Two-phase decomposition method for the last train departure time choice in subway networks

•Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is developed for the problem.•A two-phase decomposition method is proposed to decompose the original MILP into two MILP models with small sizes....

Full description

Saved in:
Bibliographic Details
Published in:Transportation research. Part B: methodological Vol. 104; pp. 568 - 582
Main Authors: Kang, Liujiang, Meng, Qiang
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.10.2017
Elsevier Science Ltd
Subjects:
ISSN:0191-2615, 1879-2367
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is developed for the problem.•A two-phase decomposition method is proposed to decompose the original MILP into two MILP models with small sizes.•A real case study from the full-scale Beijing subway network is conducted. An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as Singapore, Hong Kong and Beijing. Passengers in these large cities heavily rely on urban subway networks for their daily life. The departure times of the last trains running on different lines of an urban subway network should be well coordinated in order to serve more passengers who can successfully transfer from one line to another, which is referred to as the last train departure time choice problem. This study aims to develop a global optimization method that can solve the last train departure time choice problem for large-scale urban subway networks. To do so, it first formulates a mixed-integer linear programming (MILP) model by introducing auxiliary binary and integer decision variables. For the real-life and large-scale instances, however, the formulated MILP model cannot be solved directly by the global optimization methods such as branch-and-bound algorithm invoked by CPLEX – one of the powerful optimization solvers because of the instance sizes. An effective two-phase decomposition method is thus proposed to globally solve the large-scale problems by decomposing the original MILP into two MILP models with small sizes. Finally, a real case study from the Beijing subway network is conducted to assess the efficiency and applicability of the two-phase decomposition method and perform the necessary sensitivity analysis of the operational parameters involved in the last train departure time choice problem.
AbstractList •Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is developed for the problem.•A two-phase decomposition method is proposed to decompose the original MILP into two MILP models with small sizes.•A real case study from the full-scale Beijing subway network is conducted. An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as Singapore, Hong Kong and Beijing. Passengers in these large cities heavily rely on urban subway networks for their daily life. The departure times of the last trains running on different lines of an urban subway network should be well coordinated in order to serve more passengers who can successfully transfer from one line to another, which is referred to as the last train departure time choice problem. This study aims to develop a global optimization method that can solve the last train departure time choice problem for large-scale urban subway networks. To do so, it first formulates a mixed-integer linear programming (MILP) model by introducing auxiliary binary and integer decision variables. For the real-life and large-scale instances, however, the formulated MILP model cannot be solved directly by the global optimization methods such as branch-and-bound algorithm invoked by CPLEX – one of the powerful optimization solvers because of the instance sizes. An effective two-phase decomposition method is thus proposed to globally solve the large-scale problems by decomposing the original MILP into two MILP models with small sizes. Finally, a real case study from the Beijing subway network is conducted to assess the efficiency and applicability of the two-phase decomposition method and perform the necessary sensitivity analysis of the operational parameters involved in the last train departure time choice problem.
An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as Singapore, Hong Kong and Beijing. Passengers in these large cities heavily rely on urban subway networks for their daily life. The departure times of the last trains running on different lines of an urban subway network should be well coordinated in order to serve more passengers who can successfully transfer from one line to another, which is referred to as the last train departure time choice problem. This study aims to develop a global optimization method that can solve the last train departure time choice problem for large-scale urban subway networks. To do so, it first formulates a mixed-integer linear programming (MILP) model by introducing auxiliary binary and integer decision variables. For the real-life and large-scale instances, however, the formulated MILP model cannot be solved directly by the global optimization methods such as branch-and-bound algorithm invoked by CPLEX – one of the powerful optimization solvers because of the instance sizes. An effective two-phase decomposition method is thus proposed to globally solve the large-scale problems by decomposing the original MILP into two MILP models with small sizes. Finally, a real case study from the Beijing subway network is conducted to assess the efficiency and applicability of the two-phase decomposition method and perform the necessary sensitivity analysis of the operational parameters involved in the last train departure time choice problem.
Author Meng, Qiang
Kang, Liujiang
Author_xml – sequence: 1
  givenname: Liujiang
  surname: Kang
  fullname: Kang, Liujiang
– sequence: 2
  givenname: Qiang
  surname: Meng
  fullname: Meng, Qiang
  email: ceemq@nus.edu.sg
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz7vOZLsfxZMUv6DgpV68hDQ7y6a2mzVJLf33ZqknDz0NzLzPDPNM2KizHTF2i5AiYHG_SYNbpwKwTCFPAfCCjbEq54nIinLExoBzTESB-RWbeL8BgGwGOGafq4NN-lZ54jVpu-utN8HYju8otLbmjXU8tMS3ygcenDJdzPXKhb0jHsyOuG6t0cTjwO_XB3XkHYWDdV_-ml02auvp5q9O2cfz02rxmizfX94Wj8tEz0QWEip1matCaKyU0HlVVEhFg3VTzCAT6yzLc1VTM5-vRUEoVGyKBpSqFOSiKutsyu5Oe3tnv_fkg9zYveviSSmgyipAETdNGZ5S2lnvHTWyd2an3FEiyEGh3MioUA4KJeQyKoxM-Y_RJqhBz2Bie5Z8OJEUH_8x5KTXhjpNtXGkg6ytOUP_AvmHjgQ
CitedBy_id crossref_primary_10_1155_2019_9692024
crossref_primary_10_1016_j_trc_2020_102889
crossref_primary_10_1016_j_energy_2020_118127
crossref_primary_10_1177_00202940231186674
crossref_primary_10_1016_j_omega_2018_04_003
crossref_primary_10_1016_j_trc_2023_104349
crossref_primary_10_1016_j_ejor_2023_08_034
crossref_primary_10_1016_j_jocs_2018_12_001
crossref_primary_10_1016_j_trb_2019_09_006
crossref_primary_10_1016_j_trb_2024_103094
crossref_primary_10_1108_RS_03_2023_0012
crossref_primary_10_1080_19427867_2023_2290789
crossref_primary_10_1155_2022_3087279
crossref_primary_10_1016_j_trc_2025_105078
crossref_primary_10_1016_j_cor_2022_106091
crossref_primary_10_1016_j_trc_2021_103450
crossref_primary_10_1016_j_trc_2023_104260
crossref_primary_10_3390_app13063729
crossref_primary_10_1016_j_cor_2025_107180
crossref_primary_10_3390_sym11050681
crossref_primary_10_1177_0020294019877480
crossref_primary_10_1016_j_tre_2020_101882
crossref_primary_10_1109_ACCESS_2020_2976904
crossref_primary_10_1109_ACCESS_2022_3215961
crossref_primary_10_1016_j_physa_2021_126575
crossref_primary_10_1016_j_cie_2025_111314
crossref_primary_10_1016_j_trb_2021_05_011
crossref_primary_10_1016_j_jrtpm_2022_100333
crossref_primary_10_1080_23249935_2025_2495128
crossref_primary_10_1016_j_physa_2024_129537
crossref_primary_10_1080_19427867_2025_2470456
crossref_primary_10_1007_s11116_024_10483_8
crossref_primary_10_1016_j_trc_2019_02_005
crossref_primary_10_1080_23249935_2021_1877369
crossref_primary_10_1016_j_ijtst_2024_04_005
crossref_primary_10_3390_ijgi11010018
crossref_primary_10_1109_ACCESS_2020_2969075
crossref_primary_10_1155_2023_3513517
crossref_primary_10_1016_j_trc_2019_01_003
crossref_primary_10_1016_j_apm_2024_04_005
crossref_primary_10_1109_ACCESS_2024_3358585
crossref_primary_10_1080_19427867_2024_2436168
crossref_primary_10_1016_j_trc_2019_09_022
crossref_primary_10_1016_j_cie_2018_03_012
crossref_primary_10_1155_2022_6431231
crossref_primary_10_1016_j_trc_2017_11_013
crossref_primary_10_46465_endustrimuhendisligi_1420465
crossref_primary_10_3390_app9173624
crossref_primary_10_1016_j_tust_2023_105226
crossref_primary_10_1080_19439962_2019_1658672
crossref_primary_10_1109_TFUZZ_2022_3224789
crossref_primary_10_1109_ACCESS_2019_2939401
crossref_primary_10_1155_2020_5609524
crossref_primary_10_1016_j_eswa_2021_116430
crossref_primary_10_1016_j_trc_2020_02_022
crossref_primary_10_1177_0361198119846462
crossref_primary_10_1016_j_physa_2022_128071
crossref_primary_10_1016_j_physa_2022_128273
Cites_doi 10.1287/trsc.32.4.380
10.1016/j.trb.2014.08.010
10.1016/j.trc.2014.11.001
10.1016/j.trc.2013.09.007
10.1016/j.trc.2010.12.004
10.1016/S1571-0661(04)80526-7
10.1016/j.trb.2016.05.009
10.1016/j.infsof.2004.10.008
10.1016/j.trb.2014.09.003
10.1287/trsc.1070.0200
10.1111/mice.12020
10.1287/trsc.1090.0264
10.1016/j.trb.2015.03.004
10.1016/j.omega.2014.07.005
10.1016/j.trc.2013.08.016
10.1016/j.trb.2006.05.003
10.1287/trsc.4.3.243
10.1016/j.trb.2013.10.013
10.1016/j.ejor.2011.11.003
10.1016/j.trc.2015.09.006
10.1016/j.apm.2015.05.008
10.1287/trsc.1110.0378
10.1016/j.apm.2016.12.016
10.1016/j.ejor.2004.07.019
10.1016/j.omega.2015.04.006
10.1016/j.apm.2016.04.004
10.1016/j.trb.2016.07.006
10.1287/trsc.2015.0605
10.1016/j.trb.2014.01.009
10.1287/trsc.1080.0240
10.1287/opre.50.5.851.362
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 2017
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.trb.2017.05.001
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2367
EndPage 582
ExternalDocumentID 10_1016_j_trb_2017_05_001
S0191261516307895
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
8FD
AGCQF
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c423t-e7c75a62c18a2c58681e6f1df64032b3355adef99b26e12a0322f0aa8a05287d3
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412036300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0191-2615
IngestDate Wed Aug 13 07:00:20 EDT 2025
Sat Nov 29 05:58:22 EST 2025
Tue Nov 18 22:01:45 EST 2025
Fri Feb 23 02:33:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Last train departure time choice
Global optimization method
Urban subway networks
Two-phase decomposition method
Mixed-integer linear programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c423t-e7c75a62c18a2c58681e6f1df64032b3355adef99b26e12a0322f0aa8a05287d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2083801240
PQPubID 2047452
PageCount 15
ParticipantIDs proquest_journals_2083801240
crossref_primary_10_1016_j_trb_2017_05_001
crossref_citationtrail_10_1016_j_trb_2017_05_001
elsevier_sciencedirect_doi_10_1016_j_trb_2017_05_001
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Pellegrini, Marliere, Rodriguez (bib0025) 2014; 59
Wu, Liu, Sun, Li, Gao, Wang (bib0027) 2015; 51
Young (bib0029) 1970; 4
Niu, Zhou, Gao (bib0024) 2015; 76
Caprara, Fischetti, Toth (bib0005) 2002; 50
Kang, Wu, Sun, Zhu, Gao (bib0013) 2015; 72
Cacchiani, Huisman, Kidd, Kroon, Toth, Veelenturf, Wagenaar (bib0002) 2014; 63
Guo, Wu, Sun, Liu, Gao (bib0011) 2016; 40
Wong, Yuen, Fung, Leung (bib0026) 2008; 42
Niu, Zhou (bib0023) 2013; 36
Cordeau, Toth, Vigo (bib0008) 1998; 32
Zhou, Zhong (bib0030) 2005; 167
Fischetti, Salvagnin, Zanette (bib0010) 2009; 43
Chang, Chung (bib0006) 2005; 47
Cacchiani, Furini, Kidd (bib0003) 2016; 58
Cacchiani, Caprara, Fischetti (bib0001) 2012; 46
Kang, Wu, Sun, Zhu, Wang (bib0014) 2015; 50
Chevrier, Pellgrini, Rodriguez (bib0007) 2013; 37
Yin, Tang, Yang, Gao, Ran (bib0028) 2016; 91
Cacchiani, Toth (bib0004) 2012; 219
Lin, Ku (bib0022) 2014; 29
Krasemann (bib0018) 2012; 20
Dou, Meng, Guo (bib0009) 2015; 60
Kang, Zhu, Sun, Puchinger, Ruthmair, Hu (bib0015) 2016; 93
Kang, Zhu (bib0016) 2016; 40
Liebchen (bib0020) 2008; 42
Liebchen, Möhring (bib0021) 2002; 66
Zhou, Zhong (bib0031) 2007; 41
Lamorgese, Mannino, Piacentini (bib0019) 2016
Kang, Zhu (bib0017) 2017; 45
Ibarra-Rojas, Giesen, Rios-Solis (bib0012) 2014; 70
Yin (10.1016/j.trb.2017.05.001_bib0028) 2016; 91
Kang (10.1016/j.trb.2017.05.001_bib0017) 2017; 45
Zhou (10.1016/j.trb.2017.05.001_bib0030) 2005; 167
Zhou (10.1016/j.trb.2017.05.001_bib0031) 2007; 41
Dou (10.1016/j.trb.2017.05.001_bib0009) 2015; 60
Cacchiani (10.1016/j.trb.2017.05.001_bib0001) 2012; 46
Cacchiani (10.1016/j.trb.2017.05.001_bib0002) 2014; 63
Cacchiani (10.1016/j.trb.2017.05.001_bib0004) 2012; 219
Young (10.1016/j.trb.2017.05.001_bib0029) 1970; 4
Wong (10.1016/j.trb.2017.05.001_bib0026) 2008; 42
Fischetti (10.1016/j.trb.2017.05.001_bib0010) 2009; 43
Guo (10.1016/j.trb.2017.05.001_bib0011) 2016; 40
Krasemann (10.1016/j.trb.2017.05.001_bib0018) 2012; 20
Lamorgese (10.1016/j.trb.2017.05.001_bib0019) 2016
Kang (10.1016/j.trb.2017.05.001_bib0013) 2015; 72
Kang (10.1016/j.trb.2017.05.001_bib0015) 2016; 93
Cacchiani (10.1016/j.trb.2017.05.001_bib0003) 2016; 58
Pellegrini (10.1016/j.trb.2017.05.001_bib0025) 2014; 59
Ibarra-Rojas (10.1016/j.trb.2017.05.001_bib0012) 2014; 70
Kang (10.1016/j.trb.2017.05.001_bib0014) 2015; 50
Chang (10.1016/j.trb.2017.05.001_bib0006) 2005; 47
Niu (10.1016/j.trb.2017.05.001_bib0023) 2013; 36
Niu (10.1016/j.trb.2017.05.001_bib0024) 2015; 76
Kang (10.1016/j.trb.2017.05.001_bib0016) 2016; 40
Liebchen (10.1016/j.trb.2017.05.001_bib0020) 2008; 42
Chevrier (10.1016/j.trb.2017.05.001_bib0007) 2013; 37
Lin (10.1016/j.trb.2017.05.001_bib0022) 2014; 29
Caprara (10.1016/j.trb.2017.05.001_bib0005) 2002; 50
Cordeau (10.1016/j.trb.2017.05.001_bib0008) 1998; 32
Wu (10.1016/j.trb.2017.05.001_bib0027) 2015; 51
Liebchen (10.1016/j.trb.2017.05.001_bib0021) 2002; 66
References_xml – volume: 40
  start-page: 419
  year: 2016
  end-page: 435
  ident: bib0016
  article-title: A simulated annealing algorithm for first train transfer problem in urban railway networks
  publication-title: Appl. Math. Model.
– volume: 167
  start-page: 752
  year: 2005
  end-page: 771
  ident: bib0030
  article-title: Bicriteria train scheduling for high-speed passenger railroad planning applications
  publication-title: Eur. J. Oper. Res.
– volume: 47
  start-page: 575
  year: 2005
  end-page: 585
  ident: bib0006
  article-title: From timetabling to train regulation – a new train operation model, Inf
  publication-title: Softw. Technol.
– volume: 36
  start-page: 212
  year: 2013
  end-page: 230
  ident: bib0023
  article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions
  publication-title: Transp. Res. C
– volume: 63
  start-page: 15
  year: 2014
  end-page: 37
  ident: bib0002
  article-title: An overview of recovery models and algorithms for real-time railway rescheduling
  publication-title: Transp. Res. B
– volume: 29
  start-page: 264
  year: 2014
  end-page: 278
  ident: bib0022
  article-title: Using genetic algorithms to optimize stopping patterns for passenger rail transportation
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– volume: 4
  start-page: 243
  year: 1970
  end-page: 269
  ident: bib0029
  article-title: Scheduling a fixed-schedule, common carrier passenger transportation system
  publication-title: Transp. Sci.
– volume: 76
  start-page: 117
  year: 2015
  end-page: 135
  ident: bib0024
  article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop pattern: nonlinear integer programming models with linear constraints
  publication-title: Transp. Res. B
– volume: 50
  start-page: 851
  year: 2002
  end-page: 861
  ident: bib0005
  article-title: Modeling and solving the train timetabling problem
  publication-title: Oper. Res.
– volume: 45
  start-page: 209
  year: 2017
  end-page: 225
  ident: bib0017
  article-title: Strategic timetable scheduling for last trains in urban railway transit networks
  publication-title: Appl. Math. Model.
– volume: 51
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0027
  article-title: Equity-based timetable synchronization optimization in urban subway network
  publication-title: Transp. Res. C
– volume: 72
  start-page: 112
  year: 2015
  end-page: 127
  ident: bib0013
  article-title: A case study on the coordination of last trains for the Beijing subway network
  publication-title: Transp. Res. B
– volume: 58
  start-page: 97
  year: 2016
  end-page: 110
  ident: bib0003
  article-title: Approaches to a real-world train timetabling problem in a railway node
  publication-title: Omega
– volume: 219
  start-page: 727
  year: 2012
  end-page: 737
  ident: bib0004
  article-title: Nominal and robust train timetabling problems
  publication-title: Eur. J. Oper. Res.
– volume: 42
  start-page: 57
  year: 2008
  end-page: 69
  ident: bib0026
  article-title: Optimizing timetable synchronization for rail mass transit
  publication-title: Transp. Sci.
– volume: 32
  start-page: 380
  year: 1998
  end-page: 404
  ident: bib0008
  article-title: A survey of optimization models for train routing and scheduling
  publication-title: Transp. Sci.
– volume: 20
  start-page: 62
  year: 2012
  end-page: 78
  ident: bib0018
  article-title: Design of an effective algorithm for fast response to the rescheduling of railway traffic during disturbances
  publication-title: Transp. Res. C
– volume: 43
  start-page: 321
  year: 2009
  end-page: 335
  ident: bib0010
  article-title: Fast approaches to improve the robustness of a railway timetable
  publication-title: Transp. Sci.
– volume: 59
  start-page: 58
  year: 2014
  end-page: 80
  ident: bib0025
  article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions
  publication-title: Transp. Res. B
– volume: 42
  start-page: 420
  year: 2008
  end-page: 435
  ident: bib0020
  article-title: The first optimized railway timetable in practice
  publication-title: Transp. Sci.
– volume: 40
  start-page: 8048
  year: 2016
  end-page: 8066
  ident: bib0011
  article-title: Timetable coordination of first trains in urban railway network: a case study of Beijing
  publication-title: Appl. Math. Model.
– volume: 93
  start-page: 17
  year: 2016
  end-page: 36
  ident: bib0015
  article-title: Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks
  publication-title: Transp. Res. B
– volume: 70
  start-page: 35
  year: 2014
  end-page: 46
  ident: bib0012
  article-title: An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating coasts of transit networks
  publication-title: Transp. Res. B
– volume: 60
  start-page: 360
  year: 2015
  end-page: 376
  ident: bib0009
  article-title: Bus schedule coordination for the last train service in an intermodal bus-and-train transport network
  publication-title: Transp. Res. C
– volume: 66
  start-page: 18
  year: 2002
  end-page: 31
  ident: bib0021
  article-title: A case study in periodic timetabling
  publication-title: Electron. Notes Theor. Comput. Sci.
– volume: 46
  start-page: 124
  year: 2012
  end-page: 133
  ident: bib0001
  article-title: A Lagrangian heuristic for robustness, with an application to train timetabling
  publication-title: Transp. Sci.
– volume: 50
  start-page: 29
  year: 2015
  end-page: 42
  ident: bib0014
  article-title: A practical model for last train rescheduling with train delay in urban railway transit networks
  publication-title: Omega
– year: 2016
  ident: bib0019
  article-title: Optimal train dispatching by Benders’-like reformulation
  publication-title: Transp. Sci.
– volume: 91
  start-page: 178
  year: 2016
  end-page: 210
  ident: bib0028
  article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: an approximate dynamic programming approach
  publication-title: Transp. Res. B
– volume: 41
  start-page: 320
  year: 2007
  end-page: 341
  ident: bib0031
  article-title: Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bound, Transp
  publication-title: Res. Part B
– volume: 37
  start-page: 20
  year: 2013
  end-page: 41
  ident: bib0007
  article-title: Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times
  publication-title: Transp. Res. C
– volume: 32
  start-page: 380
  issue: 4
  year: 1998
  ident: 10.1016/j.trb.2017.05.001_bib0008
  article-title: A survey of optimization models for train routing and scheduling
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.32.4.380
– volume: 70
  start-page: 35
  year: 2014
  ident: 10.1016/j.trb.2017.05.001_bib0012
  article-title: An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating coasts of transit networks
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2014.08.010
– volume: 51
  start-page: 1
  year: 2015
  ident: 10.1016/j.trb.2017.05.001_bib0027
  article-title: Equity-based timetable synchronization optimization in urban subway network
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.11.001
– volume: 37
  start-page: 20
  year: 2013
  ident: 10.1016/j.trb.2017.05.001_bib0007
  article-title: Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2013.09.007
– volume: 20
  start-page: 62
  issue: 1
  year: 2012
  ident: 10.1016/j.trb.2017.05.001_bib0018
  article-title: Design of an effective algorithm for fast response to the rescheduling of railway traffic during disturbances
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2010.12.004
– volume: 66
  start-page: 18
  issue: 6
  year: 2002
  ident: 10.1016/j.trb.2017.05.001_bib0021
  article-title: A case study in periodic timetabling
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/S1571-0661(04)80526-7
– volume: 91
  start-page: 178
  year: 2016
  ident: 10.1016/j.trb.2017.05.001_bib0028
  article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: an approximate dynamic programming approach
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2016.05.009
– volume: 47
  start-page: 575
  issue: 9
  year: 2005
  ident: 10.1016/j.trb.2017.05.001_bib0006
  article-title: From timetabling to train regulation – a new train operation model, Inf
  publication-title: Softw. Technol.
  doi: 10.1016/j.infsof.2004.10.008
– volume: 72
  start-page: 112
  year: 2015
  ident: 10.1016/j.trb.2017.05.001_bib0013
  article-title: A case study on the coordination of last trains for the Beijing subway network
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2014.09.003
– volume: 42
  start-page: 57
  issue: 1
  year: 2008
  ident: 10.1016/j.trb.2017.05.001_bib0026
  article-title: Optimizing timetable synchronization for rail mass transit
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1070.0200
– volume: 29
  start-page: 264
  issue: 4
  year: 2014
  ident: 10.1016/j.trb.2017.05.001_bib0022
  article-title: Using genetic algorithms to optimize stopping patterns for passenger rail transportation
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12020
– volume: 43
  start-page: 321
  issue: 3
  year: 2009
  ident: 10.1016/j.trb.2017.05.001_bib0010
  article-title: Fast approaches to improve the robustness of a railway timetable
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1090.0264
– volume: 76
  start-page: 117
  year: 2015
  ident: 10.1016/j.trb.2017.05.001_bib0024
  article-title: Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop pattern: nonlinear integer programming models with linear constraints
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2015.03.004
– volume: 50
  start-page: 29
  year: 2015
  ident: 10.1016/j.trb.2017.05.001_bib0014
  article-title: A practical model for last train rescheduling with train delay in urban railway transit networks
  publication-title: Omega
  doi: 10.1016/j.omega.2014.07.005
– volume: 36
  start-page: 212
  year: 2013
  ident: 10.1016/j.trb.2017.05.001_bib0023
  article-title: Optimizing urban rail timetable under time-dependent demand and oversaturated conditions
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2013.08.016
– volume: 41
  start-page: 320
  issue: 3
  year: 2007
  ident: 10.1016/j.trb.2017.05.001_bib0031
  article-title: Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bound, Transp
  publication-title: Res. Part B
  doi: 10.1016/j.trb.2006.05.003
– volume: 4
  start-page: 243
  issue: 3
  year: 1970
  ident: 10.1016/j.trb.2017.05.001_bib0029
  article-title: Scheduling a fixed-schedule, common carrier passenger transportation system
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.4.3.243
– volume: 59
  start-page: 58
  year: 2014
  ident: 10.1016/j.trb.2017.05.001_bib0025
  article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2013.10.013
– volume: 219
  start-page: 727
  issue: 3
  year: 2012
  ident: 10.1016/j.trb.2017.05.001_bib0004
  article-title: Nominal and robust train timetabling problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.11.003
– volume: 60
  start-page: 360
  year: 2015
  ident: 10.1016/j.trb.2017.05.001_bib0009
  article-title: Bus schedule coordination for the last train service in an intermodal bus-and-train transport network
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.09.006
– volume: 40
  start-page: 419
  issue: 1
  year: 2016
  ident: 10.1016/j.trb.2017.05.001_bib0016
  article-title: A simulated annealing algorithm for first train transfer problem in urban railway networks
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.05.008
– volume: 46
  start-page: 124
  issue: 1
  year: 2012
  ident: 10.1016/j.trb.2017.05.001_bib0001
  article-title: A Lagrangian heuristic for robustness, with an application to train timetabling
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1110.0378
– volume: 45
  start-page: 209
  year: 2017
  ident: 10.1016/j.trb.2017.05.001_bib0017
  article-title: Strategic timetable scheduling for last trains in urban railway transit networks
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.12.016
– volume: 167
  start-page: 752
  issue: 3
  year: 2005
  ident: 10.1016/j.trb.2017.05.001_bib0030
  article-title: Bicriteria train scheduling for high-speed passenger railroad planning applications
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.07.019
– volume: 58
  start-page: 97
  year: 2016
  ident: 10.1016/j.trb.2017.05.001_bib0003
  article-title: Approaches to a real-world train timetabling problem in a railway node
  publication-title: Omega
  doi: 10.1016/j.omega.2015.04.006
– volume: 40
  start-page: 8048
  issue: 17-18
  year: 2016
  ident: 10.1016/j.trb.2017.05.001_bib0011
  article-title: Timetable coordination of first trains in urban railway network: a case study of Beijing
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.04.004
– volume: 93
  start-page: 17
  year: 2016
  ident: 10.1016/j.trb.2017.05.001_bib0015
  article-title: Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2016.07.006
– year: 2016
  ident: 10.1016/j.trb.2017.05.001_bib0019
  article-title: Optimal train dispatching by Benders’-like reformulation
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2015.0605
– volume: 63
  start-page: 15
  year: 2014
  ident: 10.1016/j.trb.2017.05.001_bib0002
  article-title: An overview of recovery models and algorithms for real-time railway rescheduling
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2014.01.009
– volume: 42
  start-page: 420
  issue: 4
  year: 2008
  ident: 10.1016/j.trb.2017.05.001_bib0020
  article-title: The first optimized railway timetable in practice
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1080.0240
– volume: 50
  start-page: 851
  issue: 5
  year: 2002
  ident: 10.1016/j.trb.2017.05.001_bib0005
  article-title: Modeling and solving the train timetabling problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.50.5.851.362
SSID ssj0003401
Score 2.4404142
Snippet •Develop a global optimization method that can solve the last-train departure time choice problem for large-scale urban subway networks.•A novel MILP model is...
An urban subway network with a number of service lines forms the backbone of the public transport system for a large city of high population, such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 568
SubjectTerms Algorithms
Decomposition
Global optimization
Global optimization method
Integer programming
Last train departure time choice
Linear programming
Mixed-integer linear programming
Parameter sensitivity
Passengers
Phase decomposition
Public transportation
Real variables
Scale (ratio)
Sensitivity analysis
Solvers
Subways
Topology
Trains
Transportation networks
Two-phase decomposition method
Urban subway networks
Title Two-phase decomposition method for the last train departure time choice in subway networks
URI https://dx.doi.org/10.1016/j.trb.2017.05.001
https://www.proquest.com/docview/2083801240
Volume 104
WOSCitedRecordID wos000412036300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbaBanlgFraqlCKfOipK6PEiRP7SBGoIIRUiUorLpGdOIUVCqtNtsC_Zxw_2N0KVA5coshJnMd8mfk8Hs8g9E0nmpcpq0ilGCdpqmrCdaKIWQUZm9rbue6TuJ7kp6d8NBJ-RrftywnkTcNvb8XkRUUNbSBss3T2GeIOnUID7IPQYQtih-3_Cf7mmkwuwDgNK20Cxl1UlqsVHcIKgTV3tkCEiYaFfsxMgqk0PwSFCNrDOELambqRd8PGhoq380Q2JEW3AHI5gy52gZJOu-EP42iwN_TKNWh256A-uZyNAZp_gsS1bf8VGp0vAuybj2oL7kkRExiTsQX9GqVzGpLZKjrO2DJbeegfPW5dCuPdbqpM-J3NrurutJAze8mWhQhDH7w2LqCLwnRRRMwE8L1GKzRngg_Qyt7Rweg4mO0kjVzxSvsKfgq8DwZceo7HSMySOe85ytk7tO4GF3jPguI9eqWbDfTGrz1vN9DaXPrJD-g8QAUvQAVbyWGACgaoYAMV3EMFB6hgAxVsoYLhgIUK9lD5iH4fHpzt_ySu1gYpgVB3ROdlzmRGy5hLWjKe8VhndVzVWRolVCVAS2WlayEUzXRMJTTSOpKSy4jBoLtKPqFBc93ozwiXseYmKZKQQNYrzRT0QaXKhdA0p1Rtosh_vKJ0iejNO1wVjwptE30Pl0xsFpanTk69RApHIy09LABdT1227aVXuN-5heM8MRwujbae8whf0NuH32MbDbrpTH9Fq-Xf7rKd7jjk3QPk8J5d
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+decomposition+method+for+the+last+train+departure+time+choice+in+subway+networks&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Kang%2C+Liujiang&rft.au=Meng%2C+Qiang&rft.date=2017-10-01&rft.issn=0191-2615&rft.volume=104&rft.spage=568&rft.epage=582&rft_id=info:doi/10.1016%2Fj.trb.2017.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trb_2017_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon