Two-phase decomposition method for the last train departure time choice in subway networks
•Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is developed for the problem.•A two-phase decomposition method is proposed to decompose the original MILP into two MILP models with small sizes....
Saved in:
| Published in: | Transportation research. Part B: methodological Vol. 104; pp. 568 - 582 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.10.2017
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0191-2615, 1879-2367 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is developed for the problem.•A two-phase decomposition method is proposed to decompose the original MILP into two MILP models with small sizes.•A real case study from the full-scale Beijing subway network is conducted.
An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as Singapore, Hong Kong and Beijing. Passengers in these large cities heavily rely on urban subway networks for their daily life. The departure times of the last trains running on different lines of an urban subway network should be well coordinated in order to serve more passengers who can successfully transfer from one line to another, which is referred to as the last train departure time choice problem. This study aims to develop a global optimization method that can solve the last train departure time choice problem for large-scale urban subway networks. To do so, it first formulates a mixed-integer linear programming (MILP) model by introducing auxiliary binary and integer decision variables. For the real-life and large-scale instances, however, the formulated MILP model cannot be solved directly by the global optimization methods such as branch-and-bound algorithm invoked by CPLEX – one of the powerful optimization solvers because of the instance sizes. An effective two-phase decomposition method is thus proposed to globally solve the large-scale problems by decomposing the original MILP into two MILP models with small sizes. Finally, a real case study from the Beijing subway network is conducted to assess the efficiency and applicability of the two-phase decomposition method and perform the necessary sensitivity analysis of the operational parameters involved in the last train departure time choice problem. |
|---|---|
| AbstractList | •Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is developed for the problem.•A two-phase decomposition method is proposed to decompose the original MILP into two MILP models with small sizes.•A real case study from the full-scale Beijing subway network is conducted.
An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as Singapore, Hong Kong and Beijing. Passengers in these large cities heavily rely on urban subway networks for their daily life. The departure times of the last trains running on different lines of an urban subway network should be well coordinated in order to serve more passengers who can successfully transfer from one line to another, which is referred to as the last train departure time choice problem. This study aims to develop a global optimization method that can solve the last train departure time choice problem for large-scale urban subway networks. To do so, it first formulates a mixed-integer linear programming (MILP) model by introducing auxiliary binary and integer decision variables. For the real-life and large-scale instances, however, the formulated MILP model cannot be solved directly by the global optimization methods such as branch-and-bound algorithm invoked by CPLEX – one of the powerful optimization solvers because of the instance sizes. An effective two-phase decomposition method is thus proposed to globally solve the large-scale problems by decomposing the original MILP into two MILP models with small sizes. Finally, a real case study from the Beijing subway network is conducted to assess the efficiency and applicability of the two-phase decomposition method and perform the necessary sensitivity analysis of the operational parameters involved in the last train departure time choice problem. An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as Singapore, Hong Kong and Beijing. Passengers in these large cities heavily rely on urban subway networks for their daily life. The departure times of the last trains running on different lines of an urban subway network should be well coordinated in order to serve more passengers who can successfully transfer from one line to another, which is referred to as the last train departure time choice problem. This study aims to develop a global optimization method that can solve the last train departure time choice problem for large-scale urban subway networks. To do so, it first formulates a mixed-integer linear programming (MILP) model by introducing auxiliary binary and integer decision variables. For the real-life and large-scale instances, however, the formulated MILP model cannot be solved directly by the global optimization methods such as branch-and-bound algorithm invoked by CPLEX – one of the powerful optimization solvers because of the instance sizes. An effective two-phase decomposition method is thus proposed to globally solve the large-scale problems by decomposing the original MILP into two MILP models with small sizes. Finally, a real case study from the Beijing subway network is conducted to assess the efficiency and applicability of the two-phase decomposition method and perform the necessary sensitivity analysis of the operational parameters involved in the last train departure time choice problem. |
| Author | Meng, Qiang Kang, Liujiang |
| Author_xml | – sequence: 1 givenname: Liujiang surname: Kang fullname: Kang, Liujiang – sequence: 2 givenname: Qiang surname: Meng fullname: Meng, Qiang email: ceemq@nus.edu.sg |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz7vOZLsfxZMUv6DgpV68hDQ7y6a2mzVJLf33ZqknDz0NzLzPDPNM2KizHTF2i5AiYHG_SYNbpwKwTCFPAfCCjbEq54nIinLExoBzTESB-RWbeL8BgGwGOGafq4NN-lZ54jVpu-utN8HYju8otLbmjXU8tMS3ygcenDJdzPXKhb0jHsyOuG6t0cTjwO_XB3XkHYWDdV_-ml02auvp5q9O2cfz02rxmizfX94Wj8tEz0QWEip1matCaKyU0HlVVEhFg3VTzCAT6yzLc1VTM5-vRUEoVGyKBpSqFOSiKutsyu5Oe3tnv_fkg9zYveviSSmgyipAETdNGZ5S2lnvHTWyd2an3FEiyEGh3MioUA4KJeQyKoxM-Y_RJqhBz2Bie5Z8OJEUH_8x5KTXhjpNtXGkg6ytOUP_AvmHjgQ |
| CitedBy_id | crossref_primary_10_1155_2019_9692024 crossref_primary_10_1016_j_trc_2020_102889 crossref_primary_10_1016_j_energy_2020_118127 crossref_primary_10_1177_00202940231186674 crossref_primary_10_1016_j_omega_2018_04_003 crossref_primary_10_1016_j_trc_2023_104349 crossref_primary_10_1016_j_ejor_2023_08_034 crossref_primary_10_1016_j_jocs_2018_12_001 crossref_primary_10_1016_j_trb_2019_09_006 crossref_primary_10_1016_j_trb_2024_103094 crossref_primary_10_1108_RS_03_2023_0012 crossref_primary_10_1080_19427867_2023_2290789 crossref_primary_10_1155_2022_3087279 crossref_primary_10_1016_j_trc_2025_105078 crossref_primary_10_1016_j_cor_2022_106091 crossref_primary_10_1016_j_trc_2021_103450 crossref_primary_10_1016_j_trc_2023_104260 crossref_primary_10_3390_app13063729 crossref_primary_10_1016_j_cor_2025_107180 crossref_primary_10_3390_sym11050681 crossref_primary_10_1177_0020294019877480 crossref_primary_10_1016_j_tre_2020_101882 crossref_primary_10_1109_ACCESS_2020_2976904 crossref_primary_10_1109_ACCESS_2022_3215961 crossref_primary_10_1016_j_physa_2021_126575 crossref_primary_10_1016_j_cie_2025_111314 crossref_primary_10_1016_j_trb_2021_05_011 crossref_primary_10_1016_j_jrtpm_2022_100333 crossref_primary_10_1080_23249935_2025_2495128 crossref_primary_10_1016_j_physa_2024_129537 crossref_primary_10_1080_19427867_2025_2470456 crossref_primary_10_1007_s11116_024_10483_8 crossref_primary_10_1016_j_trc_2019_02_005 crossref_primary_10_1080_23249935_2021_1877369 crossref_primary_10_1016_j_ijtst_2024_04_005 crossref_primary_10_3390_ijgi11010018 crossref_primary_10_1109_ACCESS_2020_2969075 crossref_primary_10_1155_2023_3513517 crossref_primary_10_1016_j_trc_2019_01_003 crossref_primary_10_1016_j_apm_2024_04_005 crossref_primary_10_1109_ACCESS_2024_3358585 crossref_primary_10_1080_19427867_2024_2436168 crossref_primary_10_1016_j_trc_2019_09_022 crossref_primary_10_1016_j_cie_2018_03_012 crossref_primary_10_1155_2022_6431231 crossref_primary_10_1016_j_trc_2017_11_013 crossref_primary_10_46465_endustrimuhendisligi_1420465 crossref_primary_10_3390_app9173624 crossref_primary_10_1016_j_tust_2023_105226 crossref_primary_10_1080_19439962_2019_1658672 crossref_primary_10_1109_TFUZZ_2022_3224789 crossref_primary_10_1109_ACCESS_2019_2939401 crossref_primary_10_1155_2020_5609524 crossref_primary_10_1016_j_eswa_2021_116430 crossref_primary_10_1016_j_trc_2020_02_022 crossref_primary_10_1177_0361198119846462 crossref_primary_10_1016_j_physa_2022_128071 crossref_primary_10_1016_j_physa_2022_128273 |
| Cites_doi | 10.1287/trsc.32.4.380 10.1016/j.trb.2014.08.010 10.1016/j.trc.2014.11.001 10.1016/j.trc.2013.09.007 10.1016/j.trc.2010.12.004 10.1016/S1571-0661(04)80526-7 10.1016/j.trb.2016.05.009 10.1016/j.infsof.2004.10.008 10.1016/j.trb.2014.09.003 10.1287/trsc.1070.0200 10.1111/mice.12020 10.1287/trsc.1090.0264 10.1016/j.trb.2015.03.004 10.1016/j.omega.2014.07.005 10.1016/j.trc.2013.08.016 10.1016/j.trb.2006.05.003 10.1287/trsc.4.3.243 10.1016/j.trb.2013.10.013 10.1016/j.ejor.2011.11.003 10.1016/j.trc.2015.09.006 10.1016/j.apm.2015.05.008 10.1287/trsc.1110.0378 10.1016/j.apm.2016.12.016 10.1016/j.ejor.2004.07.019 10.1016/j.omega.2015.04.006 10.1016/j.apm.2016.04.004 10.1016/j.trb.2016.07.006 10.1287/trsc.2015.0605 10.1016/j.trb.2014.01.009 10.1287/trsc.1080.0240 10.1287/opre.50.5.851.362 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Oct 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Oct 2017 |
| DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
| DOI | 10.1016/j.trb.2017.05.001 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2367 |
| EndPage | 582 |
| ExternalDocumentID | 10_1016_j_trb_2017_05_001 S0191261516307895 |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7ST 8FD AGCQF C1K FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c423t-e7c75a62c18a2c58681e6f1df64032b3355adef99b26e12a0322f0aa8a05287d3 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412036300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0191-2615 |
| IngestDate | Wed Aug 13 07:00:20 EDT 2025 Sat Nov 29 05:58:22 EST 2025 Tue Nov 18 22:01:45 EST 2025 Fri Feb 23 02:33:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Last train departure time choice Global optimization method Urban subway networks Two-phase decomposition method Mixed-integer linear programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c423t-e7c75a62c18a2c58681e6f1df64032b3355adef99b26e12a0322f0aa8a05287d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2083801240 |
| PQPubID | 2047452 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2083801240 crossref_primary_10_1016_j_trb_2017_05_001 crossref_citationtrail_10_1016_j_trb_2017_05_001 elsevier_sciencedirect_doi_10_1016_j_trb_2017_05_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Transportation research. Part B: methodological |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Pellegrini, Marliere, Rodriguez (bib0025) 2014; 59 Wu, Liu, Sun, Li, Gao, Wang (bib0027) 2015; 51 Young (bib0029) 1970; 4 Niu, Zhou, Gao (bib0024) 2015; 76 Caprara, Fischetti, Toth (bib0005) 2002; 50 Kang, Wu, Sun, Zhu, Gao (bib0013) 2015; 72 Cacchiani, Huisman, Kidd, Kroon, Toth, Veelenturf, Wagenaar (bib0002) 2014; 63 Guo, Wu, Sun, Liu, Gao (bib0011) 2016; 40 Wong, Yuen, Fung, Leung (bib0026) 2008; 42 Niu, Zhou (bib0023) 2013; 36 Cordeau, Toth, Vigo (bib0008) 1998; 32 Zhou, Zhong (bib0030) 2005; 167 Fischetti, Salvagnin, Zanette (bib0010) 2009; 43 Chang, Chung (bib0006) 2005; 47 Cacchiani, Furini, Kidd (bib0003) 2016; 58 Cacchiani, Caprara, Fischetti (bib0001) 2012; 46 Kang, Wu, Sun, Zhu, Wang (bib0014) 2015; 50 Chevrier, Pellgrini, Rodriguez (bib0007) 2013; 37 Yin, Tang, Yang, Gao, Ran (bib0028) 2016; 91 Cacchiani, Toth (bib0004) 2012; 219 Lin, Ku (bib0022) 2014; 29 Krasemann (bib0018) 2012; 20 Dou, Meng, Guo (bib0009) 2015; 60 Kang, Zhu, Sun, Puchinger, Ruthmair, Hu (bib0015) 2016; 93 Kang, Zhu (bib0016) 2016; 40 Liebchen (bib0020) 2008; 42 Liebchen, Möhring (bib0021) 2002; 66 Zhou, Zhong (bib0031) 2007; 41 Lamorgese, Mannino, Piacentini (bib0019) 2016 Kang, Zhu (bib0017) 2017; 45 Ibarra-Rojas, Giesen, Rios-Solis (bib0012) 2014; 70 Yin (10.1016/j.trb.2017.05.001_bib0028) 2016; 91 Kang (10.1016/j.trb.2017.05.001_bib0017) 2017; 45 Zhou (10.1016/j.trb.2017.05.001_bib0030) 2005; 167 Zhou (10.1016/j.trb.2017.05.001_bib0031) 2007; 41 Dou (10.1016/j.trb.2017.05.001_bib0009) 2015; 60 Cacchiani (10.1016/j.trb.2017.05.001_bib0001) 2012; 46 Cacchiani (10.1016/j.trb.2017.05.001_bib0002) 2014; 63 Cacchiani (10.1016/j.trb.2017.05.001_bib0004) 2012; 219 Young (10.1016/j.trb.2017.05.001_bib0029) 1970; 4 Wong (10.1016/j.trb.2017.05.001_bib0026) 2008; 42 Fischetti (10.1016/j.trb.2017.05.001_bib0010) 2009; 43 Guo (10.1016/j.trb.2017.05.001_bib0011) 2016; 40 Krasemann (10.1016/j.trb.2017.05.001_bib0018) 2012; 20 Lamorgese (10.1016/j.trb.2017.05.001_bib0019) 2016 Kang (10.1016/j.trb.2017.05.001_bib0013) 2015; 72 Kang (10.1016/j.trb.2017.05.001_bib0015) 2016; 93 Cacchiani (10.1016/j.trb.2017.05.001_bib0003) 2016; 58 Pellegrini (10.1016/j.trb.2017.05.001_bib0025) 2014; 59 Ibarra-Rojas (10.1016/j.trb.2017.05.001_bib0012) 2014; 70 Kang (10.1016/j.trb.2017.05.001_bib0014) 2015; 50 Chang (10.1016/j.trb.2017.05.001_bib0006) 2005; 47 Niu (10.1016/j.trb.2017.05.001_bib0023) 2013; 36 Niu (10.1016/j.trb.2017.05.001_bib0024) 2015; 76 Kang (10.1016/j.trb.2017.05.001_bib0016) 2016; 40 Liebchen (10.1016/j.trb.2017.05.001_bib0020) 2008; 42 Chevrier (10.1016/j.trb.2017.05.001_bib0007) 2013; 37 Lin (10.1016/j.trb.2017.05.001_bib0022) 2014; 29 Caprara (10.1016/j.trb.2017.05.001_bib0005) 2002; 50 Cordeau (10.1016/j.trb.2017.05.001_bib0008) 1998; 32 Wu (10.1016/j.trb.2017.05.001_bib0027) 2015; 51 Liebchen (10.1016/j.trb.2017.05.001_bib0021) 2002; 66 |
| References_xml | – volume: 40 start-page: 419 year: 2016 end-page: 435 ident: bib0016 article-title: A simulated annealing algorithm for first train transfer problem in urban railway networks publication-title: Appl. Math. Model. – volume: 167 start-page: 752 year: 2005 end-page: 771 ident: bib0030 article-title: Bicriteria train scheduling for high-speed passenger railroad planning applications publication-title: Eur. J. Oper. Res. – volume: 47 start-page: 575 year: 2005 end-page: 585 ident: bib0006 article-title: From timetabling to train regulation – a new train operation model, Inf publication-title: Softw. Technol. – volume: 36 start-page: 212 year: 2013 end-page: 230 ident: bib0023 article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions publication-title: Transp. Res. C – volume: 63 start-page: 15 year: 2014 end-page: 37 ident: bib0002 article-title: An overview of recovery models and algorithms for real-time railway rescheduling publication-title: Transp. Res. B – volume: 29 start-page: 264 year: 2014 end-page: 278 ident: bib0022 article-title: Using genetic algorithms to optimize stopping patterns for passenger rail transportation publication-title: Comput. Aided Civ. Infrastruct. Eng. – volume: 4 start-page: 243 year: 1970 end-page: 269 ident: bib0029 article-title: Scheduling a fixed-schedule, common carrier passenger transportation system publication-title: Transp. Sci. – volume: 76 start-page: 117 year: 2015 end-page: 135 ident: bib0024 article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop pattern: nonlinear integer programming models with linear constraints publication-title: Transp. Res. B – volume: 50 start-page: 851 year: 2002 end-page: 861 ident: bib0005 article-title: Modeling and solving the train timetabling problem publication-title: Oper. Res. – volume: 45 start-page: 209 year: 2017 end-page: 225 ident: bib0017 article-title: Strategic timetable scheduling for last trains in urban railway transit networks publication-title: Appl. Math. Model. – volume: 51 start-page: 1 year: 2015 end-page: 18 ident: bib0027 article-title: Equity-based timetable synchronization optimization in urban subway network publication-title: Transp. Res. C – volume: 72 start-page: 112 year: 2015 end-page: 127 ident: bib0013 article-title: A case study on the coordination of last trains for the Beijing subway network publication-title: Transp. Res. B – volume: 58 start-page: 97 year: 2016 end-page: 110 ident: bib0003 article-title: Approaches to a real-world train timetabling problem in a railway node publication-title: Omega – volume: 219 start-page: 727 year: 2012 end-page: 737 ident: bib0004 article-title: Nominal and robust train timetabling problems publication-title: Eur. J. Oper. Res. – volume: 42 start-page: 57 year: 2008 end-page: 69 ident: bib0026 article-title: Optimizing timetable synchronization for rail mass transit publication-title: Transp. Sci. – volume: 32 start-page: 380 year: 1998 end-page: 404 ident: bib0008 article-title: A survey of optimization models for train routing and scheduling publication-title: Transp. Sci. – volume: 20 start-page: 62 year: 2012 end-page: 78 ident: bib0018 article-title: Design of an effective algorithm for fast response to the rescheduling of railway traffic during disturbances publication-title: Transp. Res. C – volume: 43 start-page: 321 year: 2009 end-page: 335 ident: bib0010 article-title: Fast approaches to improve the robustness of a railway timetable publication-title: Transp. Sci. – volume: 59 start-page: 58 year: 2014 end-page: 80 ident: bib0025 article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions publication-title: Transp. Res. B – volume: 42 start-page: 420 year: 2008 end-page: 435 ident: bib0020 article-title: The first optimized railway timetable in practice publication-title: Transp. Sci. – volume: 40 start-page: 8048 year: 2016 end-page: 8066 ident: bib0011 article-title: Timetable coordination of first trains in urban railway network: a case study of Beijing publication-title: Appl. Math. Model. – volume: 93 start-page: 17 year: 2016 end-page: 36 ident: bib0015 article-title: Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks publication-title: Transp. Res. B – volume: 70 start-page: 35 year: 2014 end-page: 46 ident: bib0012 article-title: An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating coasts of transit networks publication-title: Transp. Res. B – volume: 60 start-page: 360 year: 2015 end-page: 376 ident: bib0009 article-title: Bus schedule coordination for the last train service in an intermodal bus-and-train transport network publication-title: Transp. Res. C – volume: 66 start-page: 18 year: 2002 end-page: 31 ident: bib0021 article-title: A case study in periodic timetabling publication-title: Electron. Notes Theor. Comput. Sci. – volume: 46 start-page: 124 year: 2012 end-page: 133 ident: bib0001 article-title: A Lagrangian heuristic for robustness, with an application to train timetabling publication-title: Transp. Sci. – volume: 50 start-page: 29 year: 2015 end-page: 42 ident: bib0014 article-title: A practical model for last train rescheduling with train delay in urban railway transit networks publication-title: Omega – year: 2016 ident: bib0019 article-title: Optimal train dispatching by Benders’-like reformulation publication-title: Transp. Sci. – volume: 91 start-page: 178 year: 2016 end-page: 210 ident: bib0028 article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: an approximate dynamic programming approach publication-title: Transp. Res. B – volume: 41 start-page: 320 year: 2007 end-page: 341 ident: bib0031 article-title: Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bound, Transp publication-title: Res. Part B – volume: 37 start-page: 20 year: 2013 end-page: 41 ident: bib0007 article-title: Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times publication-title: Transp. Res. C – volume: 32 start-page: 380 issue: 4 year: 1998 ident: 10.1016/j.trb.2017.05.001_bib0008 article-title: A survey of optimization models for train routing and scheduling publication-title: Transp. Sci. doi: 10.1287/trsc.32.4.380 – volume: 70 start-page: 35 year: 2014 ident: 10.1016/j.trb.2017.05.001_bib0012 article-title: An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating coasts of transit networks publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.08.010 – volume: 51 start-page: 1 year: 2015 ident: 10.1016/j.trb.2017.05.001_bib0027 article-title: Equity-based timetable synchronization optimization in urban subway network publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.11.001 – volume: 37 start-page: 20 year: 2013 ident: 10.1016/j.trb.2017.05.001_bib0007 article-title: Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times publication-title: Transp. Res. C doi: 10.1016/j.trc.2013.09.007 – volume: 20 start-page: 62 issue: 1 year: 2012 ident: 10.1016/j.trb.2017.05.001_bib0018 article-title: Design of an effective algorithm for fast response to the rescheduling of railway traffic during disturbances publication-title: Transp. Res. C doi: 10.1016/j.trc.2010.12.004 – volume: 66 start-page: 18 issue: 6 year: 2002 ident: 10.1016/j.trb.2017.05.001_bib0021 article-title: A case study in periodic timetabling publication-title: Electron. Notes Theor. Comput. Sci. doi: 10.1016/S1571-0661(04)80526-7 – volume: 91 start-page: 178 year: 2016 ident: 10.1016/j.trb.2017.05.001_bib0028 article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: an approximate dynamic programming approach publication-title: Transp. Res. B doi: 10.1016/j.trb.2016.05.009 – volume: 47 start-page: 575 issue: 9 year: 2005 ident: 10.1016/j.trb.2017.05.001_bib0006 article-title: From timetabling to train regulation – a new train operation model, Inf publication-title: Softw. Technol. doi: 10.1016/j.infsof.2004.10.008 – volume: 72 start-page: 112 year: 2015 ident: 10.1016/j.trb.2017.05.001_bib0013 article-title: A case study on the coordination of last trains for the Beijing subway network publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.09.003 – volume: 42 start-page: 57 issue: 1 year: 2008 ident: 10.1016/j.trb.2017.05.001_bib0026 article-title: Optimizing timetable synchronization for rail mass transit publication-title: Transp. Sci. doi: 10.1287/trsc.1070.0200 – volume: 29 start-page: 264 issue: 4 year: 2014 ident: 10.1016/j.trb.2017.05.001_bib0022 article-title: Using genetic algorithms to optimize stopping patterns for passenger rail transportation publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12020 – volume: 43 start-page: 321 issue: 3 year: 2009 ident: 10.1016/j.trb.2017.05.001_bib0010 article-title: Fast approaches to improve the robustness of a railway timetable publication-title: Transp. Sci. doi: 10.1287/trsc.1090.0264 – volume: 76 start-page: 117 year: 2015 ident: 10.1016/j.trb.2017.05.001_bib0024 article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop pattern: nonlinear integer programming models with linear constraints publication-title: Transp. Res. B doi: 10.1016/j.trb.2015.03.004 – volume: 50 start-page: 29 year: 2015 ident: 10.1016/j.trb.2017.05.001_bib0014 article-title: A practical model for last train rescheduling with train delay in urban railway transit networks publication-title: Omega doi: 10.1016/j.omega.2014.07.005 – volume: 36 start-page: 212 year: 2013 ident: 10.1016/j.trb.2017.05.001_bib0023 article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions publication-title: Transp. Res. C doi: 10.1016/j.trc.2013.08.016 – volume: 41 start-page: 320 issue: 3 year: 2007 ident: 10.1016/j.trb.2017.05.001_bib0031 article-title: Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bound, Transp publication-title: Res. Part B doi: 10.1016/j.trb.2006.05.003 – volume: 4 start-page: 243 issue: 3 year: 1970 ident: 10.1016/j.trb.2017.05.001_bib0029 article-title: Scheduling a fixed-schedule, common carrier passenger transportation system publication-title: Transp. Sci. doi: 10.1287/trsc.4.3.243 – volume: 59 start-page: 58 year: 2014 ident: 10.1016/j.trb.2017.05.001_bib0025 article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions publication-title: Transp. Res. B doi: 10.1016/j.trb.2013.10.013 – volume: 219 start-page: 727 issue: 3 year: 2012 ident: 10.1016/j.trb.2017.05.001_bib0004 article-title: Nominal and robust train timetabling problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2011.11.003 – volume: 60 start-page: 360 year: 2015 ident: 10.1016/j.trb.2017.05.001_bib0009 article-title: Bus schedule coordination for the last train service in an intermodal bus-and-train transport network publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.09.006 – volume: 40 start-page: 419 issue: 1 year: 2016 ident: 10.1016/j.trb.2017.05.001_bib0016 article-title: A simulated annealing algorithm for first train transfer problem in urban railway networks publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.05.008 – volume: 46 start-page: 124 issue: 1 year: 2012 ident: 10.1016/j.trb.2017.05.001_bib0001 article-title: A Lagrangian heuristic for robustness, with an application to train timetabling publication-title: Transp. Sci. doi: 10.1287/trsc.1110.0378 – volume: 45 start-page: 209 year: 2017 ident: 10.1016/j.trb.2017.05.001_bib0017 article-title: Strategic timetable scheduling for last trains in urban railway transit networks publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.12.016 – volume: 167 start-page: 752 issue: 3 year: 2005 ident: 10.1016/j.trb.2017.05.001_bib0030 article-title: Bicriteria train scheduling for high-speed passenger railroad planning applications publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2004.07.019 – volume: 58 start-page: 97 year: 2016 ident: 10.1016/j.trb.2017.05.001_bib0003 article-title: Approaches to a real-world train timetabling problem in a railway node publication-title: Omega doi: 10.1016/j.omega.2015.04.006 – volume: 40 start-page: 8048 issue: 17-18 year: 2016 ident: 10.1016/j.trb.2017.05.001_bib0011 article-title: Timetable coordination of first trains in urban railway network: a case study of Beijing publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.04.004 – volume: 93 start-page: 17 year: 2016 ident: 10.1016/j.trb.2017.05.001_bib0015 article-title: Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks publication-title: Transp. Res. B doi: 10.1016/j.trb.2016.07.006 – year: 2016 ident: 10.1016/j.trb.2017.05.001_bib0019 article-title: Optimal train dispatching by Benders’-like reformulation publication-title: Transp. Sci. doi: 10.1287/trsc.2015.0605 – volume: 63 start-page: 15 year: 2014 ident: 10.1016/j.trb.2017.05.001_bib0002 article-title: An overview of recovery models and algorithms for real-time railway rescheduling publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.01.009 – volume: 42 start-page: 420 issue: 4 year: 2008 ident: 10.1016/j.trb.2017.05.001_bib0020 article-title: The first optimized railway timetable in practice publication-title: Transp. Sci. doi: 10.1287/trsc.1080.0240 – volume: 50 start-page: 851 issue: 5 year: 2002 ident: 10.1016/j.trb.2017.05.001_bib0005 article-title: Modeling and solving the train timetabling problem publication-title: Oper. Res. doi: 10.1287/opre.50.5.851.362 |
| SSID | ssj0003401 |
| Score | 2.4404142 |
| Snippet | •Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is... An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 568 |
| SubjectTerms | Algorithms Decomposition Global optimization Global optimization method Integer programming Last train departure time choice Linear programming Mixed-integer linear programming Parameter sensitivity Passengers Phase decomposition Public transportation Real variables Scale (ratio) Sensitivity analysis Solvers Subways Topology Trains Transportation networks Two-phase decomposition method Urban subway networks |
| Title | Two-phase decomposition method for the last train departure time choice in subway networks |
| URI | https://dx.doi.org/10.1016/j.trb.2017.05.001 https://www.proquest.com/docview/2083801240 |
| Volume | 104 |
| WOSCitedRecordID | wos000412036300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbaBanlgFraqlCKfOipK6PEiRP7SBGoIIRUiUorLpGdOIUVCqtNtsC_Zxw_2N0KVA5coshJnMd8mfk8Hs8g9E0nmpcpq0ilGCdpqmrCdaKIWQUZm9rbue6TuJ7kp6d8NBJ-RrftywnkTcNvb8XkRUUNbSBss3T2GeIOnUID7IPQYQtih-3_Cf7mmkwuwDgNK20Cxl1UlqsVHcIKgTV3tkCEiYaFfsxMgqk0PwSFCNrDOELambqRd8PGhoq380Q2JEW3AHI5gy52gZJOu-EP42iwN_TKNWh256A-uZyNAZp_gsS1bf8VGp0vAuybj2oL7kkRExiTsQX9GqVzGpLZKjrO2DJbeegfPW5dCuPdbqpM-J3NrurutJAze8mWhQhDH7w2LqCLwnRRRMwE8L1GKzRngg_Qyt7Rweg4mO0kjVzxSvsKfgq8DwZceo7HSMySOe85ytk7tO4GF3jPguI9eqWbDfTGrz1vN9DaXPrJD-g8QAUvQAVbyWGACgaoYAMV3EMFB6hgAxVsoYLhgIUK9lD5iH4fHpzt_ySu1gYpgVB3ROdlzmRGy5hLWjKe8VhndVzVWRolVCVAS2WlayEUzXRMJTTSOpKSy4jBoLtKPqFBc93ozwiXseYmKZKQQNYrzRT0QaXKhdA0p1Rtosh_vKJ0iejNO1wVjwptE30Pl0xsFpanTk69RApHIy09LABdT1227aVXuN-5heM8MRwujbae8whf0NuH32MbDbrpTH9Fq-Xf7rKd7jjk3QPk8J5d |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+decomposition+method+for+the+last+train+departure+time+choice+in+subway+networks&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Kang%2C+Liujiang&rft.au=Meng%2C+Qiang&rft.date=2017-10-01&rft.issn=0191-2615&rft.volume=104&rft.spage=568&rft.epage=582&rft_id=info:doi/10.1016%2Fj.trb.2017.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trb_2017_05_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |