Probing the Spin Dimensionality in Single‐Layer CrSBr Van Der Waals Heterostructures by Magneto‐Transport Measurements

2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 34; H. 41; S. e2204940 - n/a
Hauptverfasser: Boix‐Constant, Carla, Mañas‐Valero, Samuel, Ruiz, Alberto M., Rybakov, Andrey, Konieczny, Krzysztof Aleksander, Pillet, Sébastien, Baldoví, José J., Coronado, Eugenio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 01.10.2022
Wiley-VCH Verlag
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers (Tc∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T*∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above Tc and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc. By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices. The magneto‐transport properties of 2D CrSBr vertical van der Waals heterostructures are inspected, revealing a spontaneous spin alignment along the b‐axis together with spin‐reorientation and field‐induced phases. In multilayers, a spin‐valve behavior is observed with large negative magnetoresistance. This makes CrSBr of high interest not only as a new 2D magnetic model but also as a potential spintronic component.
AbstractList 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers (Tc∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T*∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above Tc and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc. By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices. The magneto‐transport properties of 2D CrSBr vertical van der Waals heterostructures are inspected, revealing a spontaneous spin alignment along the b‐axis together with spin‐reorientation and field‐induced phases. In multilayers, a spin‐valve behavior is observed with large negative magnetoresistance. This makes CrSBr of high interest not only as a new 2D magnetic model but also as a potential spintronic component.
2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI 3 and Cr 2 Ge 2 Te 6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers ( T c ∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T *∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above T c and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below T c . By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T *. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T *. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2 Ge2 Te6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc ∼150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low-temperature hidden-order below T*∼40 K. Here, the magneto-transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low-dimensional character of the ferromagnetic monolayer, with short-range correlations above Tc and an Ising-type in-plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc . By applying moderate magnetic fields along a and c axes, a spin-reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin-valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field-induced phenomena in two-dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2 Ge2 Te6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc ∼150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low-temperature hidden-order below T*∼40 K. Here, the magneto-transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low-dimensional character of the ferromagnetic monolayer, with short-range correlations above Tc and an Ising-type in-plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc . By applying moderate magnetic fields along a and c axes, a spin-reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin-valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field-induced phenomena in two-dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air‐stable semiconductor formed by antiferromagnetically‐coupled ferromagnetic layers (Tc∼150 K) that can be exfoliated down to the single‐layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low‐temperature hidden‐order below T*∼40 K. Here, the magneto‐transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low‐dimensional character of the ferromagnetic monolayer, with short‐range correlations above Tc and an Ising‐type in‐plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc. By applying moderate magnetic fields along a and c axes, a spin‐reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin‐valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field‐induced phenomena in two‐dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
Author Mañas‐Valero, Samuel
Boix‐Constant, Carla
Ruiz, Alberto M.
Coronado, Eugenio
Baldoví, José J.
Rybakov, Andrey
Pillet, Sébastien
Konieczny, Krzysztof Aleksander
Author_xml – sequence: 1
  givenname: Carla
  orcidid: 0000-0003-3213-5906
  surname: Boix‐Constant
  fullname: Boix‐Constant, Carla
  organization: Universitat de València
– sequence: 2
  givenname: Samuel
  orcidid: 0000-0001-6319-9238
  surname: Mañas‐Valero
  fullname: Mañas‐Valero, Samuel
  email: samuel.manas@uv.es
  organization: Universitat de València
– sequence: 3
  givenname: Alberto M.
  orcidid: 0000-0002-5351-7711
  surname: Ruiz
  fullname: Ruiz, Alberto M.
  organization: Universitat de València
– sequence: 4
  givenname: Andrey
  orcidid: 0000-0002-9924-3576
  surname: Rybakov
  fullname: Rybakov, Andrey
  organization: Universitat de València
– sequence: 5
  givenname: Krzysztof Aleksander
  orcidid: 0000-0003-4618-5154
  surname: Konieczny
  fullname: Konieczny, Krzysztof Aleksander
  organization: CRM2
– sequence: 6
  givenname: Sébastien
  orcidid: 0000-0003-0530-5244
  surname: Pillet
  fullname: Pillet, Sébastien
  organization: CRM2
– sequence: 7
  givenname: José J.
  orcidid: 0000-0002-2277-3974
  surname: Baldoví
  fullname: Baldoví, José J.
  organization: Universitat de València
– sequence: 8
  givenname: Eugenio
  orcidid: 0000-0002-1848-8791
  surname: Coronado
  fullname: Coronado, Eugenio
  email: eugenio.coronado@uv.es
  organization: Universitat de València
BackLink https://hal.univ-lorraine.fr/hal-03806150$$DView record in HAL
BookMark eNqFkc2O0zAQgC20SHQXrpwtcYFDiu04bnwsXdgitQKpFRytSezsepXaxXYWhdM-As_Ik-Co_EgrIU7WzHyfZzRzjs6cdwah55TMKSHsNegDzBlhjHDJySM0oxWjBSeyOkMzIsuqkILXT9B5jLeEECmImKFvH4NvrLvG6cbg3dE6fGkPxkXrHfQ2jThndrnemx_33zcwmoBXYfcm4E-Q0Rx9BugjXptkgo8pDG0agom4GfEWrp1JPnv7AC4efUh4ayDmeu6Q4lP0uMuuefbrvUD7d2_3q3Wx-XD1frXcFC1nnBSmq7TQpdRaalZ2VHSyobUGzQUDqjvaAIgFWTS6E5xzsjBVKcuuqlgNdbcoL9Cr07c30KtjsAcIo_Jg1Xq5UVOOlDURtCJ3NLMvT-wx-C-DiUkdbGxN34MzfoiK5T6CcipERl88QG_9EPLSJorlOTI7UfxEtXk7MZhOtTZByttNAWyvKFHT7dR0O_XndlmbP9B-D_5PQZ6Er7Y3439otbzcLv-6PwFDq7Ct
CitedBy_id crossref_primary_10_1021_acsnano_5c05470
crossref_primary_10_1002_apxr_202400053
crossref_primary_10_1002_aelm_202500125
crossref_primary_10_1002_anie_202412425
crossref_primary_10_1021_acs_jpcc_5c04211
crossref_primary_10_3390_condmat10020027
crossref_primary_10_1002_adfm_202309335
crossref_primary_10_1038_s41467_023_44180_4
crossref_primary_10_1103_xbxn_zvc9
crossref_primary_10_1002_adfm_202211366
crossref_primary_10_1088_2752_5724_acf9ba
crossref_primary_10_1063_5_0279573
crossref_primary_10_1557_s43578_024_01459_6
crossref_primary_10_26599_NR_2025_94907188
crossref_primary_10_1002_adma_202307195
crossref_primary_10_1038_s41467_024_49048_9
crossref_primary_10_1103_hpmq_rnh4
crossref_primary_10_1103_hmmd_bply
crossref_primary_10_1016_j_mtnano_2023_100408
crossref_primary_10_1103_PhysRevResearch_6_013185
crossref_primary_10_1103_s8qn_n8tr
crossref_primary_10_1126_science_adq8590
crossref_primary_10_1002_adma_202208355
crossref_primary_10_1016_j_mtquan_2025_100040
crossref_primary_10_1103_x63l_2v2q
crossref_primary_10_1088_1402_4896_ad8787
crossref_primary_10_1016_j_jpcs_2025_112589
crossref_primary_10_3390_mi15111401
crossref_primary_10_1039_D5NR00562K
crossref_primary_10_1016_j_mtelec_2023_100081
crossref_primary_10_1038_s41563_025_02129_6
crossref_primary_10_1088_0256_307X_40_5_058501
crossref_primary_10_1038_s41535_025_00767_2
crossref_primary_10_1002_smsc_202400244
crossref_primary_10_1557_s43580_025_01355_z
crossref_primary_10_3390_nano14211759
crossref_primary_10_1002_ange_202412425
crossref_primary_10_1002_adma_202506695
crossref_primary_10_1063_5_0175185
crossref_primary_10_1002_adma_202419283
crossref_primary_10_1021_acs_nanolett_5c01937
crossref_primary_10_1039_D4SC04722B
crossref_primary_10_1103_PhysRevX_14_041065
crossref_primary_10_1038_s41699_023_00423_y
crossref_primary_10_1039_D3NR02518G
crossref_primary_10_1038_s41563_023_01735_6
crossref_primary_10_1002_adfm_202310206
crossref_primary_10_1039_D4NR05503A
crossref_primary_10_1021_acsphotonics_5c00144
crossref_primary_10_1038_s41524_023_01050_3
crossref_primary_10_1002_adma_202415774
crossref_primary_10_1038_s41467_023_43111_7
crossref_primary_10_1038_s41586_024_07818_x
crossref_primary_10_1088_2515_7639_adc3cd
crossref_primary_10_1002_adfm_202410974
Cites_doi 10.1002/zaac.19905850118
10.1038/s41565-021-00887-3
10.1002/adma.202003240
10.1103/PhysRevB.86.134428
10.1002/advs.202202467
10.1088/0953-8984/21/39/395502
10.1103/PhysRevLett.77.3865
10.1016/j.cpc.2021.107938
10.1126/science.aar3617
10.1021/acs.nanolett.1c00219
10.1021/acsnano.1c03012
10.1103/PhysRevB.57.1505
10.1103/PhysRevB.80.144416
10.1021/acs.nanolett.9b05165
10.1002/adma.202110027
10.1016/j.scib.2019.02.011
10.1016/j.cpc.2007.11.016
10.1016/0304-8853(90)90689-N
10.1103/PhysRevB.104.144416
10.1073/pnas.1902100116
10.1080/00018739700101558
10.1063/5.0014865
10.1103/PhysRevB.80.064426
10.1038/s41563-022-01245-x
10.3390/app6090250
10.1088/2053-1583/ac7881
10.1038/s41467-022-32290-4
10.1103/PhysRevB.71.100405
10.1038/s41567-019-0651-0
10.1038/s41563-021-01070-8
10.1126/science.1244358
10.1039/C8NR06368K
10.1107/S0021889808042726
10.1002/adma.202109759
10.1021/acsnano.2c01151
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.56.12847
10.1016/j.cpc.2018.01.012
10.1002/aelm.202000987
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 24P
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
DOI 10.1002/adma.202204940
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-4095
EndPage n/a
ExternalDocumentID oai:HAL:hal-03806150v1
10_1002_adma_202204940
ADMA202204940
Genre article
GrantInformation_xml – fundername: Spanish MICINN
  funderid: 2D‐HETEROS PID2020‐117152RB‐100; ExcellenceUnit“MaríadeMaeztu”CEX2019‐000919‐M
– fundername: European Commission
  funderid: ERC‐AdG‐788222Mol‐2D; ERC‐2021‐StG‐1010426802D‐SMARTiES; FETOPENSINFONIA964396
– fundername: Region Grand‐Est
– fundername: CNRS
– fundername: Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
  funderid: IDIFEDER/2018/061; CDEIGENT/2019/022; GRISOLIAP/2021/038
– fundername: Agence Nationale de la Recherche
  funderid: ANR‐20‐CE07‐0028‐03
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
ID FETCH-LOGICAL-c4240-ef5d6d39dd9d23f16f9b18dad462a1df1baa6707bdf644407e5393f5528a8f73
IEDL.DBID 24P
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853439400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Nov 05 08:02:18 EST 2025
Thu Oct 02 11:00:04 EDT 2025
Fri Jul 25 05:26:59 EDT 2025
Tue Nov 18 21:43:28 EST 2025
Sat Nov 29 07:22:32 EST 2025
Wed Jan 22 16:23:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords van der Waals heterostructures
quantum materials
2D magnets
electrical properties
DFT calculations
2D materials
Language English
License Attribution-NonCommercial-NoDerivs
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4240-ef5d6d39dd9d23f16f9b18dad462a1df1baa6707bdf644407e5393f5528a8f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2277-3974
0000-0003-3213-5906
0000-0002-9924-3576
0000-0003-4618-5154
0000-0003-0530-5244
0000-0001-6319-9238
0000-0002-1848-8791
0000-0002-5351-7711
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204940
PQID 2724402706
PQPubID 2045203
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03806150v1
proquest_miscellaneous_2707614166
proquest_journals_2724402706
crossref_citationtrail_10_1002_adma_202204940
crossref_primary_10_1002_adma_202204940
wiley_primary_10_1002_adma_202204940_ADMA202204940
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2021; 7
2021; 21
2021; 20
2018; 360
2009; 21
2009; 42
2020; 20
2009; 80
2018; 226
2021; 104
2022; 2202467
2019; 15
2013; 342
2022; 21
2020; 32
2021; 264
1990; 585
2019; 166
1996; 77
2021; 16
2016; 6
2021; 15
1974; 23
1976; 13
2019; 64
2022; 9
1997; 56
2022; 34
2022; 13
2020; 117
2005; 71
2008; 178
2018; 10
2022; 16
1990; 92
2012; 86
1998; 57
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 342
  start-page: 614
  year: 2013
  publication-title: Science
– volume: 20
  start-page: 2452
  year: 2020
  publication-title: Nano Lett.
– volume: 21
  start-page: 754
  year: 2022
  publication-title: Nat. Mater.
– volume: 42
  start-page: 339
  year: 2009
  publication-title: J. Appl. Crystallogr.
– volume: 360
  start-page: 1218
  year: 2018
  publication-title: Science
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 56
  year: 1997
  publication-title: Phys. Rev. B
– volume: 178
  start-page: 685
  year: 2008
  publication-title: Comput. Phys. Commun.
– volume: 23
  start-page: 1
  year: 1974
  publication-title: Adv. Phys.
– volume: 21
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 13
  start-page: 4745
  year: 2022
  publication-title: Nat. Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 92
  start-page: 129
  year: 1990
  publication-title: J. Magn. Magn. Mater.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 585
  start-page: 157
  year: 1990
  publication-title: Z. fur Anorg. Allg. Chem.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 9
  year: 2022
  publication-title: 2D Mater.
– volume: 64
  start-page: 293
  year: 2019
  publication-title: Sci. Bull.
– volume: 16
  start-page: 788
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 264
  year: 2021
  publication-title: Comput. Phys. Commun.
– volume: 20
  start-page: 1657
  year: 2021
  publication-title: Nat. Mater.
– volume: 57
  start-page: 1505
  year: 1998
  publication-title: Phys. Rev. B
– volume: 2202467
  year: 2022
  publication-title: Adv. Sci.
– volume: 21
  start-page: 3511
  year: 2021
  publication-title: Nano Lett.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 80
  year: 2009
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 6
  start-page: 250
  year: 2016
  publication-title: Appl. Sci.
– volume: 15
  start-page: 1255
  year: 2019
  publication-title: Nat. Phys.
– volume: 104
  year: 2021
  publication-title: Phys. Rev. B
– volume: 166
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 226
  start-page: 39
  year: 2018
  publication-title: Comput. Phys. Commun.
– ident: e_1_2_8_2_1
  doi: 10.1002/zaac.19905850118
– ident: e_1_2_8_14_1
  doi: 10.1038/s41565-021-00887-3
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202003240
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevB.86.134428
– ident: e_1_2_8_26_1
  doi: 10.1002/advs.202202467
– ident: e_1_2_8_32_1
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cpc.2021.107938
– ident: e_1_2_8_23_1
  doi: 10.1126/science.aar3617
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.nanolett.1c00219
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.1c03012
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevB.80.144416
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.nanolett.9b05165
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202110027
– ident: e_1_2_8_4_1
  doi: 10.1016/j.scib.2019.02.011
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cpc.2007.11.016
– ident: e_1_2_8_3_1
  doi: 10.1016/0304-8853(90)90689-N
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRevB.104.144416
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.1902100116
– ident: e_1_2_8_25_1
  doi: 10.1080/00018739700101558
– ident: e_1_2_8_6_1
  doi: 10.1063/5.0014865
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevB.80.064426
– ident: e_1_2_8_7_1
  doi: 10.1038/s41563-022-01245-x
– ident: e_1_2_8_27_1
  doi: 10.3390/app6090250
– ident: e_1_2_8_15_1
  doi: 10.1088/2053-1583/ac7881
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-022-32290-4
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevB.71.100405
– ident: e_1_2_8_30_1
  doi: 10.1038/s41567-019-0651-0
– ident: e_1_2_8_9_1
  doi: 10.1038/s41563-021-01070-8
– ident: e_1_2_8_29_1
  doi: 10.1126/science.1244358
– ident: e_1_2_8_5_1
  doi: 10.1039/C8NR06368K
– ident: e_1_2_8_28_1
  doi: 10.1107/S0021889808042726
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202109759
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.2c01151
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.56.12847
– ident: e_1_2_8_39_1
  doi: 10.1016/j.cpc.2018.01.012
– ident: e_1_2_8_21_1
  doi: 10.1002/aelm.202000987
SSID ssj0009606
Score 2.6427522
Snippet 2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2204940
SubjectTerms 2D magnets
2D materials
Anisotropy
Antiferromagnetism
Bilayers
Condensed Matter
DFT calculations
electrical properties
Ferromagnetism
Heterostructures
Ising model
Magnetic materials
Magnetic properties
Magnetoresistance
Magnetoresistivity
Magnets
Materials science
Monolayers
Multilayers
Physics
quantum materials
Spintronics
Strongly Correlated Electrons
Transport properties
van der Waals heterostructures
Title Probing the Spin Dimensionality in Single‐Layer CrSBr Van Der Waals Heterostructures by Magneto‐Transport Measurements
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204940
https://www.proquest.com/docview/2724402706
https://www.proquest.com/docview/2707614166
https://hal.univ-lorraine.fr/hal-03806150
Volume 34
WOSCitedRecordID wos000853439400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMct2DjAgfFTFMZkEBKnaI7tOMmxrKt6aKeKDugteo7tMWlKp3abtJ32J-xv5C_hvaRNuwNCgksUO89RFL-XfJ_jfMzYJ1lqMMqKCLSHSAPmKTYJIsqtNNj9wmnbLDaRHh1l02k-3viLv-FDtANuFBn185oCHOxifw0NBVdzg6Qkwgkm7dtxrFLya6nHa-yuqVfXpK99UW50tsI2Crl_v_2919LDnzQpckNxburW-sXT3_n_S37Gni5FJ-82XvKcPfDVC_ZkA0X4kt2MCchUnXAUhHxyflrxHnH_G2YHKnWONRM8fuZ_3d4NAYU6P5hPvsz5d0BTLP0AdGQ-oNk1swZKe4mZPLfXfAQnlb-YYbuWpM5H66HJxSt23D88PhhEy3UZolKjAIh8SJxxKncud1KF2ITcxpkDp42E2IXYAphUpNYFVFuYMfpE5SokicwgC6l6zbaqWeXfMC5UsHgK43MXNGQ5lNikxAxVU1mIDotWvVKUS2Y5LZ1xVjS0ZVnQLS3aW9phn1v784bW8UfLj9jJrRFBtgfdYUF1QmU1Jv8q7rDdlQ8Uy9BeFDJFRYTJvDAd9qE9jEFJX1qg8rNLsqHhIdS6aCNrj_jL5RTd3qjblt7-S6N37DHtNxMNd9kW9rR_zx6VVxeni_leHRa4TafZHtvufe1_G_4GZ3QRZQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMct6JCAAz-HKAwwCIlTNMdxnPhYVqoi0mqiBXaz7Ngek6Z0ardJcOJP4G_kL-G9JE27A0JCHO08W1H8Xvx9jvMxIa95KYxMLIuM8CYSBvIUmwYWKcslDD9zwjaHTWTTaX50pA7b3YT4L0zDh-gW3DAy6vc1BjguSO9vqKHG1eAgzhFxAln7jgBfSntkZ_hx9KnYkHdlfcAmfvCLlBT5mtzI-P7VHq7MTNe_4r7ILdG5LV3ruWd09z_c9T1ypxWedNB4yn1yzVcPyO0tHOFD8v0QoUzVMQVRSGdnJxUdIvu_4XaAWqdQM4Prp_7Xj5-FAbFOD5azt0v62YAplL4YcGY6xh02iwZMewHZPLXf6MQcV_58Ae06mjqdbJYnV7tkPno3PxhH7dkMUSlABEQ-pE66RDmnHE9CLIOyce6ME5Kb2IXYGiMzllkXQHFB1ujTRCUhTXlu8pAlj0ivWlT-MaEsCRa6kF65IEyuTAlNSshSBZYZ65NoPSy6bLnleHzGqW6Iy1zjI9XdI-2TN539WUPs-KPlKxjlzghB2-NBobGOJXmNyr-M-2Rv7QS6De-V5hmoIkjomeyTl91lCEz82mIqv7hAG1wiAr0LNrx2ib_cjh4MJ4Ou9ORfGr0gN8fzSaGL99MPT8ktrG82Hu6RHoy6f0ZulJfnJ6vl8zZKfgOZqRRa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMetsSEEB8ZPUdjAICRO0RzHceJjWVcV0VaVOsFulh3bY9KUVu02CU77E_Y38pfwXpKm3QFNQhxtP0dW7Gd_n-N8TMhHXggjE8siI7yJhIE4xaaBRcpyCd3PnLD1ZRPZeJyfnKhJc5oQ_4Wp-RDthht6RjVfo4P7uQsHa2qocRU4iHNEnEDUviNSmGgR7iwma-6urK7XxM99kZIiX3EbGT-4Xf_WunTvB56K3JCcm8K1Wnn6u_-hzU_I40Z20m49Tp6SLV8-I482YITPya8JIpnKUwqSkE7nZyXtIfm_pnaAVqeQM4Xyc__7-mZoQKrTw8X084J-M2AKqe8GhjId4PmaWY2lvYRYntqfdGROS38xg3otS52O1puTyxfkuH90fDiImpsZokKABIh8SJ10iXJOOZ6EWAZl49wZJyQ3sQuxNUZmLLMugN6CmNGniUpCmvLc5CFLXpLtclb6V4SyJFh4hPTKBWFyZQqoUkCMKjDNWIdEq27RRUMtx8szznXNW-YaX6luX2mHfGrt5zWv46-WH6CXWyPEbA-6Q415LMkrUP5V3CF7q0GgG-deap6BJoJwnskOed8Wg1vitxZT-tkl2uAGEahdsOHVkLijObrbG3Xb1Ot_qfSOPJj0-nr4Zfz1DXmI2fWpwz2yDZ3u98n94uribLl4W7nIHx9iEkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Spin+Dimensionality+in+Single%E2%80%90Layer+CrSBr+Van+Der+Waals+Heterostructures+by+Magneto%E2%80%90Transport+Measurements&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Boix%E2%80%90Constant%2C+Carla&rft.au=Ma%C3%B1as%E2%80%90Valero%2C+Samuel&rft.au=Ruiz%2C+Alberto+M.&rft.au=Rybakov%2C+Andrey&rft.date=2022-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=41&rft_id=info:doi/10.1002%2Fadma.202204940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202204940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon