How are different neural networks related to consciousness?
Objective We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting‐state functional connectivity within different networks in patients with varying levels of c...
Gespeichert in:
| Veröffentlicht in: | Annals of neurology Jg. 78; H. 4; S. 594 - 605 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Blackwell Publishing Ltd
01.10.2015
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0364-5134, 1531-8249, 1531-8249 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Objective
We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain injury patients.
Methods
We investigated resting‐state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS‐E) and those who remained in UWS (UWS‐R). The above analyses were repeated on these 2 subgroups.
Results
Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC‐LAI connectivity was more present in MCS than in UWS. Default‐mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS‐R compared with UWS‐E. Furthermore, PCC‐LLPC connectivity was more present in UWS‐E than in UWS‐R.
Interpretation
Our findings show that SN (SACC‐LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC‐LLPC) connectivity instead predicts recovery of consciousness. Ann Neurol 2015;78:594–605 |
|---|---|
| AbstractList | We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients.OBJECTIVEWe aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients.We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups.METHODSWe investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups.Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R.RESULTSFunctional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R.Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness.INTERPRETATIONOur findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness. Objective We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting‐state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS‐E) and those who remained in UWS (UWS‐R). The above analyses were repeated on these 2 subgroups. Results Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC‐LAI connectivity was more present in MCS than in UWS. Default‐mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS‐R compared with UWS‐E. Furthermore, PCC‐LLPC connectivity was more present in UWS‐E than in UWS‐R. Interpretation Our findings show that SN (SACC‐LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC‐LLPC) connectivity instead predicts recovery of consciousness. Ann Neurol 2015;78:594–605 Objective We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. Methods We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n=56), minimally conscious state (MCS; n=29), and patients with brain lesions but full consciousness (BL; n=48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups. Results Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R. Interpretation Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness. Ann Neurol 2015;78:594-605 We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups. Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R. Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness. |
| Author | Mao, Ying Gao, Liang Duncan, Niall W. Hu, Jin Jin, Yi Wu, Chunping Lu, Lu Huang, Zirui Zhang, Jianfeng Northoff, Georg Weng, Xuchu Tang, Weijun Wolff, Annemarie Qu, Xiaoying Wu, Xuehai Wu, Xing Qin, Pengmin Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Pengmin surname: Qin fullname: Qin, Pengmin organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan – sequence: 2 givenname: Xuehai surname: Wu fullname: Wu, Xuehai organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 3 givenname: Zirui surname: Huang fullname: Huang, Zirui organization: Institute of Mental Health Research, University of Ottawa, Ontario, Ottawa, Canada – sequence: 4 givenname: Niall W. surname: Duncan fullname: Duncan, Niall W. organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan – sequence: 5 givenname: Weijun surname: Tang fullname: Tang, Weijun organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 6 givenname: Annemarie surname: Wolff fullname: Wolff, Annemarie organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan – sequence: 7 givenname: Jin surname: Hu fullname: Hu, Jin organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 8 givenname: Liang surname: Gao fullname: Gao, Liang organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 9 givenname: Yi surname: Jin fullname: Jin, Yi organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 10 givenname: Xing surname: Wu fullname: Wu, Xing organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 11 givenname: Jianfeng surname: Zhang fullname: Zhang, Jianfeng organization: Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China – sequence: 12 givenname: Lu surname: Lu fullname: Lu, Lu organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 13 givenname: Chunping surname: Wu fullname: Wu, Chunping organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 14 givenname: Xiaoying surname: Qu fullname: Qu, Xiaoying organization: Radiologic Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 15 givenname: Ying surname: Mao fullname: Mao, Ying organization: Neurosurgical Department of Huashan Hospital, Fudan University, Shanghai, China – sequence: 16 givenname: Xuchu surname: Weng fullname: Weng, Xuchu organization: Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China – sequence: 17 givenname: Jun surname: Zhang fullname: Zhang, Jun organization: Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China – sequence: 18 givenname: Georg surname: Northoff fullname: Northoff, Georg email: maoying@fudan.edu.cn organization: Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26290126$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtvEzEUhS1URNPAgj-ARmIDi2n9HNtigULoSyphw2NpeWbuSG4ndmt7FPrvMU3CoqISq7v5ztG55xyhAx88IPSa4GOCMT2x3h5TzqV-hmZEMFIryvUBmmHW8FoQxg_RUUrXGGPdEPwCHdKGakxoM0MfLsKmshGq3g0DRPC58jBFO5aTNyHepCrCaDP0VQ5VF3zqXJiSh5Q-vkTPBzsmeLW7c_T97PTb8qK--np-uVxc1R0vOWplWScH1irVUgbAVVNSMCWJhdYKTqwkmuqeCaExU63smaaMi4GAlpgKxubo3db3Noa7CVI2a5c6GEfroWQxRFJKFMFa_QdKGs0JLaXM0dtH6HWYoi-PPFAUi0byQr3ZUVO7ht7cRre28d7sGyzAyRboYkgpwmA6l212wedo3WgINn82MmUj87BRUbx_pNib_ovduW_cCPdPg2axWuwV9VbhUoZffxU23phGMinMz9W5-fRFL-VnvjI_2G_mH6sv |
| CitedBy_id | crossref_primary_10_1016_j_nicl_2018_07_025 crossref_primary_10_1016_j_brainresbull_2024_111023 crossref_primary_10_1038_s41598_017_00392_5 crossref_primary_10_1097_MD_0000000000030199 crossref_primary_10_3389_fneur_2020_00933 crossref_primary_10_1371_journal_pcbi_1011350 crossref_primary_10_1007_s11055_021_01173_4 crossref_primary_10_1016_j_neuroimage_2022_119802 crossref_primary_10_1586_17434440_2016_1136560 crossref_primary_10_1016_j_nicl_2023_103358 crossref_primary_10_31083_j_jin2202037 crossref_primary_10_1007_s12028_021_01260_x crossref_primary_10_1016_j_nicl_2023_103361 crossref_primary_10_1186_s40708_022_00181_5 crossref_primary_10_1007_s12264_018_0263_1 crossref_primary_10_1016_j_lpm_2023_104180 crossref_primary_10_1140_epjs_s11734_024_01454_2 crossref_primary_10_1109_JBHI_2022_3218652 crossref_primary_10_1016_j_neuropsychologia_2016_01_022 crossref_primary_10_1016_j_nicl_2017_03_017 crossref_primary_10_1007_s11427_020_1831_8 crossref_primary_10_1016_j_nicl_2021_102797 crossref_primary_10_1038_s44222_024_00211_3 crossref_primary_10_3389_fneur_2018_00315 crossref_primary_10_1016_j_neuroimage_2025_121329 crossref_primary_10_3233_NRE_230103 crossref_primary_10_1002_brb3_70002 crossref_primary_10_1038_s41598_018_31436_z crossref_primary_10_1016_j_nicl_2025_103864 crossref_primary_10_1007_s12264_022_00909_7 crossref_primary_10_1007_s11910_016_0642_9 crossref_primary_10_1016_j_nicl_2016_06_003 crossref_primary_10_1186_s40779_024_00585_w crossref_primary_10_3389_fnbeh_2022_1001519 crossref_primary_10_3389_fnins_2024_1443478 crossref_primary_10_1007_s11682_018_9978_x crossref_primary_10_3390_brainsci9050103 crossref_primary_10_1007_s00234_022_02911_2 crossref_primary_10_1007_s10484_016_9331_3 crossref_primary_10_1016_j_cortex_2018_05_004 crossref_primary_10_1016_j_nicl_2022_102951 crossref_primary_10_3389_fneur_2017_00350 crossref_primary_10_3389_fnins_2023_1113695 crossref_primary_10_1016_j_brainres_2022_148162 crossref_primary_10_1523_JNEUROSCI_0775_20_2020 crossref_primary_10_1007_s00062_022_01190_x crossref_primary_10_1177_02692155221089455 crossref_primary_10_1016_j_neuroimage_2021_117850 crossref_primary_10_3389_fnins_2023_1166187 crossref_primary_10_3389_fnins_2021_554194 crossref_primary_10_1093_brain_awaa026 crossref_primary_10_3389_fneur_2018_01024 crossref_primary_10_1186_s12967_024_05729_z crossref_primary_10_1007_s11055_017_0520_1 crossref_primary_10_1007_s12264_018_0250_6 crossref_primary_10_1016_j_neuroimage_2019_116316 crossref_primary_10_1097_MD_0000000000031808 crossref_primary_10_1016_j_pmr_2023_06_017 crossref_primary_10_1111_ene_13794 crossref_primary_10_1007_s00018_020_03512_z crossref_primary_10_3390_diagnostics12081777 crossref_primary_10_4103_1673_5374_251299 crossref_primary_10_1093_arclin_acaf003 crossref_primary_10_1055_a_1892_1894 crossref_primary_10_3389_fneur_2018_00982 crossref_primary_10_1007_s12264_018_0243_5 crossref_primary_10_1007_s11682_020_00390_8 crossref_primary_10_3389_fneur_2023_1116115 crossref_primary_10_3389_fnins_2022_827400 crossref_primary_10_1007_s12264_020_00546_y crossref_primary_10_1093_cercor_bhad075 crossref_primary_10_1038_s41582_020_00428_x crossref_primary_10_1016_j_neuroimage_2021_118407 crossref_primary_10_1002_qute_201800081 crossref_primary_10_1016_j_jocn_2017_04_015 crossref_primary_10_1016_j_pmr_2023_09_002 crossref_primary_10_1016_j_xinn_2025_100846 crossref_primary_10_1007_s12264_018_0253_3 crossref_primary_10_1186_s12883_019_1293_7 crossref_primary_10_1097_WNP_0000000000000846 crossref_primary_10_1016_j_neuroimage_2023_120050 crossref_primary_10_3390_brainsci13010122 crossref_primary_10_7554_eLife_36173 crossref_primary_10_3390_brainsci13010005 crossref_primary_10_1002_acn3_51729 crossref_primary_10_3390_brainsci11081068 crossref_primary_10_1038_s42003_022_03576_6 crossref_primary_10_1016_j_neulet_2024_137986 crossref_primary_10_1016_j_brainres_2024_149133 crossref_primary_10_1007_s12264_020_00542_2 crossref_primary_10_3389_fpsyg_2024_1458339 crossref_primary_10_1089_neu_2023_0501 crossref_primary_10_3389_fneur_2021_684791 crossref_primary_10_3389_fneur_2025_1533853 crossref_primary_10_1088_1741_2552_ab79f5 crossref_primary_10_1016_j_compmedimag_2024_102325 crossref_primary_10_1016_j_nicl_2022_103171 crossref_primary_10_3389_fneur_2022_821286 crossref_primary_10_3389_fnagi_2023_1282962 |
| Cites_doi | 10.1073/pnas.0504136102 10.1038/nrneurol.2013.279 10.1523/JNEUROSCI.5587-06.2007 10.1016/j.neuroimage.2015.01.037 10.1212/WNL.0b013e31823fcd61 10.1371/journal.pone.0005743 10.1126/scitranslmed.3006294 10.1002/hbm.20989 10.1093/brain/awp313 10.3389/fnhum.2013.00504 10.1136/jnnp.2007.142349 10.1002/hbm.20113 10.1016/j.cortex.2013.11.005 10.1073/pnas.98.2.676 10.1006/cbmr.1996.0014 10.1016/j.nicl.2013.12.005 10.3389/fnhum.2013.00910 10.1523/JNEUROSCI.1004-10.2010 10.1016/j.concog.2008.03.013 10.1196/annals.1417.015 10.1007/s00429-010-0265-x 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2011.05.028 10.1073/pnas.0611404104 10.1016/j.apmr.2004.02.033 10.1089/brain.2012.0080 10.1073/pnas.0903941106 10.1126/science.1131295 10.1523/JNEUROSCI.4962-11.2012 10.1016/S0140-6736(14)60042-8 10.1523/JNEUROSCI.1103-13.2013 10.1002/hbm.20428 10.1016/j.neuroimage.2012.08.052 10.1097/ALN.0b013e3181f697f5 10.1523/JNEUROSCI.5813-12.2014 10.1002/hbm.22308 10.1093/brain/awm170 10.1016/j.neuroimage.2011.04.020 10.1016/j.neuroimage.2009.07.028 10.1212/WNL.0b013e3182a43b78 10.3389/fpsyg.2012.00295 10.1016/j.clinimag.2010.07.008 10.1038/nature05758 10.1002/hbm.20537 10.3389/fninf.2013.00016 10.1016/j.neuroimage.2011.07.044 10.1016/S0730-725X(02)00503-9 10.1016/j.tins.2009.11.002 10.1162/jocn.2010.21488 10.1002/hbm.20672 10.1038/jcbfm.2014.169 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 |
| ContentType | Journal Article |
| Copyright | 2015 American Neurological Association 2015 American Neurological Association. |
| Copyright_xml | – notice: 2015 American Neurological Association – notice: 2015 American Neurological Association. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
| DOI | 10.1002/ana.24479 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1531-8249 |
| EndPage | 605 |
| ExternalDocumentID | 3817437431 26290126 10_1002_ana_24479 ANA24479 ark_67375_WNG_BM9C7D4N_V |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: Federal Government of China – fundername: National Engineering of China funderid: 985III‐YFX0102 – fundername: Hope for Depression Research Foundation – fundername: National Science Foundation of China funderid: 31471072 – fundername: Michael Smith Foundation funderid: EJLB‐CIHR – fundername: Hangzhou Normal University – fundername: National Science Foundation for Distinguished Young Scholars of China funderid: 81025013 – fundername: Shanghai Natural Science Foundation funderid: 10ZR1405400 – fundername: Shanghai Education Commission funderid: 10GG01 – fundername: Canadian Institutes of Health Research grantid: 201103MOP-244752-BSB-CECA-179644 – fundername: Canadian Institutes of Health Research grantid: 201103CCI-248496-CCI-CECA-179644 |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFAZI AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHHS ACCFJ ACRZS ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWD RWI WRC WUP XJT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
| ID | FETCH-LOGICAL-c4249-8a3c7f3b88b23ee4869613871aeba541a71929d3559038b7d392345f1e9702533 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362668100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-5134 1531-8249 |
| IngestDate | Thu Sep 04 18:58:49 EDT 2025 Thu Oct 02 11:48:54 EDT 2025 Thu Dec 04 03:31:39 EST 2025 Thu Apr 03 07:00:11 EDT 2025 Sat Nov 29 03:41:23 EST 2025 Tue Nov 18 22:41:07 EST 2025 Wed Jan 22 16:24:02 EST 2025 Tue Nov 11 03:32:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 American Neurological Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4249-8a3c7f3b88b23ee4869613871aeba541a71929d3559038b7d392345f1e9702533 |
| Notes | istex:0C33C6771206178612B0C508D8978D42805FA4E3 Federal Government of China National Science Foundation for Distinguished Young Scholars of China - No. 81025013 Canadian Institutes of Health Research National Science Foundation of China - No. 31471072 ArticleID:ANA24479 Hope for Depression Research Foundation Hangzhou Normal University ark:/67375/WNG-BM9C7D4N-V National Engineering of China - No. 985III-YFX0102 Shanghai Natural Science Foundation - No. 10ZR1405400 Michael Smith Foundation - No. EJLB-CIHR Shanghai Education Commission - No. 10GG01 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26290126 |
| PQID | 1716205674 |
| PQPubID | 946345 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1722181098 proquest_miscellaneous_1716941251 proquest_journals_1716205674 pubmed_primary_26290126 crossref_citationtrail_10_1002_ana_24479 crossref_primary_10_1002_ana_24479 wiley_primary_10_1002_ana_24479_ANA24479 istex_primary_ark_67375_WNG_BM9C7D4N_V |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10 October 2015 2015-10-00 2015-Oct 20151001 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Minneapolis |
| PublicationTitle | Annals of neurology |
| PublicationTitleAlternate | Ann Neurol |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011;23:570-578. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-35. Horovitz SG, Fukunaga M, de Zwart JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008;29:671-682. Huang Z, Dai R, Wu X, et al. The self and its resting state in consciousness: an investigation of the vegetative state. Hum Brain Mapp 2013;35:1997-2008. Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS One 2009;4:e5743. Yan CG, Craddock RC, He Y, Milham MP. Addressing head motion dependencies for small-world topologies in functional connectomics. Front Hum Neurosci 2013;7:910. Qin P, Di H, Liu Y, et al. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010;31:1993-2002. Coleman MR, Rodd JM, Davis MH, et al. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 2007;130:2494-2507. Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009;30:2393-2400. Crone JS, Holler Y, Bergmann J, et al. Self-related processing and deactivation of cortical midline regions in disorders of consciousness. Front Hum Neurosci 2013;7:504. Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013;33:10503-10511. Northoff G. Unlocking the brain. Volume II: Consciousness. Oxford, UK: Oxford University Press, 2014. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010;133(pt 1):161-171. Rumsey DJ. Statistics for dummies. 2nd ed. Hoboken, NJ: Wiley, 2011. Boly M, Balteau E, Schnakers C, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 2007;104:12187-12192. Di Perri C, Heine L, Amico E, et al. Technology-based assessment in patients with disorders of consciousness. Ann Ist Super Sanita 2014;50:209-220. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012;59:431-438. Medford N, Critchley HD. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 2010;214:535-549. Qin P, Northoff G. How is our self related to midline regions and the default-mode network? Neuroimage 2011;57:1221-1233. Voss HU, Heier LA, Schiff ND. Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clin Imaging 2011;35:253-258. Mukamel EA, Pirondini E, Babadi B, et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci 2014;34:839-845. Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014;10:99-114. Di Perri C, Bastianello S, Bartsch AJ, et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013;81:1417-1424. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15-29. Demertzi A, Gomez F, Crone JS, et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014;52:35-46. Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012;32:4935-4943. Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 2014;384:514-522. Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 2008;1129:119-129. Andronache A, Rosazza C, Sattin D, et al. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness. Front Neuroinform 2013;7:16. Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 2013;64:240-256. Cauda F, Micon BM, Sacco K, et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 2009;80:429-431. Norton L, Hutchison RM, Young GB, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012;78:175-181. Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980. Shulman RG, Hyder F, Rothman DL. Baseline brain energy supports the state of consciousness. Proc Natl Acad Sci U S A 2009;106:11096-11101. Mason MF, Norton MI, Van Horn JD, et al. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395. Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab 2015;35:58-65. Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004;85:2020-2029. Saad ZS, Gotts SJ, Murphy K, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2012;2:25-32. Boveroux P, Vanhaudenhuyse A, Bruno MA, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010;113:1038-1053. Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678. Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007;447:83-86. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162-173. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010;33:1-9. Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 2013;5:198ra05. Martuzzi R, Ramani R, Qiu M, et al. Functional connectivity and alterations in baseline brain state in humans. Neuroimage 2010;49:823-834. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, et al. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain. Conscious Cogn 2008;17:457-467. Cordes D, Haughton V, Carew JD, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 2002;20:305-317. Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682. Crone JS, Schurz M, Holler Y, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 2015;110:101-109. Crone JS, Soddu A, Holler Y, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 2013;4:240-248. Sadaghiani S, Scheeringa R, Lehongre K, et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 2010;30:10243-10250. Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142-2154. Heine L, Soddu A, Gomez F, et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 2012;3:295. Greicius MD, Kiviniemi V, Tervonen O, et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008;29:839-847. Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011;57:198-205. 2015; 35 2007; 104 2006; 31 2013; 4 2009; 80 2013; 64 2011; 57 2012; 59 2013; 7 2005; 26 2013; 5 1996; 29 2005; 102 2008; 29 2007; 130 2010; 113 2011; 23 2014; 52 2008; 1129 2014; 50 2010; 30 1950; 3 2014; 10 2007; 27 2001; 98 2010; 33 2004; 85 2010; 31 2007; 447 2011 2008; 17 2011; 35 2012; 78 2012; 32 2009; 30 2010; 49 2012; 2 2012; 3 2007; 315 2013; 33 2002; 20 2013; 35 2010; 214 2015; 110 2010; 133 2013; 81 2014 2009; 4 2014; 384 2014; 34 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Rumsey DJ (e_1_2_8_42_1) 2011 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Perri C (e_1_2_8_13_1) 2014; 50 Northoff G (e_1_2_8_3_1) 2014 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – reference: Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010;133(pt 1):161-171. – reference: Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009;30:2393-2400. – reference: Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013;33:10503-10511. – reference: Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012;32:4935-4943. – reference: Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS One 2009;4:e5743. – reference: Voss HU, Heier LA, Schiff ND. Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clin Imaging 2011;35:253-258. – reference: Andronache A, Rosazza C, Sattin D, et al. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness. Front Neuroinform 2013;7:16. – reference: Crone JS, Soddu A, Holler Y, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 2013;4:240-248. – reference: Cordes D, Haughton V, Carew JD, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 2002;20:305-317. – reference: Rumsey DJ. Statistics for dummies. 2nd ed. Hoboken, NJ: Wiley, 2011. – reference: Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 2013;5:198ra05. – reference: Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-35. – reference: Yan CG, Craddock RC, He Y, Milham MP. Addressing head motion dependencies for small-world topologies in functional connectomics. Front Hum Neurosci 2013;7:910. – reference: Di Perri C, Heine L, Amico E, et al. Technology-based assessment in patients with disorders of consciousness. Ann Ist Super Sanita 2014;50:209-220. – reference: Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010;33:1-9. – reference: Heine L, Soddu A, Gomez F, et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 2012;3:295. – reference: Martuzzi R, Ramani R, Qiu M, et al. Functional connectivity and alterations in baseline brain state in humans. Neuroimage 2010;49:823-834. – reference: Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678. – reference: Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682. – reference: Crone JS, Schurz M, Holler Y, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 2015;110:101-109. – reference: Coleman MR, Rodd JM, Davis MH, et al. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 2007;130:2494-2507. – reference: Di Perri C, Bastianello S, Bartsch AJ, et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013;81:1417-1424. – reference: Medford N, Critchley HD. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 2010;214:535-549. – reference: Shulman RG, Hyder F, Rothman DL. Baseline brain energy supports the state of consciousness. Proc Natl Acad Sci U S A 2009;106:11096-11101. – reference: Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011;23:570-578. – reference: Sadaghiani S, Scheeringa R, Lehongre K, et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 2010;30:10243-10250. – reference: Boveroux P, Vanhaudenhuyse A, Bruno MA, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010;113:1038-1053. – reference: Crone JS, Holler Y, Bergmann J, et al. Self-related processing and deactivation of cortical midline regions in disorders of consciousness. Front Hum Neurosci 2013;7:504. – reference: Demertzi A, Gomez F, Crone JS, et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014;52:35-46. – reference: Saad ZS, Gotts SJ, Murphy K, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2012;2:25-32. – reference: Huang Z, Dai R, Wu X, et al. The self and its resting state in consciousness: an investigation of the vegetative state. Hum Brain Mapp 2013;35:1997-2008. – reference: Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980. – reference: Cauda F, Micon BM, Sacco K, et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 2009;80:429-431. – reference: Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142-2154. – reference: Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007;447:83-86. – reference: Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004;85:2020-2029. – reference: Qin P, Northoff G. How is our self related to midline regions and the default-mode network? Neuroimage 2011;57:1221-1233. – reference: Mason MF, Norton MI, Van Horn JD, et al. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395. – reference: Boly M, Balteau E, Schnakers C, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 2007;104:12187-12192. – reference: Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 2008;1129:119-129. – reference: Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 2013;64:240-256. – reference: Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab 2015;35:58-65. – reference: Qin P, Di H, Liu Y, et al. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010;31:1993-2002. – reference: Northoff G. Unlocking the brain. Volume II: Consciousness. Oxford, UK: Oxford University Press, 2014. – reference: Mukamel EA, Pirondini E, Babadi B, et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci 2014;34:839-845. – reference: Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 2014;384:514-522. – reference: Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162-173. – reference: Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011;57:198-205. – reference: Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012;59:431-438. – reference: Schilbach L, Eickhoff SB, Rotarska-Jagiela A, et al. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain. Conscious Cogn 2008;17:457-467. – reference: Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014;10:99-114. – reference: Greicius MD, Kiviniemi V, Tervonen O, et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008;29:839-847. – reference: Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356. – reference: Norton L, Hutchison RM, Young GB, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012;78:175-181. – reference: Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15-29. – reference: Horovitz SG, Fukunaga M, de Zwart JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008;29:671-682. – year: 2011 – volume: 110 start-page: 101 year: 2015 end-page: 109 article-title: Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network publication-title: Neuroimage – volume: 80 start-page: 429 year: 2009 end-page: 431 article-title: Disrupted intrinsic functional connectivity in the vegetative state publication-title: J Neurol Neurosurg Psychiatry – volume: 57 start-page: 198 year: 2011 end-page: 205 article-title: Brain functional integration decreases during propofol‐induced loss of consciousness publication-title: Neuroimage – volume: 315 start-page: 393 year: 2007 end-page: 395 article-title: Wandering minds: the default network and stimulus‐independent thought publication-title: Science – volume: 29 start-page: 671 year: 2008 end-page: 682 article-title: Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG‐fMRI study publication-title: Hum Brain Mapp – year: 2014 – volume: 35 start-page: 253 year: 2011 end-page: 258 article-title: Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty publication-title: Clin Imaging – volume: 52 start-page: 35 year: 2014 end-page: 46 article-title: Multiple fMRI system‐level baseline connectivity is disrupted in patients with consciousness alterations publication-title: Cortex – volume: 35 start-page: 58 year: 2015 end-page: 65 article-title: Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients publication-title: J Cereb Blood Flow Metab – volume: 33 start-page: 10503 year: 2013 end-page: 10511 article-title: The autonomic brain: an activation likelihood estimation meta‐analysis for central processing of autonomic function publication-title: J Neurosci – volume: 30 start-page: 2393 year: 2009 end-page: 2400 article-title: Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient publication-title: Hum Brain Mapp – volume: 17 start-page: 457 year: 2008 end-page: 467 article-title: Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the "default system" of the brain publication-title: Conscious Cogn – volume: 30 start-page: 10243 year: 2010 end-page: 10250 article-title: Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study publication-title: J Neurosci – volume: 10 start-page: 99 year: 2014 end-page: 114 article-title: Disorders of consciousness after acquired brain injury: the state of the science publication-title: Nat Rev Neurol – volume: 78 start-page: 175 year: 2012 end-page: 181 article-title: Disruptions of functional connectivity in the default mode network of comatose patients publication-title: Neurology – volume: 81 start-page: 1417 year: 2013 end-page: 1424 article-title: Limbic hyperconnectivity in the vegetative state publication-title: Neurology – volume: 104 start-page: 12187 year: 2007 end-page: 12192 article-title: Baseline brain activity fluctuations predict somatosensory perception in humans publication-title: Proc Natl Acad Sci U S A – volume: 133 start-page: 161 issue: pt 1 year: 2010 end-page: 171 article-title: Default network connectivity reflects the level of consciousness in non‐communicative brain‐damaged patients publication-title: Brain – volume: 2 start-page: 25 year: 2012 end-page: 32 article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression publication-title: Brain Connect – volume: 34 start-page: 839 year: 2014 end-page: 845 article-title: A transition in brain state during propofol‐induced unconsciousness publication-title: J Neurosci – volume: 106 start-page: 11096 year: 2009 end-page: 11101 article-title: Baseline brain energy supports the state of consciousness publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 162 year: 1996 end-page: 173 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput Biomed Res – volume: 64 start-page: 240 year: 2013 end-page: 256 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data publication-title: Neuroimage – volume: 33 start-page: 1 year: 2010 end-page: 9 article-title: Recovery of consciousness after brain injury: a mesocircuit hypothesis publication-title: Trends Neurosci – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 49 start-page: 823 year: 2010 end-page: 834 article-title: Functional connectivity and alterations in baseline brain state in humans publication-title: Neuroimage – volume: 130 start-page: 2494 year: 2007 end-page: 2507 article-title: Do vegetative patients retain aspects of language comprehension? Evidence from fMRI publication-title: Brain – volume: 447 start-page: 83 year: 2007 end-page: 86 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature – volume: 27 start-page: 2349 year: 2007 end-page: 2356 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci – volume: 7 start-page: 16 year: 2013 article-title: Impact of functional MRI data preprocessing pipeline on default‐mode network detectability in patients with disorders of consciousness publication-title: Front Neuroinform – volume: 29 start-page: 839 year: 2008 end-page: 847 article-title: Persistent default‐mode network connectivity during light sedation publication-title: Hum Brain Mapp – volume: 1129 start-page: 119 year: 2008 end-page: 129 article-title: Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? publication-title: Ann N Y Acad Sci – volume: 85 start-page: 2020 year: 2004 end-page: 2029 article-title: The JFK Coma Recovery Scale‐Revised: measurement characteristics and diagnostic utility publication-title: Arch Phys Med Rehabil – volume: 32 start-page: 4935 year: 2012 end-page: 4943 article-title: Returning from oblivion: imaging the neural core of consciousness publication-title: J Neurosci – volume: 35 start-page: 1997 year: 2013 end-page: 2008 article-title: The self and its resting state in consciousness: an investigation of the vegetative state publication-title: Hum Brain Mapp – volume: 113 start-page: 1038 year: 2010 end-page: 1053 article-title: Breakdown of within‐ and between‐network resting state functional magnetic resonance imaging connectivity during propofol‐induced loss of consciousness publication-title: Anesthesiology – volume: 3 start-page: 32 year: 1950 end-page: 35 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 214 start-page: 535 year: 2010 end-page: 549 article-title: Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response publication-title: Brain Struct Funct – volume: 4 start-page: e5743 year: 2009 article-title: Spontaneous brain activity in the default mode network is sensitive to different resting‐state conditions with limited cognitive load publication-title: PloS One – volume: 50 start-page: 209 year: 2014 end-page: 220 article-title: Technology‐based assessment in patients with disorders of consciousness publication-title: Ann Ist Super Sanita – volume: 26 start-page: 15 year: 2005 end-page: 29 article-title: Spontaneous low‐frequency BOLD signal fluctuations: an fMRI investigation of the resting‐state default mode of brain function hypothesis publication-title: Hum Brain Mapp – volume: 4 start-page: 240 year: 2013 end-page: 248 article-title: Altered network properties of the fronto‐parietal network and the thalamus in impaired consciousness publication-title: Neuroimage Clin – volume: 5 start-page: 198ra05 year: 2013 article-title: A theoretically based index of consciousness independent of sensory processing and behavior publication-title: Sci Transl Med – volume: 20 start-page: 305 year: 2002 end-page: 317 article-title: Hierarchical clustering to measure connectivity in fMRI resting‐state data publication-title: Magn Reson Imaging – volume: 384 start-page: 514 year: 2014 end-page: 522 article-title: Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study publication-title: Lancet – volume: 31 start-page: 1993 year: 2010 end-page: 2002 article-title: Anterior cingulate activity and the self in disorders of consciousness publication-title: Hum Brain Mapp – volume: 23 start-page: 570 year: 2011 end-page: 578 article-title: Two distinct neuronal networks mediate the awareness of environment and of self publication-title: J Cogn Neurosci – volume: 98 start-page: 676 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 504 year: 2013 article-title: Self‐related processing and deactivation of cortical midline regions in disorders of consciousness publication-title: Front Hum Neurosci – volume: 31 start-page: 968 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 7 start-page: 910 year: 2013 article-title: Addressing head motion dependencies for small‐world topologies in functional connectomics publication-title: Front Hum Neurosci – volume: 3 start-page: 295 year: 2012 article-title: Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States publication-title: Front Psychol – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci U S A – volume: 57 start-page: 1221 year: 2011 end-page: 1233 article-title: How is our self related to midline regions and the default‐mode network? publication-title: Neuroimage – volume: 59 start-page: 431 year: 2012 end-page: 438 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage – ident: e_1_2_8_35_1 doi: 10.1073/pnas.0504136102 – ident: e_1_2_8_9_1 doi: 10.1038/nrneurol.2013.279 – ident: e_1_2_8_33_1 doi: 10.1523/JNEUROSCI.5587-06.2007 – volume-title: Unlocking the brain. Volume II: Consciousness year: 2014 ident: e_1_2_8_3_1 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2015.01.037 – ident: e_1_2_8_17_1 doi: 10.1212/WNL.0b013e31823fcd61 – ident: e_1_2_8_27_1 doi: 10.1371/journal.pone.0005743 – ident: e_1_2_8_10_1 doi: 10.1126/scitranslmed.3006294 – ident: e_1_2_8_38_1 doi: 10.1002/hbm.20989 – ident: e_1_2_8_15_1 doi: 10.1093/brain/awp313 – volume-title: Statistics for dummies year: 2011 ident: e_1_2_8_42_1 – ident: e_1_2_8_46_1 doi: 10.3389/fnhum.2013.00504 – ident: e_1_2_8_16_1 doi: 10.1136/jnnp.2007.142349 – ident: e_1_2_8_37_1 doi: 10.1002/hbm.20113 – ident: e_1_2_8_22_1 doi: 10.1016/j.cortex.2013.11.005 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_8_25_1 doi: 10.1006/cbmr.1996.0014 – ident: e_1_2_8_41_1 doi: 10.1016/j.nicl.2013.12.005 – ident: e_1_2_8_32_1 doi: 10.3389/fnhum.2013.00910 – ident: e_1_2_8_7_1 doi: 10.1523/JNEUROSCI.1004-10.2010 – ident: e_1_2_8_54_1 doi: 10.1016/j.concog.2008.03.013 – ident: e_1_2_8_56_1 doi: 10.1196/annals.1417.015 – ident: e_1_2_8_47_1 doi: 10.1007/s00429-010-0265-x – ident: e_1_2_8_36_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_8_28_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_8_52_1 doi: 10.1016/j.neuroimage.2011.05.028 – ident: e_1_2_8_6_1 doi: 10.1073/pnas.0611404104 – ident: e_1_2_8_23_1 doi: 10.1016/j.apmr.2004.02.033 – ident: e_1_2_8_26_1 doi: 10.1089/brain.2012.0080 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.0903941106 – ident: e_1_2_8_53_1 doi: 10.1126/science.1131295 – ident: e_1_2_8_50_1 doi: 10.1523/JNEUROSCI.4962-11.2012 – ident: e_1_2_8_12_1 doi: 10.1016/S0140-6736(14)60042-8 – ident: e_1_2_8_51_1 doi: 10.1523/JNEUROSCI.1103-13.2013 – ident: e_1_2_8_55_1 doi: 10.1002/hbm.20428 – ident: e_1_2_8_30_1 doi: 10.1016/j.neuroimage.2012.08.052 – ident: e_1_2_8_5_1 doi: 10.1097/ALN.0b013e3181f697f5 – ident: e_1_2_8_49_1 doi: 10.1523/JNEUROSCI.5813-12.2014 – ident: e_1_2_8_31_1 doi: 10.1002/hbm.22308 – ident: e_1_2_8_39_1 doi: 10.1093/brain/awm170 – ident: e_1_2_8_45_1 doi: 10.1016/j.neuroimage.2011.04.020 – ident: e_1_2_8_20_1 doi: 10.1016/j.neuroimage.2009.07.028 – ident: e_1_2_8_11_1 doi: 10.1212/WNL.0b013e3182a43b78 – ident: e_1_2_8_8_1 doi: 10.3389/fpsyg.2012.00295 – ident: e_1_2_8_24_1 doi: 10.1016/j.clinimag.2010.07.008 – volume: 50 start-page: 209 year: 2014 ident: e_1_2_8_13_1 article-title: Technology‐based assessment in patients with disorders of consciousness publication-title: Ann Ist Super Sanita – ident: e_1_2_8_21_1 doi: 10.1038/nature05758 – ident: e_1_2_8_19_1 doi: 10.1002/hbm.20537 – ident: e_1_2_8_40_1 doi: 10.3389/fninf.2013.00016 – ident: e_1_2_8_29_1 doi: 10.1016/j.neuroimage.2011.07.044 – ident: e_1_2_8_43_1 doi: 10.1016/S0730-725X(02)00503-9 – ident: e_1_2_8_48_1 doi: 10.1016/j.tins.2009.11.002 – ident: e_1_2_8_4_1 doi: 10.1162/jocn.2010.21488 – ident: e_1_2_8_18_1 doi: 10.1002/hbm.20672 – ident: e_1_2_8_57_1 doi: 10.1038/jcbfm.2014.169 – ident: e_1_2_8_44_1 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 |
| SSID | ssj0009610 |
| Score | 2.5246482 |
| Snippet | Objective
We aimed to investigate the roles of different resting‐state networks in predicting both the actual level of consciousness and its recovery in brain... We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury... Objective We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 594 |
| SubjectTerms | Adult Brain - pathology Brain - physiopathology Brain Injuries - diagnosis Brain Injuries - physiopathology Consciousness Consciousness - physiology Female Humans Male Middle Aged Nerve Net - pathology Nerve Net - physiopathology Patients Persistent Vegetative State - diagnosis Persistent Vegetative State - physiopathology Rest - physiology |
| Title | How are different neural networks related to consciousness? |
| URI | https://api.istex.fr/ark:/67375/WNG-BM9C7D4N-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.24479 https://www.ncbi.nlm.nih.gov/pubmed/26290126 https://www.proquest.com/docview/1716205674 https://www.proquest.com/docview/1716941251 https://www.proquest.com/docview/1722181098 |
| Volume | 78 |
| WOSCitedRecordID | wos000362668100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1531-8249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009610 issn: 0364-5134 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD7ozCK-qLvrar1Rl0X2pes0SZsUH2TUHX3QsizqzltI0wyI0pHpePn5nqQXEXQRfCv0BNKTc_nSk3wH4Eec55QYlQUmYwo3KKEORBTrgLC4l9sczVzTvstTnqZiOEz-zMBecxem4odof7hZz3Dx2jq4ysrdZ9JQVahfmJt4MgtdgnYbdaB79HdwcfrMuRs7MgJbaQuikLKGWKhHdtvBL9JR12r28TWs-RK6utwzWPzQrJdgoYacfr-ykc8wY4ovMHdWF9W_wt7J-MFXE-M3zVKmvmW5xCFFdUa89N2NF5P707GP-2fMmuO70sbI_WW4GPw-PzwJ6p4KgWa40wqEopqPaCZERqgxTMSoJYq7JmUyFbFQcYR8SY4oJOlRkfEc8RNl0Sg0CUd4ROk36BTjwqyCrw1GOyFGIeOYChXLWI7ZX2tBhcKoGXnws1Gt1DXhuO17cSMrqmQiURnSKcOD763obcWy8ZrQjlufVkJNru2xNB7Jf-mxPDhLDvkRS-WlBxvNAsraI0tpaYEIoj3OPNhuX6Mv2QKJKgzqzckkzEK-_8kQi4p6ifBgpTKOdkIktlVpEuOXOxt4-1tkP-27h7X3i67DPKK1qDpJuAGd6eTObMInfT-9KidbMMuHYqt2gSeBLAOh |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD5YV2pf1LZqx1vHIsWX0Z0kM8mgIKt2u-LuIMXbW8hksiCW2bK7tv35PclcRLCl4NvAnEByci7fyeULwE6c55QYlQUmYwoLlFAHIop1QFjczm2OZu7Rvus-T1Nxe5tczMBhfRem5IdoFtysZ7h4bR3cLkjvP7KGqkLtYXLiyStoMTQjtO_W6bfuVf-RdDd2bAR2qy2IQspqZqE22W8aP8lHLava38-BzafY1SWf7uLLur0ECxXo9DullbyFGVO8g9eDalv9PRz0Rr98NTZ-_VzK1Lc8l9ikKE-JT3x358Xk_nTkYwWNeXP0MLFR8mgZrrpfLk96QfWqQqAZ1lqBUFTzIc2EyAg1hokY1USxblImUxELFUfQl-SIQ5I2FRnPEUFRFg1Dk3AESJSuwGwxKswH8LXBeCfEMGQck6FiGcsx_2stqFAYNyMPdmvdSl1RjtuXL77LkiyZSFSGdMrw4FMj-qPk2XhO6LOboEZCje_twTQeyZv0qzweJCf8lKXy2oONegZl5ZMTaYmBCOI9zjzYbn6jN9ktElUY1JuTSZgFff-SIRYXtRPhwWppHU2HSGz3pUmMI3dG8PexyE7acR9r_y_6EeZ7l4O-7J-l5-vwBrFbVJ4r3IDZ6fjBbMKc_jm9m4y3Kk_4A_YhBqk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rT9swED9Bi9C-7MVj2diWIYT4EtrYTuxok6aOUkCUCCEe_WY5jitNm1LUlm1__s7OAyEBQuJbpJwl5-y7-13O_h3AVpznlBiVBSZjChOUUAciinVAWNzNbYxmrmnf5ZCnqRiNktMF-FbfhSn5IZofbtYynL-2Bm6u83HnljVUFWoXgxNPFqHNbBOZFrT7Z4OL4S3pbuzYCGypLYhCympmoS7pNIPvxKO2Ve2_-8DmXezqgs_g1fOm_RpeVqDT75W75A0smOItLJ9UZfUV-Ho4-eurqfHrdilz3_Jc4pCiPCU-892dF5P784mPGTTGzcnNzHrJ76twMdg_3zsMqq4KgWaYawVCUc3HNBMiI9QYJmJUE8W8SZlMRSxUHEFfkiMOSbpUZDxHBEVZNA5NwhEgUboGrWJSmHfga4P-TohxyDgGQ8UylmP811pQodBvRh7s1LqVuqIct50vfsuSLJlIVIZ0yvBgsxG9Lnk27hPadgvUSKjpL3swjUfyKj2QP06SPd5nqbz0YKNeQVnZ5ExaYiCCeI8zD740r9GabIlEFQb15mQSZkHfYzLE4qJuIjxYL3dHMyES27o0ifHL3SZ4-FtkL-25h_dPF_0My6f9gRwepccf4AVCt6g8VrgBrfn0xnyEJf1n_nM2_VQZwn92CAYk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+are+different+neural+networks+related+to+consciousness%3F&rft.jtitle=Annals+of+neurology&rft.au=Qin%2C+Pengmin&rft.au=Wu%2C+Xuehai&rft.au=Huang%2C+Zirui&rft.au=Duncan%2C+Niall+W&rft.date=2015-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=78&rft.issue=4&rft.spage=594&rft_id=info:doi/10.1002%2Fana.24479&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3817437431 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |