010.21488
– ident: e_1_2_8_18_1
  doi: 10.1002/hbm.20672
– ident: e_1_2_8_57_1
  doi: 10.1038/jcbfm.2014.169
– ident: e_1_2_8_44_1
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
SSID ssj0009610
Score 2.5246482
Snippet Objective We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain...
We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury...
Objective We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 594
SubjectTerms Adult
Brain - pathology
Brain - physiopathology
Brain Injuries - diagnosis
Brain Injuries - physiopathology
Consciousness
Consciousness - physiology
Female
Humans
Male
Middle Aged
Nerve Net - pathology
Nerve Net - physiopathology
Patients
Persistent Vegetative State - diagnosis
Persistent Vegetative State - physiopathology
Rest - physiology
Title How are different neural networks related to consciousness?
URI https://api.istex.fr/ark:/67375/WNG-BM9C7D4N-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.24479
https://www.ncbi.nlm.nih.gov/pubmed/26290126
https://www.proquest.com/docview/1716205674
https://www.proquest.com/docview/1716941251
https://www.proquest.com/docview/1722181098
Volume 78
WOSCitedRecordID wos000362668100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1531-8249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009610
  issn: 0364-5134
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD7ozCK-qLvrar1Rl0X2pes0SZsUH2TUHX3QsizqzltI0wyI0pHpePn5nqQXEXQRfCv0BNKTc_nSk3wH4Eec55QYlQUmYwo3KKEORBTrgLC4l9sczVzTvstTnqZiOEz-zMBecxem4odof7hZz3Dx2jq4ysrdZ9JQVahfmJt4MgtdgnYbdaB79HdwcfrMuRs7MgJbaQuikLKGWKhHdtvBL9JR12r28TWs-RK6utwzWPzQrJdgoYacfr-ykc8wY4ovMHdWF9W_wt7J-MFXE-M3zVKmvmW5xCFFdUa89N2NF5P707GP-2fMmuO70sbI_WW4GPw-PzwJ6p4KgWa40wqEopqPaCZERqgxTMSoJYq7JmUyFbFQcYR8SY4oJOlRkfEc8RNl0Sg0CUd4ROk36BTjwqyCrw1GOyFGIeOYChXLWI7ZX2tBhcKoGXnws1Gt1DXhuO17cSMrqmQiURnSKcOD763obcWy8ZrQjlufVkJNru2xNB7Jf-mxPDhLDvkRS-WlBxvNAsraI0tpaYEIoj3OPNhuX6Mv2QKJKgzqzckkzEK-_8kQi4p6ifBgpTKOdkIktlVpEuOXOxt4-1tkP-27h7X3i67DPKK1qDpJuAGd6eTObMInfT-9KidbMMuHYqt2gSeBLAOh
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD5YV2pf1LZqx1vHIsWX0Z0kM8mgIKt2u-LuIMXbW8hksiCW2bK7tv35PclcRLCl4NvAnEByci7fyeULwE6c55QYlQUmYwoLlFAHIop1QFjczm2OZu7Rvus-T1Nxe5tczMBhfRem5IdoFtysZ7h4bR3cLkjvP7KGqkLtYXLiyStoMTQjtO_W6bfuVf-RdDd2bAR2qy2IQspqZqE22W8aP8lHLava38-BzafY1SWf7uLLur0ECxXo9DullbyFGVO8g9eDalv9PRz0Rr98NTZ-_VzK1Lc8l9ikKE-JT3x358Xk_nTkYwWNeXP0MLFR8mgZrrpfLk96QfWqQqAZ1lqBUFTzIc2EyAg1hokY1USxblImUxELFUfQl-SIQ5I2FRnPEUFRFg1Dk3AESJSuwGwxKswH8LXBeCfEMGQck6FiGcsx_2stqFAYNyMPdmvdSl1RjtuXL77LkiyZSFSGdMrw4FMj-qPk2XhO6LOboEZCje_twTQeyZv0qzweJCf8lKXy2oONegZl5ZMTaYmBCOI9zjzYbn6jN9ktElUY1JuTSZgFff-SIRYXtRPhwWppHU2HSGz3pUmMI3dG8PexyE7acR9r_y_6EeZ7l4O-7J-l5-vwBrFbVJ4r3IDZ6fjBbMKc_jm9m4y3Kk_4A_YhBqk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rT9swED9Bi9C-7MVj2diWIYT4EtrYTuxok6aOUkCUCCEe_WY5jitNm1LUlm1__s7OAyEBQuJbpJwl5-y7-13O_h3AVpznlBiVBSZjChOUUAciinVAWNzNbYxmrmnf5ZCnqRiNktMF-FbfhSn5IZofbtYynL-2Bm6u83HnljVUFWoXgxNPFqHNbBOZFrT7Z4OL4S3pbuzYCGypLYhCympmoS7pNIPvxKO2Ve2_-8DmXezqgs_g1fOm_RpeVqDT75W75A0smOItLJ9UZfUV-Ho4-eurqfHrdilz3_Jc4pCiPCU-892dF5P784mPGTTGzcnNzHrJ76twMdg_3zsMqq4KgWaYawVCUc3HNBMiI9QYJmJUE8W8SZlMRSxUHEFfkiMOSbpUZDxHBEVZNA5NwhEgUboGrWJSmHfga4P-TohxyDgGQ8UylmP811pQodBvRh7s1LqVuqIct50vfsuSLJlIVIZ0yvBgsxG9Lnk27hPadgvUSKjpL3swjUfyKj2QP06SPd5nqbz0YKNeQVnZ5ExaYiCCeI8zD740r9GabIlEFQb15mQSZkHfYzLE4qJuIjxYL3dHMyES27o0ifHL3SZ4-FtkL-25h_dPF_0My6f9gRwepccf4AVCt6g8VrgBrfn0xnyEJf1n_nM2_VQZwn92CAYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+are+different+neural+networks+related+to+consciousness%3F&rft.jtitle=Annals+of+neurology&rft.au=Qin%2C+Pengmin&rft.au=Wu%2C+Xuehai&rft.au=Huang%2C+Zirui&rft.au=Duncan%2C+Niall+W&rft.date=2015-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=78&rft.issue=4&rft.spage=594&rft_id=info:doi/10.1002%2Fana.24479&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3817437431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon