Probing the Spin Dimensionality in Single‐Layer CrSBr Van Der Waals Heterostructures by Magneto‐Transport Measurements
2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 34; číslo 41; s. e2204940 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.10.2022
Wiley-VCH Verlag |
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers (Tc∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T*∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above Tc and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc. By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
The magneto‐transport properties of 2D CrSBr vertical van der Waals heterostructures are inspected, revealing a spontaneous spin alignment along the b‐axis together with spin‐reorientation and field‐induced phases. In multilayers, a spin‐valve behavior is observed with large negative magnetoresistance. This makes CrSBr of high interest not only as a new 2D magnetic model but also as a potential spintronic component. |
|---|---|
| AbstractList | 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers (Tc∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T*∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above Tc and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc. By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
The magneto‐transport properties of 2D CrSBr vertical van der Waals heterostructures are inspected, revealing a spontaneous spin alignment along the b‐axis together with spin‐reorientation and field‐induced phases. In multilayers, a spin‐valve behavior is observed with large negative magnetoresistance. This makes CrSBr of high interest not only as a new 2D magnetic model but also as a potential spintronic component. 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI 3 and Cr 2 Ge 2 Te 6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers ( T c ∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T *∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above T c and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below T c . By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T *. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T *. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices. 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2 Ge2 Te6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc ∼150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low-temperature hidden-order below T*∼40 K. Here, the magneto-transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low-dimensional character of the ferromagnetic monolayer, with short-range correlations above Tc and an Ising-type in-plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc . By applying moderate magnetic fields along a and c axes, a spin-reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin-valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field-induced phenomena in two-dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2 Ge2 Te6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc ∼150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low-temperature hidden-order below T*∼40 K. Here, the magneto-transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low-dimensional character of the ferromagnetic monolayer, with short-range correlations above Tc and an Ising-type in-plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc . By applying moderate magnetic fields along a and c axes, a spin-reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin-valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field-induced phenomena in two-dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices. 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers (Tc∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T*∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above Tc and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc. By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices. |
| Author | Mañas‐Valero, Samuel Boix‐Constant, Carla Ruiz, Alberto M. Coronado, Eugenio Baldoví, José J. Rybakov, Andrey Pillet, Sébastien Konieczny, Krzysztof Aleksander |
| Author_xml | – sequence: 1 givenname: Carla orcidid: 0000-0003-3213-5906 surname: Boix‐Constant fullname: Boix‐Constant, Carla organization: Universitat de València – sequence: 2 givenname: Samuel orcidid: 0000-0001-6319-9238 surname: Mañas‐Valero fullname: Mañas‐Valero, Samuel email: samuel.manas@uv.es organization: Universitat de València – sequence: 3 givenname: Alberto M. orcidid: 0000-0002-5351-7711 surname: Ruiz fullname: Ruiz, Alberto M. organization: Universitat de València – sequence: 4 givenname: Andrey orcidid: 0000-0002-9924-3576 surname: Rybakov fullname: Rybakov, Andrey organization: Universitat de València – sequence: 5 givenname: Krzysztof Aleksander orcidid: 0000-0003-4618-5154 surname: Konieczny fullname: Konieczny, Krzysztof Aleksander organization: CRM2 – sequence: 6 givenname: Sébastien orcidid: 0000-0003-0530-5244 surname: Pillet fullname: Pillet, Sébastien organization: CRM2 – sequence: 7 givenname: José J. orcidid: 0000-0002-2277-3974 surname: Baldoví fullname: Baldoví, José J. organization: Universitat de València – sequence: 8 givenname: Eugenio orcidid: 0000-0002-1848-8791 surname: Coronado fullname: Coronado, Eugenio email: eugenio.coronado@uv.es organization: Universitat de València |
| BackLink | https://hal.univ-lorraine.fr/hal-03806150$$DView record in HAL |
| BookMark | eNqFkc2O0zAQgC20SHQXrpwtcYFDiu04bnwsXdgitQKpFRytSezsepXaxXYWhdM-As_Ik-Co_EgrIU7WzHyfZzRzjs6cdwah55TMKSHsNegDzBlhjHDJySM0oxWjBSeyOkMzIsuqkILXT9B5jLeEECmImKFvH4NvrLvG6cbg3dE6fGkPxkXrHfQ2jThndrnemx_33zcwmoBXYfcm4E-Q0Rx9BugjXptkgo8pDG0agom4GfEWrp1JPnv7AC4efUh4ayDmeu6Q4lP0uMuuefbrvUD7d2_3q3Wx-XD1frXcFC1nnBSmq7TQpdRaalZ2VHSyobUGzQUDqjvaAIgFWTS6E5xzsjBVKcuuqlgNdbcoL9Cr07c30KtjsAcIo_Jg1Xq5UVOOlDURtCJ3NLMvT-wx-C-DiUkdbGxN34MzfoiK5T6CcipERl88QG_9EPLSJorlOTI7UfxEtXk7MZhOtTZByttNAWyvKFHT7dR0O_XndlmbP9B-D_5PQZ6Er7Y3439otbzcLv-6PwFDq7Ct |
| CitedBy_id | crossref_primary_10_1021_acsnano_5c05470 crossref_primary_10_1002_apxr_202400053 crossref_primary_10_1002_aelm_202500125 crossref_primary_10_1002_anie_202412425 crossref_primary_10_1021_acs_jpcc_5c04211 crossref_primary_10_3390_condmat10020027 crossref_primary_10_1002_adfm_202309335 crossref_primary_10_1038_s41467_023_44180_4 crossref_primary_10_1103_xbxn_zvc9 crossref_primary_10_1002_adfm_202211366 crossref_primary_10_1088_2752_5724_acf9ba crossref_primary_10_1063_5_0279573 crossref_primary_10_1557_s43578_024_01459_6 crossref_primary_10_26599_NR_2025_94907188 crossref_primary_10_1002_adma_202307195 crossref_primary_10_1038_s41467_024_49048_9 crossref_primary_10_1103_hpmq_rnh4 crossref_primary_10_1103_hmmd_bply crossref_primary_10_1016_j_mtnano_2023_100408 crossref_primary_10_1103_PhysRevResearch_6_013185 crossref_primary_10_1103_s8qn_n8tr crossref_primary_10_1126_science_adq8590 crossref_primary_10_1002_adma_202208355 crossref_primary_10_1016_j_mtquan_2025_100040 crossref_primary_10_1103_x63l_2v2q crossref_primary_10_1088_1402_4896_ad8787 crossref_primary_10_1016_j_jpcs_2025_112589 crossref_primary_10_3390_mi15111401 crossref_primary_10_1039_D5NR00562K crossref_primary_10_1016_j_mtelec_2023_100081 crossref_primary_10_1038_s41563_025_02129_6 crossref_primary_10_1088_0256_307X_40_5_058501 crossref_primary_10_1038_s41535_025_00767_2 crossref_primary_10_1002_smsc_202400244 crossref_primary_10_1557_s43580_025_01355_z crossref_primary_10_3390_nano14211759 crossref_primary_10_1002_ange_202412425 crossref_primary_10_1002_adma_202506695 crossref_primary_10_1063_5_0175185 crossref_primary_10_1002_adma_202419283 crossref_primary_10_1021_acs_nanolett_5c01937 crossref_primary_10_1039_D4SC04722B crossref_primary_10_1103_PhysRevX_14_041065 crossref_primary_10_1038_s41699_023_00423_y crossref_primary_10_1039_D3NR02518G crossref_primary_10_1038_s41563_023_01735_6 crossref_primary_10_1002_adfm_202310206 crossref_primary_10_1039_D4NR05503A crossref_primary_10_1021_acsphotonics_5c00144 crossref_primary_10_1038_s41524_023_01050_3 crossref_primary_10_1002_adma_202415774 crossref_primary_10_1038_s41467_023_43111_7 crossref_primary_10_1038_s41586_024_07818_x crossref_primary_10_1088_2515_7639_adc3cd crossref_primary_10_1002_adfm_202410974 |
| Cites_doi | 10.1002/zaac.19905850118 10.1038/s41565-021-00887-3 10.1002/adma.202003240 10.1103/PhysRevB.86.134428 10.1002/advs.202202467 10.1088/0953-8984/21/39/395502 10.1103/PhysRevLett.77.3865 10.1016/j.cpc.2021.107938 10.1126/science.aar3617 10.1021/acs.nanolett.1c00219 10.1021/acsnano.1c03012 10.1103/PhysRevB.57.1505 10.1103/PhysRevB.80.144416 10.1021/acs.nanolett.9b05165 10.1002/adma.202110027 10.1016/j.scib.2019.02.011 10.1016/j.cpc.2007.11.016 10.1016/0304-8853(90)90689-N 10.1103/PhysRevB.104.144416 10.1073/pnas.1902100116 10.1080/00018739700101558 10.1063/5.0014865 10.1103/PhysRevB.80.064426 10.1038/s41563-022-01245-x 10.3390/app6090250 10.1088/2053-1583/ac7881 10.1038/s41467-022-32290-4 10.1103/PhysRevB.71.100405 10.1038/s41567-019-0651-0 10.1038/s41563-021-01070-8 10.1126/science.1244358 10.1039/C8NR06368K 10.1107/S0021889808042726 10.1002/adma.202109759 10.1021/acsnano.2c01151 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.56.12847 10.1016/j.cpc.2018.01.012 10.1002/aelm.202000987 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 24P AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 1XC VOOES |
| DOI | 10.1002/adma.202204940 |
| DatabaseName | Wiley-Blackwell Open Access Titles (Open Access) CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | oai:HAL:hal-03806150v1 10_1002_adma_202204940 ADMA202204940 |
| Genre | article |
| GrantInformation_xml | – fundername: Spanish MICINN funderid: 2D‐HETEROS PID2020‐117152RB‐100; ExcellenceUnit“MaríadeMaeztu”CEX2019‐000919‐M – fundername: European Commission funderid: ERC‐AdG‐788222Mol‐2D; ERC‐2021‐StG‐1010426802D‐SMARTiES; FETOPENSINFONIA964396 – fundername: Region Grand‐Est – fundername: CNRS – fundername: Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana funderid: IDIFEDER/2018/061; CDEIGENT/2019/022; GRISOLIAP/2021/038 – fundername: Agence Nationale de la Recherche funderid: ANR‐20‐CE07‐0028‐03 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c4240-ef5d6d39dd9d23f16f9b18dad462a1df1baa6707bdf644407e5393f5528a8f73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853439400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Nov 05 08:02:18 EST 2025 Thu Oct 02 11:00:04 EDT 2025 Fri Jul 25 05:26:59 EDT 2025 Tue Nov 18 21:43:28 EST 2025 Sat Nov 29 07:22:32 EST 2025 Wed Jan 22 16:23:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 41 |
| Keywords | van der Waals heterostructures quantum materials 2D magnets electrical properties DFT calculations 2D materials |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4240-ef5d6d39dd9d23f16f9b18dad462a1df1baa6707bdf644407e5393f5528a8f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2277-3974 0000-0003-3213-5906 0000-0002-9924-3576 0000-0003-4618-5154 0000-0003-0530-5244 0000-0001-6319-9238 0000-0002-1848-8791 0000-0002-5351-7711 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204940 |
| PQID | 2724402706 |
| PQPubID | 2045203 |
| PageCount | 8 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03806150v1 proquest_miscellaneous_2707614166 proquest_journals_2724402706 crossref_citationtrail_10_1002_adma_202204940 crossref_primary_10_1002_adma_202204940 wiley_primary_10_1002_adma_202204940_ADMA202204940 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
| References | 2021; 7 2021; 21 2021; 20 2018; 360 2009; 21 2009; 42 2020; 20 2009; 80 2018; 226 2021; 104 2022; 2202467 2019; 15 2013; 342 2022; 21 2020; 32 2021; 264 1990; 585 2019; 166 1996; 77 2021; 16 2016; 6 2021; 15 1974; 23 1976; 13 2019; 64 2022; 9 1997; 56 2022; 34 2022; 13 2020; 117 2005; 71 2008; 178 2018; 10 2022; 16 1990; 92 2012; 86 1998; 57 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 342 start-page: 614 year: 2013 publication-title: Science – volume: 20 start-page: 2452 year: 2020 publication-title: Nano Lett. – volume: 21 start-page: 754 year: 2022 publication-title: Nat. Mater. – volume: 42 start-page: 339 year: 2009 publication-title: J. Appl. Crystallogr. – volume: 360 start-page: 1218 year: 2018 publication-title: Science – volume: 71 year: 2005 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 56 year: 1997 publication-title: Phys. Rev. B – volume: 178 start-page: 685 year: 2008 publication-title: Comput. Phys. Commun. – volume: 23 start-page: 1 year: 1974 publication-title: Adv. Phys. – volume: 21 year: 2009 publication-title: J. Phys.: Condens. Matter – volume: 13 start-page: 4745 year: 2022 publication-title: Nat. Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 92 start-page: 129 year: 1990 publication-title: J. Magn. Magn. Mater. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 585 start-page: 157 year: 1990 publication-title: Z. fur Anorg. Allg. Chem. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 9 year: 2022 publication-title: 2D Mater. – volume: 64 start-page: 293 year: 2019 publication-title: Sci. Bull. – volume: 16 start-page: 788 year: 2021 publication-title: Nat. Nanotechnol. – volume: 264 year: 2021 publication-title: Comput. Phys. Commun. – volume: 20 start-page: 1657 year: 2021 publication-title: Nat. Mater. – volume: 57 start-page: 1505 year: 1998 publication-title: Phys. Rev. B – volume: 2202467 year: 2022 publication-title: Adv. Sci. – volume: 21 start-page: 3511 year: 2021 publication-title: Nano Lett. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 80 year: 2009 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 6 start-page: 250 year: 2016 publication-title: Appl. Sci. – volume: 15 start-page: 1255 year: 2019 publication-title: Nat. Phys. – volume: 104 year: 2021 publication-title: Phys. Rev. B – volume: 166 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 86 year: 2012 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 226 start-page: 39 year: 2018 publication-title: Comput. Phys. Commun. – ident: e_1_2_8_2_1 doi: 10.1002/zaac.19905850118 – ident: e_1_2_8_14_1 doi: 10.1038/s41565-021-00887-3 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202003240 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevB.86.134428 – ident: e_1_2_8_26_1 doi: 10.1002/advs.202202467 – ident: e_1_2_8_32_1 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_38_1 doi: 10.1016/j.cpc.2021.107938 – ident: e_1_2_8_23_1 doi: 10.1126/science.aar3617 – ident: e_1_2_8_8_1 doi: 10.1021/acs.nanolett.1c00219 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.1c03012 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevB.80.144416 – ident: e_1_2_8_24_1 doi: 10.1021/acs.nanolett.9b05165 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202110027 – ident: e_1_2_8_4_1 doi: 10.1016/j.scib.2019.02.011 – ident: e_1_2_8_37_1 doi: 10.1016/j.cpc.2007.11.016 – ident: e_1_2_8_3_1 doi: 10.1016/0304-8853(90)90689-N – ident: e_1_2_8_1_1 doi: 10.1103/PhysRevB.104.144416 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1902100116 – ident: e_1_2_8_25_1 doi: 10.1080/00018739700101558 – ident: e_1_2_8_6_1 doi: 10.1063/5.0014865 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevB.80.064426 – ident: e_1_2_8_7_1 doi: 10.1038/s41563-022-01245-x – ident: e_1_2_8_27_1 doi: 10.3390/app6090250 – ident: e_1_2_8_15_1 doi: 10.1088/2053-1583/ac7881 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-022-32290-4 – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevB.71.100405 – ident: e_1_2_8_30_1 doi: 10.1038/s41567-019-0651-0 – ident: e_1_2_8_9_1 doi: 10.1038/s41563-021-01070-8 – ident: e_1_2_8_29_1 doi: 10.1126/science.1244358 – ident: e_1_2_8_5_1 doi: 10.1039/C8NR06368K – ident: e_1_2_8_28_1 doi: 10.1107/S0021889808042726 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202109759 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.2c01151 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.56.12847 – ident: e_1_2_8_39_1 doi: 10.1016/j.cpc.2018.01.012 – ident: e_1_2_8_21_1 doi: 10.1002/aelm.202000987 |
| SSID | ssj0009606 |
| Score | 2.6427522 |
| Snippet | 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D... |
| SourceID | hal proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2204940 |
| SubjectTerms | 2D magnets 2D materials Anisotropy Antiferromagnetism Bilayers Condensed Matter DFT calculations electrical properties Ferromagnetism Heterostructures Ising model Magnetic materials Magnetic properties Magnetoresistance Magnetoresistivity Magnets Materials science Monolayers Multilayers Physics quantum materials Spintronics Strongly Correlated Electrons Transport properties van der Waals heterostructures |
| Title | Probing the Spin Dimensionality in Single‐Layer CrSBr Van Der Waals Heterostructures by Magneto‐Transport Measurements |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204940 https://www.proquest.com/docview/2724402706 https://www.proquest.com/docview/2707614166 https://hal.univ-lorraine.fr/hal-03806150 |
| Volume | 34 |
| WOSCitedRecordID | wos000853439400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefYOMAB8ZPURiTQUicovlHEjvHsq7qoZ0qOqC3yIntMWlKp3abtJ32J-xv5C_hvaRNuwNCgkuUH89SFL9nf5_tfAzwSVCWEEyIeKlkRFOOUWYdBh5XUnh0IC6bzSb00ZGZTrPxxl_8DR-iHXCjyKjbawpwWyz219BQ62pukJREOMGkfVsIpcmvZTxeY3fTendNmu2LsjQ2K2wjl_v3y9_rlh7-pEWRG4pzU7fWHU9_5_9f-Rk8XYpO1m285Dk88NULeLKBInwJN2MCMlUnDAUhm5yfVqxH3P-G2YFKneGdCT4_879u74YWhTo7mE--zNl3i6Z49cOiI7MBra6ZNVDaS8zkWXHNRvak8hczLNeS1NloPTS5eAXH_cPjg0G03JchKmOs2siHxKVOZc5lTqog0pAVwjjr4lRa4YIorE0114ULqLbQF3yiMhWSRBprglavYauaVf4NsFIlosy05M4WcYhFge2BdDwEqQ0vvelAtKqVvFwyy2nrjLO8oS3LnD5p3n7SDnxu7c8bWscfLT9iJbdGBNkedIc53ePK1Jj8K9GB3ZUP5MvQXuRSoyLCZJ6nHfjQPsagpJkWW_nZJdnQ8BBqXbSRtUf85XXybm_Uba_e_kuhd_CYzpuFhruwhTXt38Oj8uridDHfq8MCj3pq9mC797X_bfgbSxMPoA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bb9MwFMePoEMCHrgOURhgEBJP0XzJ9bGsVEWk1UQL7M1yYntMmtKp3SbBEx-Bz8gn4ZwkTbsHhIR4jHMcRfY5zt_2yc8ArwXNEnzqA14qGdCWY5AZi4HHlRQOHYjL5rCJZDpNj46ywzabkP6FafgQ3YIbRUY9XlOA04L0_oYaamwNDpKSECc4a98J0ZeiHuwMP44-5RvyblwfsEkbfkEWh-ma3Mjl_tUnXPkyXf9KeZFbonNbutbfntHd__DW9-BOKzzZoPGU-3DNVQ_g9haO8CF8PyQoU3XMUBSy2dlJxYbE_m-4HajWGZbM8P6p-_XjZ25QrLOD5eztkn02aIpXXww6MxtThs2iAdNe4GyeFd_YxBxX7nyB9TqaOptslidXuzAfvZsfjIP2bIagDLF7A-cjG1uVWZtZqbyIfVaI1BobxtII60VhTJzwpLAeFRf6g4tUpnwUydSkPlGPoFctKvcYWKkiUWaJ5NYUoQ9FgWOCtNx7maS8dGkfgnW36LLlltPxGae6IS5LTU2quybtw5vO_qwhdvzR8hX2cmdEoO3xINdUxlVao_IvRR_21k6g2_BeaZmgKsIJPY_78LK7jYFJuy2mcosLsqElItS7aCNrl_jL6-jBcDLorp78S6UXcHM8n-Q6fz_98BRuUXmTeLgHPex19wxulJfnJ6vl8zZKfgN4hBKV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bixMxFMcPuorog3exumoUwadhc5lL5rFuLRXbUuii-xYyk2RdWKal3V3QJz-Cn9FP4jkz02n3QQTxMZkTCMk5yT-X-QXgraBVQtAh4qWSER05Rrl1GHhcSeHRgbhsHpvIplN9fJzP2tuE9C9Mw4foNtwoMurxmgLcL1042FJDravBQVIS4gRX7TfiBAdagjvHsy13N62f16TjvihPY73hNnJ5cLX8lXnp-le6FbkjOXeFaz3zDO_9hzrfh7ut7GT9xk8ewDVfPYQ7OzDCR_B9Rkim6oShJGTz5WnFBkT-b6gdqNUZ5szx-5n_9ePn2KJUZ4er-fsV-2zRFFNfLLoyG9H9mkWDpb3AtTwrvrGJPan8-QLLdSx1NtluTq4fw9Hww9HhKGpfZojKGDs38iFxqVO5c7mTKog05IXQzro4lVa4IApr04xnhQuot9AbfKJyFZJEaqtDpp7AXrWo_FNgpUpEmWeSO1vEIRYFjgjS8RBkpnnpdQ-iTbeYsqWW0-MZZ6bhLUtDTWq6Ju3Bu85-2fA6_mj5Bnu5MyLM9qg_NpTHla5B-ZeiB_sbJzBtcK-NzFAT4XKepz143X3GsKSzFlv5xQXZ0AYRql20kbVL_KU6pj-Y9LvUs38p9ApuzQZDM_44_fQcblN2c-twH_aw0_0LuFlenp-uVy_rEPkNBe4Qfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Spin+Dimensionality+in+Single%E2%80%90Layer+CrSBr+Van+Der+Waals+Heterostructures+by+Magneto%E2%80%90Transport+Measurements&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Boix%E2%80%90Constant%2C+Carla&rft.au=Ma%C3%B1as%E2%80%90Valero%2C+Samuel&rft.au=Ruiz%2C+Alberto+M.&rft.au=Rybakov%2C+Andrey&rft.date=2022-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=41&rft_id=info:doi/10.1002%2Fadma.202204940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202204940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |